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Extracellular vesicles (EVs) are nano-sized particles released from cells into the

extracellular environment, and are separated from eukaryotic cells, bacteria, and

other organisms with cellular structures. EVs alter cell communication by

delivering their contents and performing various functions depending on their

cargo and release into certain environments or other cells. The cell walls of

Gram-positive bacteria have a thick peptidoglycan layer and were previously

thought to be unable to produce EVs. However, recent studies have

demonstrated that Gram-positive bacterial EVs are crucial for health and

disease. In this review, we have summarized the formation, composition, and

characteristics of the contents, resistance to external stress, participation in

immune regulation, and other functions of Gram-positive bacterial EVs, as well

as their application in clinical diagnosis and treatment, to provide a new

perspective to further our understanding of Gram-positive bacterial EVs.
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1 Introduction

Extracellular vesicles (EVs) are nanoparticles surrounded by a lipid bilayer, secreted by

bacteria or eukaryotic cells (Derkus et al., 2017). In 1966, EVs from E. coli were first

observed by Work et al. and described as cellular vesicles containing lipopolysaccharides

and interstitial membrane proteins secreted by outer membrane protrusions (Work et al.,

1966). Subsequently, Gram-negative bacteria, such as Pseudomonas aeruginosa, Salmonella

Typhimurium, and Helicobacter pylori, have been shown to produce and secrete EVs

(Mullaney et al., 2009; Bai et al., 2014; Sartorio et al., 2021).

EVs are also known as outer membrane vesicles (OMVs) in Gram-negative bacteria

and membrane vesicles (MVs) in Gram-positive bacteria. Bacterial EVs have various

biological functions, such as exerting effects on bacterial virulence, antibiotic resistance,

transfer of virulence genes, helping bacteria survive and evade immune responses,
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transporting biomolecules to host cells, and assisting in clinical

disease treatment (Yaron et al., 2000; Kulp and Kuehn, 2010; Aung

et al., 2016; Aytar Çelik et al., 2022). The study of EVs is

continuously increasing; however, most studies are currently

focused on eukaryotic and Gram-negative bacteria, and studies on

EVs in Gram-positive bacteria remain limited.

Gram-positive bacteria, especially Gram-positive cocci, such as

coagulase-negative Staphylococcus, Staphylococcus aureus,

Enterococcus, and Clostridium difficile, are crucial pathogens in

hospitals. According to the 2021 China Antimicrobial

Surveillance Network (CHINET) data (Hu et al., 2022), Gram-

negative bacteria accounted for 71.4% of the clinical isolates from

member hospitals, whereas Gram-positive bacteria accounted for

28.6%, which is approximately half the number of Gram-negative

bacterial cases. Although the number of cases is not as high as that

of Gram-negative bacteria, they can cause severe infections and

increase mortality. In 2016, the number of deaths in 195 countries

owing to Streptococcus pneumoniae-induced lower respiratory tract

infections alone was approximately 1.19 million (Troeger

et al., 2018).

With the widespread use of antibiotics, drug-resistant bacteria

have evolved, and the number of antibiotic-resistant Gram-positive

bacteria strains has increased in some countries (Lessa et al., 2015;

Lakhundi and Zhang, 2018; Watkins et al., 2022). Multi-drug

resistant (MDR) bacteria, such as methicillin-resistant

Staphylococcus aureus (MRSA), vancomycin-resis tant

Enterococcus faecalis (VRE), and b-lactamase-producing

Streptococcus pneumoniae, often render multiple antibiotic

treatments ineffective, resulting in difficult-to-cure chronic

infection in patients, and an increased mortality rate. According

to the statistics, the in-hospital mortality rate of bloodstream

infections caused by Staphylococcus aureus is approximately

32.4% in middle-income countries (Bai et al., 2022). Despite a

decrease in the mortality rate over the past 30 years, at least 25% of

patients die within three months (Bai et al., 2022).

