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Cytolethal distending toxins (CDTs) are intracellular-acting bacterial genotoxins

generated by a diverse group of mucocutaneous human pathogens. CDTs must

successfully bind to the plasma membrane of host cells in order to exert their

modulatory effects. Maximal toxin activity requires all three toxin subunits, CdtA,

CdtB, and CdtC, which, based primarily on high-resolution structural data, are

believed to preassemble into a tripartite complex necessary for toxin activity.

However, biologically active toxin has not been experimentally demonstrated to

require assembly of the three subunits into a heterotrimer. Here, we

experimentally compared concentration-dependent subunit interactions and

toxin cellular activity of the Campylobacter jejuni CDT (Cj-CDT). Co-

immunoprecipitation and dialysis retention experiments provided evidence for

the presence of heterotrimeric toxin complexes, but only at concentrations of

Cj-CdtA, Cj-CdtB, and Cj-CdtC several logs higher than required for Cj-CDT-

mediated arrest of the host cell cycle at the G2/M interface, which is triggered by

the endonuclease activity associated with the catalytic Cj-CdtB subunit.

Microscale thermophoresis confirmed that Cj-CDT subunit interactions occur

with low affinity. Collectively, our data suggest that at the lowest concentrations

of toxin sufficient for arrest of cell cycle progression, mixtures of Cj-CdtA, Cj-

CdtB, and Cj-CdtC consist primarily of non-interacting, subunit monomers. The

lack of congruence between toxin tripartite structure and cellular activity

suggests that the widely accepted model that CDTs principally intoxicate host

cells as preassembled heterotrimeric structures should be revisited.

KEYWORDS

AB toxin, cytolethal distending toxin, protein-protein interactions, Campylobacter
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Introduction

The cytolethal distending toxins (CDTs) are a broadly

distributed family of intracellular-acting genotoxins produced by

mucocutaneous pathogens of the g- and e-Proteobacteria (Pickett

and Whitehouse, 1999; Lai et al., 2021). CDTs have been isolated

and functionally characterized from multiple pathogens, including

Aggregatibacter actinomycetemcomitans (Aa), Hemophilus ducreyi

(Hd), Escherichia coli (Ec), and Campylobacter jejuni (Cj) (Scott and

Kaper, 1994; Cope et al., 1997; Whitehouse et al., 1998; Mayer et al.,

1999). Within the extracellular environment, CDTs bind and are

taken up into host cells, ultimately resulting in DNA damage,

activation of the DNA damage response, and arrest of cell cycle

progression (Guerra et al., 2011). Phosphatidylinositol-3,4,5-

triphosphate phosphatase activity has also been associated with

Ec-CDT, Cj-CDT, Hd-CDT, and Aa-CDT (Shenker et al., 1999;

Gargi et al., 2013; Huang et al., 2021). Although increasing evidence

implicates individual CDTs as important determinants of virulence

(Fox et al., 2004; Jain et al., 2008; Pokkunuri et al., 2012), the

structure-function relationships that underlie toxin interactions

with host cells remain incompletely understood.

Most CDTs comprise three distinct subunits, CdtA, CdtB, and

CdtC, which are encoded by contiguous genes within a single

operon (Gargi et al., 2012). Analogous to most intracellular-acting

bacterial protein exotoxins, CDTs are believed to possess classic “A-

B” functional architecture, where the CdtA and CdtC subunits

together are thought to constitute the “B component”, which

facilitates the binding, uptake, and intracellular trafficking of the

“catalytically active A component” (Blanke, 2006), CdtB, within

host cells (McSweeney and Dreyfus, 2004; Damek-Poprawa et al.,

2012; Eshraghi et al., 2014; Robb Huhn et al., 2021). High-

resolution structural data indicate that, at high concentrations

(>100 mM), the CdtA, CdtB, and CdtC subunits of Hd-CDT

(Dragana Nesic and Stebbins, 2004) and Aa-CDT (Yamada et al.,

2006) are assembled into heterotrimeric complexes, leading to a

widely accepted model that these three subunits assemble into a

functional, oligomeric holotoxin complex. Nonetheless, the

importance of an assembled tripartite toxin complex for CDT

cellular activity has not been definitively established.

Herein, we describe studies designed to evaluate the importance

of the CDT tripartite structure for the cellular activity of the toxin

from the human intestinal pathogen Campylobacter jejuni (Cj-

CDT). Human epidemiological data coupled with animal

infection studies support a role for Cj-CDT as an important

determinant of pathogen colonization and virulence (Fox et al.,

2004; Jain et al., 2008). However, the mechanisms by which Cj-CDT

is assembled and secreted from C. jejuni resulting in functional

toxin have not been reported. Also, the structure of functional Cj-

CDT generated and released by the bacterium prior to intoxication

of host cells has not been experimentally resolved. Strikingly, the

isolation and purification of Cj-CDT from C. jejuni in culture has

never been reported which makes it challenging to effectively carry

out studies to delineate toxin structure-function relationships.

