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Understanding the effects of metabolites and trace minerals on microbes
during infection
Introduction

Successful microbial pathogens establish infection and subvert the host immune

response by utilizing their virulence determinants. Perhaps more importantly, the

survival and replication of these pathogens within the microenvironments of infection

sites depend on their ability to utilize alternative nutrient sources. This often involves the

rewiring of metabolic pathways. Changes in microbial metabolic activities were historically

used to identify microbial species by gold standard biochemical tests. However, over the

last two decades, microbial metabolism has been neglected, particularly in favor of next

generation sequencing.

The emerging field of immunometabolism, the intersection between host cellular

metabolism and immune function, has reignited interest in microbial metabolism. This is

because the metabolic reprogramming of host cells not only alters immune responses but

also the nutritional environment that supports microbial growth. Conversely, microbial

metabolism affects immune cell function by depleting immunoregulatory metabolites.

Outcomes of host-pathogen interactions are further affected by the diet and microbiota-

derived metabolites, not only in the gut but also in distal organs. This Frontiers Research

Topic highlights the metabolic cross-talk between the host and pathogen during infection,

the factors that affect these dynamics, and their consequences on the infection outcome.
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Immunometabolism

Immunometabolism is an emerging concept that is central to

both innate and adaptive immune regulation. The activation of

specific metabolic pathways not only generates energy (ATP) but

also dictates the function of immune cells (O'Neill et al., 2016). One

prime example is the metabolic reprogramming which

macrophages undergo following stimulation with the bacterial

immunogen lipopolysaccharide (LPS) that fuels their pro-

inflammatory signaling and microbicidal properties (O'Neill et al.,

2016) (Figure 1 left panel). This involves switching from their basal

metabolic state, mitochondrial oxidative phosphorylation

(OXPHOS), to glycolysis. Several interruptions in the

tricarboxylic acid (TCA) cycle are observed in LPS-stimulated

macrophages, which result in the accumulation of the

mitochondrial metabolites citrate, succinate, fumarate and

itaconate and their export to the cytosol.

Citrate is converted to acetyl-coA that is directed towards the

production of inflammatory lipid-mediators such as prostaglandins

(PGs) (Infantino et al., 2011). Succinate stabilizes the transcription

factor hypoxia-induced factor 1 alpha (HIF-1a), promoting

glycolysis and the production of the pro-inflammatory cytokine

IL-1b (Tannahill et al., 2013). Recently, fumarate was highlighted as

a pro-inflammatory metabolite given its role in type I interferon

(IFN) activation (Hooftman et al., 2023). Fumarate causes

mitochondrial stress and damage, impairing respiration and

releasing mitochondrial RNA (mtRNA), which induces the

production of the cytokine IFNb. Thus, the above-mentioned

metabolites polarize macrophages to a pro-inflammatory M1-like

phenotype. Following inflammation, itaconate is produced in the

mitochondrial matrix by the enzyme aconitate decarboxylase 1,

Acod1 (also called Irg1). Itaconate exerts anti-inflammatory and

anti-oxidative properties to restore homeostatic balance (Peace and

O'Neill, 2022).

In contrast, anti-inflammatory (M2-like) macrophages

downregulate glycolysis and upregulate OXPHOS through catabolic

pathways such as fatty acid oxidation (FAO) and glutaminolysis (Jha

et al., 2015; Liu et al., 2017) (Figure 1 right panel), which can also play a

critical role in resolving infection. For example, recruitment of M2-like

macrophages facilitates the transition into a post-inflammatory

resolution phase that is critical to resolving staphylococcal skin/soft

tissue infections (Thurlow et al., 2018). Interestingly, it is increasingly

being recognized that microbial pathogens can subvert

immunometabolism to promote infection (Yamada et al., 2020;

Wong Fok Lung et al., 2022; Tomlinson et al., 2023).
Impact of microbial metabolism on
immunometabolism

Live microbial pathogens impose a profound metabolic stress

on the host that can override the macrophage reprogramming

associated with LPS or other pathogen-associated molecular

patterns (PAMPs). For example, during pulmonary infection,

multidrug-resistant Klebsiella pneumoniae induces an airway
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metabolic response distinct from that stimulated by the heat-

killed pathogen or its purified LPS (Wong Fok Lung et al., 2022).