In this context, MVs are vital in bacterial virulence factor

pathogenesis, drug resistance mechanisms, and immune

regulation. Therefore, the study of Gram-positive bacterial MVs is

of considerable significance in gaining insights into the

pathogenesis of Gram-positive bacteria and providing novel

therapeutic approaches for clinical practice. Therefore, in this

paper, we review the composition and characteristics of Gram-

positive bacterial MVs, their functions in auxiliary escape and

immunomodulation, and their clinical applications.
2 Formation of Gram-positive
bacteria MVs

In Gram-negative bacteria, there are three main hypotheses for

vesicle formation: membrane curvature-inducing proteins induce

the formation of spherical vesicles by increasing the membrane

curvature, dissociation of the crosslinking between the outer

membrane and peptidoglycan to produce vesicles, and mutations

in the VacJ/Yrb ATP-binding box (ABC) transport system inducing
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vesicle production (Roier et al., 2016; Toyofuku et al., 2019). Gram-

positive bacteria have not been studied as extensively as Gram-

negative bacteria, and we lack a complete model for the formation

of MVs. It is now believed that the formation of Gram-positive

bacterial MVs is primarily mediated by the outgrowth of specific

lipid-enriched regions within the cytoplasmic membrane, which

subsequently weakens the thick peptidoglycan layer in the presence

of endolysins and facilitates MV release (Toyofuku et al., 2019).

Furthermore, the formation of MVs is not determined by a small

number of genes but is regulated by a complex network of genes

(Briaud and Carroll, 2020).

MVs are produced by various Gram-positive bacteria, including

Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium

tuberculosis, Lactobacillus, Bacillus subtilis, Bacillus anthracis,

Listeria monocytogenes, and Clostridium perfringens (Jiang et al.,

2014; White et al., 2018; Choi et al., 2019; Karthikeyan et al., 2020;

Abe et al., 2021; Bitto et al., 2021; Mehanny et al., 2022). Their

diameters range between 20 and 500 nm (Brown et al., 2015). The

differences in the size of MVs may be related to the purification

technique and measurement method used (Aytar Çelik et al., 2022),

environmental factors of vesicle growth, and the influence of

membrane lipid genes (Toyofuku et al., 2019).

For example, Codemo et al. observed Streptococcus pneumoniae

MVs in the range of 25–250 nm by electron microscopy using the

OptiPrep density gradient media method (Codemo et al., 2018),

whereas Mehanny et al. determined MVs in the range of 130–160

nm using size exclusion chromatography (SEC) for vesicle

purification and nanoparticle tracking analysis (NTA) (Mehanny

et al., 2020). The sizes of bacterial MVs also vary across different

growth periods (Mehanny et al., 2022). Bacteria must uptake and

utilize nutrients from the environment during growth. The

production of EVs is influenced by many environmental factors,

such as hypoxia, temperature, iron deficiency, and antibiotic

stimulation (Orench-Rivera and Kuehn, 2016). Poor external

environmental conditions such as non-growing temperatures and

high salt, acid, and iron deficiencies increase the secretion of MVs

(Lee T. et al., 2017; Karthikeyan et al., 2020; Wang et al., 2021).
3 Composition and characteristics of
Gram-positive bacteria MVs

EVs of Gram-positive bacteria contain fatty acids,

phospholipids, cytoplasmic proteins, membrane-associated

virulence proteins, lipid acids, peptidoglycans, DNA, and sRNA

(Yu et al., 2018) (Figure 1).
3.1 Proteins

The proteins in bacterial EVs perform various physiological

functions. Gram-negative and Gram-positive bacteria both secrete

proteins, but the protein composition and quantity within bacterial

EVs vary. Notably, the types of proteins detected in the MVs of

different strains vary significantly within the same genus (Olaya-
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Abril et al., 2014; Mehanny et al., 2022). For example, Jeon et al.

reported via proteomic analysis that MVs isolated from three S.

aureus strains from clinical sources contained 60–85 specific

proteins with varying cytotoxicities (Jeon et al., 2016).