Using three different experimental approaches, our studies here

suggest that at concentrations at which Cj-CDT induces the arrest

of cell cycle progression in mammalian cells, the three subunits (Cj-
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CdtA, Cj-CdtB, and Cj-CdtC) exist in solution as predominantly

non-assembled monomers. These results suggest that the existing

paradigm that Cj-CdtA, Cj-CdtB, and Cj-CdtC functionally interact

with host cells as a preassembled tripartite toxin should be revisited.
Experimental procedures/methods

Cj-CDT expression and purification

Recombinant forms of Cj-CdtA, Cj-CdtB, Cj-CdtC were

generated and purified as previously described (Eshraghi et al.,

2010). Subunit purity was evaluated using sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) (Biorad, Hercules,

CA) followed by Coomassie Brilliant Blue staining (Sigma, St. Louis,

MO), and quantified using the Pierce BCA protein assay (Thermo,

Rockford, IL).
Removal of polyhistidine fusion peptides

His-tagged recombinant subunits were incubated at 21 ˚C with

biotinylated thrombin (Novagen, Billerica, MA). After 20–24 h,

biotinylated thrombin and cleaved polyhistidine peptides were

removed using Pierce streptavidin agarose beads (ThermoFisher,

Waltham, MA) and TALON Metal Affinity Resin (TaKaRa,

Mountain View, CA), respectively. The beads and resin were

removed using Spin-X centrifuge tube filters (pore size, 0.22 µm;

Corning Costar, NY). Cj-CDT subunits free of polyhistidine fusion

peptides, were quantified using the Pierce BCA assay. Polyhistidine

removal was confirmed using SDS-PAGE and Coomassie Brilliant

Blue staining.
Mammalian cell culture

Human cancer colonic epithelial cells (HCT116, ATCC,

Manassas, VA) were maintained in McCoy’s 5a Modified

Medium (Corning, Manassas, VA) supplemented with 10% fetal

bovine serum (Sigma, St. Louis, MO) and cultivated at 37°C and

under 5% CO2 within a humidified environment.
Cell cycle phase determination

Cj-CDT-dependent arrest of cell cycle progression at the G2/M

interface was assessed using flow cytometry (FACSymphony A1,

BD Biosciences, Franklin Lakes, NJ) as previously described

(Eshraghi et al., 2010; Gargi et al., 2013).
Dialysis retention assays

Purified Cj-CDT subunits were incubated together on ice or 37°

C. After 1 h, the mixtures were dialyzed at 37°C against PBS pH 7.4

(1:1000 sample to buffer ratio), using Micro Float-A-Lyzer Dialysis
frontiersin.org
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Devices with a Molecular weight cutoff (MWCO) of 50 kDa

(Spectrum Labs, CA). After 48 h, samples were harvested and

evaluated for retention of Cj-CdtB using immuno-blot analyses.
Immunoblotting

Following SDS-PAGE, resolved proteins were transferred to

PVDF membranes (Millipore Sigma, Burlington, MA) using a wet/

tank blotting system (Bio-Rad). Membranes were blocked with 5%

bovine serum albumin (Sigma-Aldrich, St. Louis, MO) in TBS-T

(0.1% Tween-20 in TBS pH 7.4, Fisher, Fair Lawn, NJ) and

incubated with primary antibodies. Primary antibodies specific for

each Cj-CDT subunit were generated commercially against peptide

sequences unique to Cj-CdtA, Cj-CdtB, and Cj-CdtC (YenZme, San

Francisco, CA) as follows: antibodies specifically targeting the Cj-

CdtA-specific sequence 255-CPFTAKPLYRQGEVR-268, the Cj-

CdtB-specific sequence 185-CDFNRDPSTITSTVDRELANR-204,

and the Cj-CdtC-specific sequence 44-CFRDTSKDPIDQNWNIK-

59. Membranes were then incubated with anti-rabbit IgG

biotinylated antibodies (Cell Signaling, Danvers, MA), and

subsequently with anti-biotin HRP-linked antibodies (Cell

Signaling, Danvers, MA). Immunoblots were imaged using the

ChemiDoc system (XRS+, Bio-Rad, Hercules, CA) following

exposure to a 1:5 mixture of SuperSignal West Femto Maximum

Sensitivity: Pico Plus Chemiluminescent Substrates (Thermo,

Rockford, IL). Immunoblot densitometry analyses were

performed using Image Lab software (Bio-Rad, Version 6.0).
Microscale thermophoresis analysis