This response is characterized by an increase in metabolic pathways

that fuel OXPHOS, promoting immunosuppression and tolerance

to infection, rather than glycolysis that is associated with the highly

pro-inflammatory signaling necessary for bacterial clearance. In

addition, the host metabolite itaconate is particularly prominent

during infection with metabolically-active K. pneumoniae. Absence

of this immunomodulatory metabolite abrogates host tolerance to

K. pneumoniae infection and is instead accompanied by excessive

inflammation and immunopathology (Wong Fok Lung et al., 2022).

The role of itaconate and other anti-inflammatory metabolites such

as adenosine in promoting immunosuppression in myeloid cells is

discussed by Urso and Prince.

The Gram-positive bacterial pathogen, Staphylococcus aureus,

employs a similar metabolic strategy to cause persistent infection.

The ability of staphylococcal biofilms to dampen inflammation via

the induction of immunosuppressive myeloid cells and their

production of the anti-inflammatory cytokine IL-10 is attributed

to S. aureus production of lactate (Heim et al., 2020). This

metabolite inhibits histone deacetylase 11 (HDAC11) to enhance

Il-10 transcription. These highlight the crucial contribution of active

bacterial metabolism in contrast to PAMPS in determining the

outcome of the infection through metabolic cross-talks.
Adaptation of microbial pathogens
to metabolites

Whilst pathogens can manipulate immunometabolism to evade

immune clearance, they must also adapt to the metabolic milieu to

ensure their survival. Several metabolites and metabolic by-

products that are produced by the host and microbial cells during

infection are toxic, thereby imposing a strong selective pressure that

drives microbial adaptation. Urso and Prince provide a detailed

overview of how bacterial pathogens alter their own metabolism

and transcriptional profile to optimize their fitness, particularly in

response to the electrophile itaconate and to reactive

oxygen species.

In addition, Mitchell and Ellermann focus on long chain fatty

acids (LCFAs), derived from host and microbial cells as well as

dietary sources, that act as signaling molecules and regulate

virulence in enteric pathogens.
Impact of microbiota-derived
metabolites

Host-pathogen dynamics are further complexed by commensal

microbes and their metabolism. For example, short-chain fatty

acids (SCFAs), the end products of the fermentation of dietary

fibers by the anaerobic intestinal microbiome, have been associated

with positive outcomes following microbial infections as well as

other inflammatory diseases. In a mini review, Zhang et al.

summarize the beneficial effects of SCFAs on the immune
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https://doi.org/10.3389/fcimb.2022.925746
https://doi.org/10.3389/fcimb.2022.925746
https://doi.org/10.3389/fcimb.2022.928503
https://doi.org/10.3389/fcimb.2023.1137161
https://doi.org/10.3389/fcimb.2023.1276271
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Naderer et al. 10.3389/fcimb.2023.1276271
response to sepsis-associated encephalopathy (SAE). These are

mediated by their anti-inflammatory and antioxidant properties.

Lopez et al. discuss the immunomodulatory and therapeutic effects

of SCFAs in inflammatory bowel disease (IBD) and close the cycle

of host-pathogen-microbiota interactions by examining host factors

that alter the gut microbiota and their production of microbiome-

derived metabolites.
Conclusions

The articles in this Research Topic illustrate how the metabolic

cross-talk between host, pathogen and microbiome affects the

outcome of infection. The metabolic potential of microbes as a

virulence strategy is being revisited in light of the more recent

studies documenting the impact of microbial metabolic activity in

shaping the immune response to in vivo infection (Heim et al., 2020;

Tomlinson et al., 2021; Wong Fok Lung et al., 2022; Tomlinson

et al., 2023). In addition, the ability of the bacteria to co-opt

metabolites within the microenvironment enables their survival

and adaptation.
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