Nonetheless, core proteins, such as the surface protein PspA,

ABC transporter protein substrate-binding protein, and

penicillin-binding protein 1 B, are mostly conserved.

Lipoprotein enrichment has also been observed in the

proteomic analysis of MVs of most Gram-positive bacteria, such

as S. aureus, S. pneumoniae, S. pyogenes, B. subtilis, and M.

tuberculosis (Lee et al., 2009; Brown et al., 2014; Olaya-Abril

et al., 2014; Biagini et al., 2015; Lee et al., 2015). Bacterial

lipoproteins are a group of membrane proteins with many

functions and are key ligands of Toll-like receptor 2 (TLR2) in

Gram-positive bacteria that play a vital role in host immune

responses to bacterial infection (Zähringer et al., 2008; Tomlinson

et al., 2014). Lipoprotein deficiency affects bacterial growth,

immune activation, and virulence (Stoll et al., 2005; Khandavilli

et al., 2008). The absence of pre-prolipoprotein diacylglyceryl

transferase (Lgt) in S. pneumoniae delays bacterial growth and

reduces its invasion capacity (Chimalapati et al., 2012).

Furthermore, lipoproteins influence the MVs they produced.

The absence of lipoproteins significantly affects the host immune

response to S. pneumoniae MVs. MVs produced by lipoprotein-

deficient S. pneumoniae mutants lead to decreased nuclear factor-

kappa B (NF-kB) activity and reduced cytokine production by

macrophages in mice, and the levels of immune responses
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induced by these cytokines are reduced (Yerneni et al., 2021).

Similarly, the immunostimulatory ability of MVs produced by

Lgt-mutant S. aureus in mice decreased significantly (Kopparapu

et al., 2021). In M. tuberculosis MVs, lipoproteins stimulate the

TNF-a production by naïve macrophages (Bhatnagar et al., 2007).

Thus, lipoproteins are crucial in regulating systemic immune

responses to MVs.
3.2 Virulence factors and toxins

The production of virulence factors or toxins is a common

survival and attack mechanism of microorganisms, which is

necessary for host pathogenesis (Weiser et al., 2018) and is a

crucial component of MVs. Pathogenic Gram-negative bacterial

vesicles can encapsulate these virulence factors for delivery to host

cells (Bomberger et al., 2009), and a similar phenomenon can also

be observed in Gram-positive bacteria.

Virulence factors vary among different bacterial MVs and play

multiple roles in regulating host responses to bacterial infection and

contribute to the colonization and invasion of bacteria (Table 1).

The adhesins CapD and PrpA, and collagen-binding proteins Acm

and Scm, detected in Enterococcus faecium MVs contribute to the

adhesion and colonization of E. faecium (Wagner et al., 2018).

Virulence factors, such as a-hemolysin contained in S. aureusMVs,

promote the survival of S. aureus in human blood while conferring

bacterial resistance to neutrophils (Askarian et al., 2018).
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FIGURE 1

Composition of MVs. (A) MVs sprout in the lipid-rich region of the cell membrane and are formed with the help of the endolysin, which weakens the
bacterial peptidoglycan layer. MVs mainly contain phospholipids, proteins, and nucleic acids, which play their respective roles. (B) Toxins in MVs,
such as alpha-hemolysin and leukocidins, help lyse red blood cells to obtain the iron required for bacterial survival. (C) Bacterial heritable materials
can affect the biological function of bacteria through MV-mediated horizontal gene transfer. Lipoprotein, a membrane protein contained in MVs, is
involved in immune response as a Toll-like receptor 2 (TLR2) ligand. (D) The antibiotic-inactivating enzymes and catalases contained in MVs can
hydrolyze antibiotics and reactive oxygen species, respectively, to provide a suitable living environment for bacteria. (This figure was created using
Biorender.com).
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Propionibacterium acnes MVs contain hyaluronate lyase, a critical

virulence factor that invades host cells (Jeon et al., 2016).