Polyhistidine-tagged Cj-CDT subunits, which had been labeled

with NTA – Atto 647 N dye (NanoTemper, München, Germany),

were incubated at 37°C and with non-polyhistidine-tagged, non-

labeled, non-cognate subunits. After 1 h, samples were loaded into

capillary tubes (Monolith NT.115 Series capillaries, NanoTemper,

München, Germany) and placed into the microscale

thermophoresis instrument (Monolith NT.115, software version

1.2.1, NanoTemper, München, Germany). Samples were allowed

to equilibrate, in the instrument, for an additional 15 min at 37°C

before collecting data. All readings were taken using the

MO.Control program (version 1.6.1, NanoTemper, München,

Germany) using red excitation (650 nm, 30-100% power), and

medium MST power (40%). MST values were determined, at the 3

second temperature jump. Data were normalized to the fraction of

complexed molecules (FB) as previously described (Zillner et al.,

2012). MST values were fit to a log [Cj-CDT subunit] vs response

equation to generate binding curves (GraphPad Prism

version 8.1.2).
Cj-CDT co-immunoprecipitation

Co-immunoprecipitation was conducted using antibodies

bound to protein A magnetic beads (Dynabeads, Invitrogen,
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Waltham, MA). Purified Cj-CDT subunits were incubated on ice.

After 1 h, the mixtures were further incubated at 4°C with the

indicated antibodies. Immunoprecipitation (IP) antibodies were

generated from sera obtained from rabbits immunized with full

length recombinant Cj-CDT subunits (Immunological Resource

Center, Univ. Illinois, Urbana, IL). After 24 h, the bound proteins

were recovered by incubating beads in NuPAGE sample reducing

agent plus LDS sample buffer (Invitrogen, Norway). Recovered Cj-

CDT subunits were analyzed using SDS-PAGE followed by

immunoblot analyses.
Statistical analyses

Each experiment was performed at least three independent

times. Error bars represent standard deviations. Statistical

analyses were performed using GraphPad Prism 8.1.2. Dose

response curves were fit to a log (agonist) vs response (three

parameters) equation. R2 values indicate fit of the data to the

regression model. Analysis of statistical differences was performed

using one-way ANOVA followed by the Tukey’s post-hoc test.

Statistical significance (P < 0.05) was determined at a = 0.05.
Results

Cj-CdtA, Cj-CdtB, and Cj-CdtC are
required for maximal Cj-CDT
cellular activity

The active form of Cj-CDT is generally considered to constitute

a tripartite complex comprising equimolar Cj-CdtA, Cj-CdtB, and

Cj-CdtC (Lee et al., 2003; Gargi et al., 2012), which is a model that

has emerged primarily from high resolution structural data

obtained for Aa-CDT and Hd-CDT (Dragana Nesic and Stebbins,

2004; Yamada et al., 2006) and previous functional studies of Cj-

CDT (Lara-Tejero and Galan, 2001). To experimentally evaluate

this widely accepted model, we conducted experiments to compare

the concentrations at which mixtures of Cj-CdtA, Cj-CdtB, and Cj-

CdtC are assembled into a tripartite structure and induce arrest of

cell cycle progression at the G2/M interface within human colonic

intestinal epithelial-derived HCT116 cells. Congruent with previous

reports (Lara-Tejero and Galan, 2001; Lee et al., 2003), our studies

revealed that Cj-CDT-dependent arrest of cell cycle progression

occurs in a dose-dependent manner (Figure 1A). Moreover,

maximal cellular activity requires all three CDT subunits. The

concentration of Cj-CDT subunit mixtures required to arrest

approximately 50% of HCT116 cells within a monolayer (i.e.,

CCA50) was experimentally determined to be approximately 1

nM (Figure 1A). Notably, this concentration was >10,000-fold

lower than the toxin concentration used to generate crystals

suitable for collecting high-resolution structural data for Aa-CDT

andHd-CDT. These results were comparable to those obtained with

preassembled recombinant toxin (CCA50 = 2.8 (± 1.0) nM), which

is prepared by concurrently refolding together equimolar

concentrations of purified and denatured recombinant Cj-CdtA,
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Cj-CdtB, and Cj-CdtC subunits. Arrest of Cell cycle progression was

observed in cells exposed to mixtures of Cj-CdtA, Cj-CdtB, and Cj-

CdtC (each at 10 nM) for only 60 min, which was comparable to

cells that had been continuously exposed to the toxin for 24 h

(Figure 1B). These results are consistent with previous work

(Whitehouse et al., 1998) showing that within the first hour of

exposure to Cj-CDT, the toxin had sufficiently bound and been
Frontiers in Cellular and Infection Microbiology 04
internalized into host cells, resulting in DNA damage, induction of

the DNA damage response, and arrest of cell cycle progression.

Additional studies to assess whether concurrent exposure of

HCT116 cells to mixtures of Cj-CdtA, Cj-CdtB, and Cj-CdtC is

essential for toxin cellular activity, revealed that prebinding of Cj-

CdtA and Cj-CdtC, followed by removal of unbound subunits, and

subsequent addition of Cj-CdtB, resulted in detectable arrest of cell
A B

D

E F

C

FIGURE 1

High molecular weight Cj-CDT tripartite structures are not captured during dialysis of biologically active mixtures of Cj-CDT subunits. (A) HCT116
cells were incubated in McCoy’s 5A medium + 10% FBS at 37°C and under 5% CO2 in the absence or presence of Cj-CDT (ABC), Cj-CdtA + Cj-CdtB
(AB), Cj-CdtA + Cj-CdtC (AC), or Cj-CdtB + Cj-CdtC (BC) (10 pM – 100 nM). 24 h after the initial intoxication, cells were harvested and evaluated for
cell cycle arrest progression. (B) HCT116 cells were incubated in the absence or presence of Cj-Cdt (ABC) (10 nM). After 10, 30, 60 min, or 24 h,
cells were washed twice to remove unbound Cj-CDT, and further incubated at 37°C. 24 h after the initial intoxication, cells were harvested and
evaluated for cell cycle arrest progression. (C) Pre-chilled HCT116 cells were incubated on ice in the absence or presence of Cj-CdtA and Cj-CdtC
subunits (100 nM) (first exposure). After 30 mins, cells were washed twice with cold medium and then further incubated at 37°C in the absence or
presence of Cj-CDT or Cj-CdtB (second exposure). 24 h after the initial intoxication, cells were harvested and evaluated for cell cycle arrest
progression. The data were combined from 3 independent biological replicates (n=3) and represent the percentage of cells within the monolayer
arrested at the G2/M interface. Error bars represent standard deviations. (A) The data were fit to a log [Cj-CDT] vs response equation on GraphPad
Prism (version 8.1.2). The CCA50 (i.e., EC50) value was determined for Cj-CDT (ABC) but not the binary subunit combinations. R2 values indicate fit of
the data to the regression model. (B, C) Statistical analyses of the data were conducted using one-way Anova, followed by Tukey’s multiple
comparisons test. P < 0.05 indicates statistical significance (a = 0.05), “ns” indicates differences were not statistically significant. (D–F) Equimolar
concentrations of Cj-CdtA, Cj-CdtB, and Cj-CdtC (all 10 mM), were incubated together on (D) ice or (E) at 37°C. After 1 h, the mixture was diluted in
PBS pH 7.4 (to final concentrations of 10 mM, 5 mM, 1 mM, 100 nM, and 10 nM), and then dialyzed at 37°C using a 50 kDa molecular weight cutoff
dialysis membrane at a 1:1000 sample-to-dialysis buffer volume ratio. After 48 h, the dialyzed toxin was evaluated for holotoxin complex retention
using immunoblot analysis, by employing an antibody specific for Cj-CdtB. The ratios of the input mixtures and corresponding recovered retentates
of the same concentration were independently compared for each concentration using densitometric analyses, indicated above the blot. (i.e., for the
10 mM Cj-CdtB concentration we compared non-dialyzed input to dialysis retentate). For the 5 mM Cj-CdtA/B/C sample, the variance (between the 3
independent biological replicates) of the ratio between non-dialyzed sample to dialysis retentate was calculated as (D) ± 0.06 and (E) ± 0.09. For the
10 mM Cj-CdtA/B/C sample, the variance of the ratio between non-dialyzed sample to dialysis retentate was calculated as (D) ± 0.05 and (E) ± 0.14.
(F) Dialysis of Cj-CdtA, Cj-CdtB, and Cj-CdtC subunits that were refolded concurrently together (denatured subunits refolded concurrently) was compared
to mixed Cj-CDT subunits (denatured subunits refolded individually). Data shown are representative of 3 independent biological replicates (n =3).
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cycle progression, albeit to a lesser degree than cells exposed to

equimolar mixtures of the three subunits (Figure 1C). While these

studies did not reveal the mechanism of cellular intoxication in the

absence of concurrent Cj-CDT subunit exposure, the results are

consistent with a conclusion that concurrent administration of Cj-

CdtA, Cj-CdtB, and Cj-CdtC to cells is not essential for intoxication.
High molecular weight Cj-CDT tripartite
structures are not captured during dialysis
at low concentrations of toxin sufficient to
induce arrest of cell cycle progression