Additionally, bacteria can promote infection and induce

immunomodulatory responses after delivering virulence factors to

the host cells through EVs. B. anthracis MVs contain a variety of

toxins, such as protective antigen (PA), lethal factor (LF), edema

factor (EF), and anthrolysin (ALO), which immunize mice. The PA

causes mice to produce a strong IgM response to the toxin and

deliver the toxin to host cells, increasing the potency of the toxin

(Rivera et al., 2010). Listeria monocytogenes MVs contain a toxic

force protein, listeriolysin O, which induces increased cytotoxicity

in the human colon adenocarcinoma Caco-2 cell line, contributes to

internalization and participates in interactions with host proteins

during bacterial infections (Karthikeyan et al., 2019; Karthikeyan

et al., 2020). Toxins in MVs are transported to host cells to elicit

their effects and exacerbate damage to the host. For example,

staphylococcal protein A (SPA) in S. aureus MVs induces more

severe eczematous dermatitis in patients with atopic dermatitis,

which may be the result of SPA-induced production of pro-

inflammatory cytokines and chemokines, leading to the

recruitment of inflammatory cells and local inflammation in

atopic dermatitis lesions (Jun et al., 2017).
3.3 Genetic material

Dorward and Garon, (1989) discovered DNA in the vesicles of

Neisseria gonorrhoeae (Dorward and Garon, 1989). With the

continuous development of vesicle studies, RNA, including sRNA,

mRNA, tRNA, and rRNA, has been discovered in the vesicles of

Gram-negative bacteria (Quek et al., 2016; Han et al., 2019; Langlete

et al., 2019; Diallo et al., 2022). Similar to bacteria, EVs carry genetic

material that plays a vital role in their function. In addition to

stabilizing and protecting transported proteins from hydrolytic

digestion by extracellular proteases, bacterial EVs also protect their

nucleic acid cargo from degradation by extracellular nucleases.

Therefore, they can deliver numerous bioactive macromolecules to

bacterially infected host cells (Doré and Boilard, 2023).
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Gram-positive bacterial MVs also possess genetic material

(Jiang et al., 2014; Surve et al., 2016; Domıńguez Rubio et al.,

2017) that can be safely translocated to host cells. For example,

miRNAs in Streptococcus sanguinis MVs are protected from

degradation by RNase A, and are thus safely transported to host

cells (Choi et al., 2016). Group A streptococcal MVs contain RNAs

that differ in abundance from the original bacteria, where the release

of rRNA and tRNA is influenced by the two-component “control of

virulence regulator-sensor” operon (covRS) (Resch et al., 2016).

Furthermore, encapsulated nucleic acid molecules participate in

host cell immune responses through different pathways. The DNA

and RNA detected in S. aureus MVs can be transported with MVs

to host epithelial cells, thereby activating pattern recognition

receptors (PRRs) to promote the release of cytokines and

chemokines from epithelial cells, followed by autophagy-mediated

degradation (Bitto et al., 2021). Transcriptomic sequencing data

revealed that Listeria monocytogenes MVs contained various forms

of RNA, including tRNA, rRNA, mRNA, and sRNA. rli32 sRNA in

MVs correlated with the IFN-b response after incubation with bone

marrow macrophages (Frantz et al., 2019). Despite the role of

genetic material in Gram-positive bacterial MVs in immune

regulation, the exact mechanisms by which these DNA and RNA

molecules are involved in host cell immune regulation, and other

mechanisms remain unclear.
4 Function of Gram-positive
bacteria MVs

OMVs and MVs can be coated with proteins, toxins, nucleic

acids, lipids, and other substances for transport to other bacterial

species or mammalian cell receptors for their corresponding

functions. They are critical for generating immune effects,

mediating horizontal gene transfer, generating antimicrobial

resistance, nutrient uptake, and transporting virulence factors.

They are essential for the survival of both Gram-negative and

Gram-positive bacteria. The functions of MVs are heavily

mediated by their cargo (Figure 1).
TABLE 1 Virulence factors in vesicles of common clinical pathogenic bacteria.