To evaluate the importance of the predicted tripartite Cj-CDT

structure for toxin activity, we next determined the concentrations

at which mixtures of Cj-CdtA, Cj-CdtB, and Cj-CdtC are retained

within dialysis tubing. Equimolar concentrations of Cj-CdtA, Cj-

CdtB, and Cj-CdtC (between 0.01 and 10 mM) were premixed on

ice. After 1 h, the subunit mixtures were transferred to dialysis

membrane cassettes (50 kDa molecular weight cutoff (MWCO)),

which were then incubated in dialysis buffer at a 1:1000 volume

ratio of sample to dialysis buffer. After 48 h, the retentates were

collected, and analyzed versus the corresponding input (i.e., non-

dialyzed) mixtures of Cj-CdtA, Cj-CdtB, and Cj-CdtC. Based on the

molecular mass cutoff of 50 kDa, we predicted that Cj-CdtA (29.9

kDa), Cj-CdtB (29.4 kDa), and Cj-CdtC (21.4 kDa), if assembled

into a heterotrimeric complex (with a calculated molecular mass of

approximately 80.7 kDa), would be recoverable from the dialysis

membrane. In contrast, we predicted that if mixtures of Cj-CdtA,

Cj-CdtB, and Cj-CdtC failed to assemble, then the subunits would

diffuse out from the dialysis membrane and not be detected within

the dialysis retentate. For these studies, we used immunoblot

analyses to compare the relative levels of Cj-CdtB in both the

input mixtures and corresponding recovered retentates of the same

concentration, under the premise that Cj-CdtB would be recovered

within the retentate when in complex with Cj-CdtA and Cj-CdtC,

but not if the subunit was present as a non-associated monomer. To

compare the relative recovery of Cj-CdtB more easily within

individual dialysis retentates, each of the input mixtures and

recovered retentate samples were equally diluted to a final

theoretical concentration of 0.01 mM, as a point of comparison

against the non-dialyzed input Cj-CdtB sample at 0.01 mM
(Figure 1D). As an example, for the 1 mM condition, both the

non-dialyzed and dialyzed samples were diluted 100-fold prior to

immunoblot analysis. These experiments revealed that Cj-CdtB was

not detected within the retentates of dialyzed subunit mixtures at

concentrations of 0.01, 0.1, or 1.0 mM (Figure 1D). However, Cj-

CdtB was detected within the retentates of Cj-CDT subunit

mixtures dialyzed at concentrations of 5 or 10 mM (Figure 1D).

The same degree of Cj-CdtB retention within the dialysis tubing was

observed in studies where the preincubation of equimolar mixtures

of Cj-CDT subunits was conducted at 37°C (Figure 1E). Similar

results were also obtained using preassembled toxin, which is toxin

prepared by concurrently refolding purified and denatured

recombinant forms of Cj-CdtA, Cj-CdtB, and Cj-CdtC subunits

(Figure 1F). These data suggest that, at the lowest concentrations of
Frontiers in Cellular and Infection Microbiology 05
toxin that are sufficient to induce arrest of cell cycle progression, Cj-

CdtA, Cj-CdtB, and Cj-CdtC interact with cell monolayers

predominantly as mixtures of non-interacting subunit monomers.
MST reveals low affinity interactions
between Cj-CDT subunits

Dialysis retention experiments described immediately above

(Figure 1D) suggested that at low nanomolar concentrations,

biologically active Cj-CDT exists primarily as mixtures of non-

associated monomers of Cj-CdtA, Cj-CdtB, and Cj-CdtC, complicit

with the idea that Cj-CDT subunits interact with relatively low

affinities. To evaluate Cj-CDT subunit interactions more

quantitatively, we employed microscale thermophoresis (MST)

(Wienken et al., 2010). Overall, these studies indicated that Cj-

CDT subunit interactions (i.e., Cj-CdtA and Cj-CdtB, Cj-CdtA and

Cj-CdtC, Cj-CdtB and Cj-CdtC) occur with relatively low affinity

(Table 1) and were not detectable by MST at concentrations at

which the toxin induces arrest of cell cycle progression (i.e., 1-10

nM) (Figure 1A). Sigmoidal, saturable binding curves were obtained

for mixtures of Cj-CdtA and Cj-CdtC as well as mixtures of Cj-CdtB

and Cj-CdtC, with dissociation constants (KD) of approximately 0.7

mM and 0.5 mM, respectively (Figures 2A, B). Cj-CdtA interactions

with Cj-CdtB occurred with even lower affinity, as MST

measurements yielded an apparent KD of >20 mM (Figure 2C).

Non-sigmoidal, non-saturable binding curves were obtained from

experiments using NTA-565 dye-labeled Cj-CdtC, suggesting that

labeling of Cj-CdtC interfered with interactions between Cj-CdtA

and Cj-CdtB. Our MST data suggest aberrant binding between

amino-terminal labeled Cj-CdtC and Cj-CdtA. The source of these

aberrant binding data cannot be readily explained, as high-

resolution structural data are not yet available for Cj-CDT.

However crystal structures of the tripartite structures of Hd-CDT

and Aa-CDT, reveal that the amino-terminus of the CdtC subunit

contacts both the CdtA and CdtB subunits at the interdomain

surfaces present in the assembled tripartite structures of both these

toxins. From these structures, it’s reasonable to predict that

alterations in the interdomain spanning CdtC amino-terminal

peptide might impact the stability of the assembled heterotrimer.

Nonetheless, it’s not clear whether the relevance of these

interdomain interactions of the CdtC subunit carboxyl termini of

Hd-CDT and Aa-CDT extends to Cj-CdtC as well. Overall, these

data are consistent with those obtained using dialysis retention,

where at the lowest concentrations of toxin found to be sufficient to

induce arrest of cell cycle progression, mixtures of Cj-CdtA, Cj-

CdtB, and Cj-CdtC consist primarily of non-interacting,

subunit monomers.
Immunoprecipitation of Cj-CDT
tripartite complex

To more directly assess the capacity of Cj-CDT subunits in

solution to assemble into tripartite complexes, we examined the

recovery of Cj-CdtA, Cj-CdtB, and Cj-CdtC from co-
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TABLE 1 Cj-CDT Microscale thermophoresis table. .

MST-derived Cj-CDT subunit binding parametersa

subunit
combinationsb

binding
affinityc

first concentration of titrant yielding detectable signal
above backgroundd

saturable
bindinge

R2f

A + B*
A* + C
B* + C

>20 mM
0.65 (+/- 0.1) mM
0.48 (+/- 0.1) mM

2.0 mM
0.31 mM
0.15 mM

no
yes
yes

0.95
0.95
0.93
F
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 frontiers
aNTA fluorescent dye labeled Cj-CdtA or Cj-CdtB were incubated with unlabeled Cj-CDT subunits (no *, 0.02 – 20 mM) and evaluated for binding using MST.
bA = Cj-CdtA, B = Cj-CdtB, C = Cj-CdtC, * = NTA labeled subunit.
cbinding affinity derived from a nonlinear regression model fitted to an equation, describing dose (log (Cj-CDT)) vs response (fraction bound).
dconcentrations of titrant at which MST signals above background were first observed.
eobservation of a clear saturated binding curve for the indicated subunit interaction combination.
fR2 values indicate fit of the data to the regression model.
A

B

C

FIGURE 2

Microscale thermophoresis analysis of Cj-CdtA, Cj-CdtB, and Cj-CdtC subunit interactions. NTA fluorescent labeled Cj-CdtA or Cj-CdtB subunits
were incubated at 37°C with the indicated unlabeled Cj-CDT subunit(s) (with polyhistidine tags removed) as follows: (A) NTA-labeled-Cj-CdtA (0.1
mM) + unlabeled-Cj-CdtC (0.04-20 mM), (B) NTA-labeled-Cj-CdtB (0.1 mM) + unlabeled-Cj-CdtC (0.04-20 mM), and (C) NTA-labeled-Cj-CdtB (0.1
mM) + unlabeled-Cj-CdtA (0.02-20 mM), as indicated on the graphs. After 1 h, subunits were evaluated for binding at 37°C using microscale
thermophoresis. The data on the graph were combined from 3 independent biological replicates (n =3). The data were fit to a log [Cj-CDT] vs
response equation on GraphPad Prism 8.1.2. The KD was derived from each binding curve. R2 values indicate fit of the data to the regression model.
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immunoprecipitation experiments using antibodies specifically