Bacterium Virulence factors Reference

Staphylococcus aureus a-Hemolysin,d-hemolysin, Autolysin, SPA, ETA, ETC, and LukD (Oogai et al., 2011; Jeon et al., 2016; Askarian et al., 2018)

Streptococcus
pneumoniae

PLY, LPxTG Proteins, Cbp D/E/F, Lipoproteins, Autolysin, NanA/B/C, PsaA,
PspA/C,etc

(Olaya-Abril et al., 2014; Codemo et al., 2018; Mehanny
et al., 2022)

Streptococcus suis SspA, SsnA, Ide, Plr, HtpsC, and Mrp etc. (Haas and Grenier, 2015)

Streptococcus pyogenes M protein, ScpA, streptolysin O, and Lipoproteins (Biagini et al., 2015; Resch et al., 2016)

Listeria monocytogenes LLO, internalin proteins, Autolysin, P60, PLC-A, FlaA (Karthikeyan et al., 2019; Karthikeyan et al., 2020)

Mycobacterium
tuberculosis

lipoproteins (such as LpqH, LprA, LprG), HbhA, TatA, and SodB (Prados-Rosales et al., 2011; Lee et al., 2015)

Bacillus anthracis PA, LF, EF, and ALO (Rivera et al., 2010)

Enterococcus faecium CapD, PrpA, Acm, Scm, AtlA, CcpA, VanA, SdrD, and Esp (Wagner et al., 2018; Kim et al., 2019)
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4.1 Strengthening resistance to
external pressure

EVs can enhance bacterial resistance to environmental factors,

prevent bacterial damage by nutrient uptake from the environment,

promote biofilm formation, and produce catalases and antibiotic-

inactivating enzymes (Figure 1).

Iron is essential for bacterial survival and growth (Ferreira et al.,

2016). Mycobactins are high-affinity iron chelators or siderophores

secreted by M. tuberculosis. Iron deficiency results in increased MV

production in M. tuberculosis and elevated local concentrations of

mycobactins (as part of vesicles), which are subsequently released to

provide extracellular iron to support bacterial proliferation (Prados-

Rosales et al., 2011). The production of MVs from S. aureus increases

under iron-deficient conditions in culture, and a-hemolysin,

leukocidin LukED and HlgAB in MVs lyse erythrocytes to release

hemoglobin and heme to promote iron acquisition by bacteria (Wang

et al., 2021). Similarly, the presence of iron-binding factors in

Streptomyces coelicolor contributes to bacterial survival under iron-

limited conditions (Schrempf et al., 2011).

Bacterial EVs contain several substances that help bacteria

survive external environmental stresses. Antibiotics are the most

common environmental stressors encountered by bacteria.

Antibiotic-inactivating enzymes can be released into EVs to

degrade antibiotics, thereby counteracting the associated

damage. MRSA produces MVs that increase in a dose-

dependent manner in the presence of ampicillin and contain

more b-lactamase enzymes and metallo b-lactamase superfamily

proteins, which hydrolyze b-lactam antibiotics. These vesicle-

encapsulated proteins can be transported over long distances to

prevent degradation and significantly contribute to the

development of antibiotic resistance in bacteria (Kim S. et al.,

2020). MRSA can also transfer b-lactamases to antimicrobial‐

sensitive Escherichia coli via MVs, causing them to secrete several

times more b-lactamases than the parental strain to protect

against antibiotic pressure (Lee et al., 2022). The expanding

application of antibiotics and their excessive use expose bacteria

to external stresses more frequently. Further investigation is

required to ascertain whether EVs can be stably inherited as a

protective mechanism against antibiotics, as well as whether such

a mechanism exists in all bacteria.