targeting Cj-CdtA, Cj-CdtB, or Cj-CdtC. In experiments using 0.1

mM mix tu r e s o f Cj -Cd tA , Cj -Cd tB , and Cj -Cd tC ,

immunoprecipitation of Cj-CdtB resulted in the recovery of Cj-

CdtB, but neither Cj-CdtA nor Cj-CdtC, indicating that detectable

complex had not formed (F igure 3A) . In contra s t ,

immunoprecipitation of Cj-CdtB from mixtures containing Cj-

CdtB (at 0.1 mM) with 10-fold higher concentrations of either Cj-

CdtA, and Cj-CdtC (both at 1.0 mM), revealed the detectable

recovery of all three subunits (Figure 3A), consistent with the

idea that Cj-CdtA and Cj-CdtC were recovered as part of the

heterotrimeric complex with Cj-CdtB. Likewise, at the higher 1.0

mM subunit concentrations, Cj-CdtB and Cj-CdtC were recovered

from coimmunoprecipitation experiments using an antibody

targeting Cj-CdtA (Figure 3B). Finally, again at 1.0 mM subunit

concentrations, Cj-CdtA and Cj-CdtB were recovered from

coimmunoprecipitation experiments using an antibody targeting

Cj-CdtC (Figure 3C). When taken together with the dialysis

retention and MST results described above, the findings from our

coimmunoprecipitation studies that heterotrimeric complexes were

only recovered when using higher subunit concentrations, further

support the idea that, at the lowest concentrations of toxin found to

be sufficient to induce arrest of cell cycle progression, mixtures of

Cj-CdtA, Cj-CdtB, and Cj-CdtC consist primarily of non-

interacting subunit monomers.
Discussion

The studies described herein were designed to address one of

the most poorly understood aspects of CDT biology, which is the

relationship between CDT holotoxin structure and toxin cellular

activity. Work conducted using CDTs from several mucocutaneous

human pathogens have repeatedly demonstrated that all three toxin

subunits, CdtA, CdtB, and CdtC, are necessary for maximal toxin

cellular activity (Lara-Tejero and Galan, 2001; Shenker et al., 2004;

Dixon et al., 2015). High resolution structural data for Aa-CDT and

Hd-CDT indicated that, at high toxin concentrations exceeding 100

mM, the three toxin subunits assemble into a triangle-shaped

tripartite structure with each CDT subunit in direct contact with

the other two subunits (Dragana Nesic and Stebbins, 2004; Yamada

et al., 2006). Structurally inspired mutations, designed to potentially

interfere with subunit-subunit interactions, were reported to

attenuate cellular activity for Aa-CDT (Cao et al., 2005; Yamada

et al., 2006). Collectively, these results have contributed to the

emergence of a widely-accepted model that CDT binds to and

intoxicates sensitive host cells as an assembled tripartite toxin

(Gargi et al., 2012). Nonetheless, the biologically active structure

of toxin that binds to the surface of sensitive host cells remains

poorly understood. Here, we addressed this gap in knowledge by

experimentally comparing the concentrations of Cj-CDT subunits

required for both toxin biological activity, and the assembly of Cj-

CdtA, Cj-CdtB, and Cj-CdtC into a heterotrimeric structure. Three

independent experimental approaches revealed that solution

mixtures of Cj-CDT, at the lowest concentrations at which the

toxin is biologically active, are comprised primarily of non-
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interacting subunit monomers. These results bring into question

the existing model that Cj-CDT cellular intoxication is initiated

through interactions of an assembled tripartite toxin, as the

biologically active form required for cell surface interactions.

The binding of intracellular-acting AB exotoxins to the plasma

membrane of sensitive cells is critical for defining the cell and tissue

tropism for specific toxins (Blanke, 2006). As such, a thorough

understanding of the molecular determinants by which CDTs

recognize and bind to the cell surface is necessary for the

development of strategies to mitigate the consequences of toxin

action during infection. The experimental observation that both Cj-

CdtA and Cj-CdtC are required for maximal toxin cellular activity

(Figure 1A), is consistent with the prevailing model that these two

subunits together comprise the B component of Cj-CDT, which is

responsible for the binding of the catalytically active A component,

Cj-CdtB, to the surface of sensitive host cells. However, studies to

identify the Cj-CDT subunits that bind to the plasma membrane of

sensitive cells revealed that both Cj-CdtA and Cj-CdtC, but not Cj-

CdtB, were able to bind independently and in the absence of the

other subunits (Lee et al., 2003). Similar observations have also been

made for Aa-CDT (Boesze-Battaglia et al., 2006), Ec-CDT

(McSweeney and Dreyfus, 2005), and Hd-CDT (Robb Huhn

et al., 2021). Taken together, these results suggest the possibility

that active toxin complexes need not be preassembled to

productively interact with host cells, but instead may assemble

directly at the surface of host cells in a sequential manner involving

initial binding of CdtA and/or CdtC as a requisite step preceding

CdtB binding. In addition, because both CdtA and CdtC are

required for maximal cellular activity of all the characterized

CDTs, and each subunit can independently bind to the plasma

membrane of host cells, we speculate that CdtA and CdtC may

contribute in disparate ways to the binding, uptake, and

intracellular trafficking of CdtB. This, in fact, has been reported

for Aa-CDT, Ec-CDT and Hd-CDT (Damek-Poprawa et al., 2012;

Dixon et al., 2015).

The exclusive use of recombinant forms of Cj-CDT subunits in

the work described here and from other groups (Lara-Tejero and

Galan, 2001; Lee et al., 2003) stems from the notoriously low levels of

the toxin recovered from culture supernatants of C. jejuni. The

successful purification or concentration of secreted Cj-CDT from

C. jejuni has not been reported. In our laboratory, toxin cellular

activity within liquid or biphasic cultures (in which bacteria are

cultivated within a thin layer of liquid medium overlaying the surface

of solid agar plates) is detectable at levels equivalent to recombinant

toxin at low or sub-nanomolar levels. Detection of individual

subunits by immunoblot analysis is difficult, suggesting that active

toxin is present in culture filtrates at subnanomolar levels.

The structure of functional Cj-CDT generated and released by

the bacterium prior to intoxication of host cells has not been

definitively resolved. One model is that the tripartite complex of

the toxin is assembled prior to release into the extracellular

environment, possibly following translocation of Cj-CdtA, Cj-

CdtB, and Cj-CdtC across the inner membrane from the cytosol

to the periplasmic space, which promotes protein folding and

assembly of multi-component proteins (Miller and Salama, 2018).

Indeed, cholera and pertussis toxins, both multi-subunit toxins, are
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believed to be secreted following assembly in the periplasm of the

pathogens that generate these toxins (Sandkvist et al., 2000; Burns,

2021). In contrast, the multi-component anthrax toxins (Collier and

Young, 2003) and Iota toxin from Clostridium perfringens (Sakurai

et al., 2009) are secreted as individual subunits, which assemble only

after secretion. In the case of the anthrax lethal and edema toxins,

the individual components assemble on the surface of host cells. An

important gap in knowledge in Cj-CDT biology remains the

mechanisms by which the individual CDT subunits are folded,

assembled, and released into the extracellular environment.

Interestingly, genes homologous to those typically found in type

II secretion systems, which facilitate secretion of a variety of toxins

to the extracellular environment, have not been identified in the

genomes of C. jejuni, as well as other e-proteobacteria (Gabbert

et al., 2023). Cj-CDT has been reported to be associated with outer

membrane vesicles (OMVs) (Lindmark et al., 2009), which are
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generated and released by many Gram-negative bacteria (Rokas

Juodeikis, 2022), although the role of OMVs in the Cj-CDT

intoxication mechanism remains to be delineated. Nonetheless,

the robust biological activity of highly purified recombinant CDT

subunits indicates that association with OMVs is not essential for

the capacity of the toxin to bind and enter host cell in order to exert

genotoxic activity.

In summary, the results of the studies described here suggest

that the existing paradigm that Cj-CdtA, Cj-CdtB, and Cj-CdtC

functionally interact with host cells as a preassembled,

heterotrimeric complex should be revisited. Although the

mechanism of how mixtures of Cj-CDT subunits interact with

sensitive host cells has not been definitively established, our data

prompt consideration of alternative models. In particular we

speculate that individual subunits assemble into biologically active

toxin at the cell surface, probably by a mechanism facilitated by
A

B

C

FIGURE 3

Co-immunoprecipitation of Cj-CdtA, Cj-CdtB, and Cj-CdtC. Immunoprecipitation (IP) was conducted as follows: (A) Mixtures of purified Cj-CdtA, Cj-CdtB,
and Cj-CdtC (at 100 nM) (panel on the left), or, mixtures of purified Cj-CdtB and Cj-CdtC (at 1 mM) and Cj-CdtA (at 100 nM) were incubated together on ice
(panel on the right). After 1h, the mixtures were incubated with a-Cj-CdtA antibody bound protein A Dynabeads at 4°C. The next day, the beads were
washed, and the bound subunit(s) was/were then eluted and evaluated using immunoblot (IB) analysis, probing with antibodies specific for Cj-CdtA, Cj-CdtB,
or Cj-CdtC subunit. This process was repeated using (B) purified Cj-CdtA, Cj-CdtB, and Cj-CdtC (at 100 nM) or, mixtures of purified Cj-CdtA and Cj-CdtC (at
1 mM) and Cj-CdtB (at 100 nM), incubated with a-Cj-CdtB antibody bound protein A Dynabeads at 4°C. Finally, (C) purified Cj-CdtA, Cj-CdtB, and Cj-CdtC
(at 100 nM) or, mixtures of purified Cj-CdtA and Cj-CdtB (at 1 mM) and Cj-CdtC (at 100 nM), incubated with a-Cj-CdtC antibody bound to protein A
Dynabeads at 4°C. Each immunoblot presents data, at identical exposure times, from a single experiment representative of results collected from 3
independent biological replicates (n = 3). The dividing line in each image indicates data that were not directly relevant to the figure, and were therefore
spliced out. Data shown are representative of 3 independent biological replicates (n =3).
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interactions with one or more cell surface receptors. However,

because equilibrium binding between subunits occur at very high

and perhaps non-physiological concentrations of Cj-CdtA, Cj-

CdtB, and Cj-CdtC, we cannot rule out the possibility that the

toxin does interact with cells as an assembled heterotrimeric

complex, albeit at very low concentrations that are undetectable

by experimental approaches used in this study. Notably, such a

scenario implies that assembled Cj-CDT possess a much higher

specific activity than has been previously experimentally

determined. Additional work will be required to fully understand

how Cj-CDT subunits collaborate to carry out cellular intoxication.
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