In addition to producing antibiotic-inactivating enzymes, some

MVs harbor substances, such as catalase, to protect bacteria from

the disruptive effects of reactive oxygen species. For example,

adding MVs to the growth medium of L. monocytogenes induces

the production of more MVs under oxidative stress. Superoxide

dismutase decomposition and catalase can be detected in these

MVs, which may provide a suitable environment for bacteria in

oxidative environments (Wang et al., 2021).
4.2 Participation in immune regulation

Immunomodulation is pivotal for the host response to

bacterial infections. In addition to the direct interaction

between bacteria and host immune cells, MVs released by
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bacteria can also contribute to host defense by directly or

indirectly initiating immune responses and affecting immune

cell populations, consequently triggering the recruitment of

immune cells and release of pro-inflammatory cytokines.

MVs induce an immune response and participate in innate and

adaptive immunity in Gram-positive bacteria. Among the innate

immune responses stimulated by MVs in the host, the primary

responses involve immune cells, such as macrophages and dendritic

cells, as well as TLR molecules, and produce various pro-

inflammatory factors. S. pneumoniae MVs induce NF-kB
activation in a dose-dependent manner after co-incubation with

macrophages, resulting in a significant increase in macrophages in

the blood of mice injected with MVs (Yerneni et al., 2021). A similar

phenomenon was observed in MVs secreted by Streptococcus suis,

which may contribute to increased blood-brain barrier permeability

(Haas and Grenier, 2015). M. tuberculosis MVs carry lipoproteins

that are essential ligands for TLR2 and activate macrophage

responses upon binding with TLR2 (Prados-Rosales et al., 2011).

Furthermore, MVs can mediate different infection outcomes

through different intracellular pathways. MVs secreted during

Listeria monocytogenes infection can accumulate in lysosomes

through endocytosis in non-phagocytic cells and cause an

autophagic response by releasing MVs from cells in the

phagocytic body (Vdovikova et al., 2017). NOD-, LRR- and pyrin

domain-containing 3 (NLRP3) inflammasome plays a vital role in

the innate immune response and disease development. Its activation

is a host defense mechanism for clearing damaged and infected

cells. MVs released by S. aureus mediate the immune response of

macrophages through the TLR2 signaling pathway and induce

NLRP3 inflammasome activation and production of IL-1b and

IL-18 (Wang et al., 2020), which contribute to the establishment

of an effective innate immune response to S. aureus infection.

Gram-positive bacterial MVs are also involved in adaptive

immune responses, primarily through the stimulation of host

antibody production, thereby providing immune protection. This

property aids vaccines development.
4.3 Assisting bacterial survival and escape

Bacteria typically defend themselves against the immune

response of host cells upon entry by producing MVs that release

specific components and create a favorable environment for

immune escape. For example, lipoglycans from MVs of M.

tuberculosis are transported to T cells to stimulate the expression

of GRAIL, a marker of T cell anergy, in CD4 + T cells, thus

inhibiting T cell responses to facilitate immune escape (Athman

et al., 2017). S. pneumoniaeMVs can bind to complement C3 in the

presence of choline-binding proteins, forming an attack membrane

complex that reduces bacterial interactions with the complementary

site on phagocytes and contributes to bacterial evasion of host

humoral immunity (Codemo et al., 2018).

Neutrophil extracellular traps (NETs), produced after

neutrophil death, are another response to bacterial elimination.

NETs are DNA networks covered with antimicrobial peptides and

histones that can degrade virulence factors and kill bacteria, and
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belong to a novel intrinsic immune defense mechanism

(Brinkmann et al., 2004). During an immune attack by the host,

DNase is produced to degrade NETs, which aids bacteria in

escaping host killing. The DNase TatD contained in S.

pneumoniae MVs helps the bacteria escape NETs; consequently,

S. pneumoniae that lack TatD have diminished virulence (Jhelum

et al., 2018). A similar phenomenon was observed in S. suis MVs

(Haas and Grenier, 2015).

Simultaneously, MVs can help bacteria to resist killing within the

host. Various toxins contained in S. aureusMVs increase the resistance

of bacteria to neutrophils in human blood and promote bacterial

survival (Askarian et al., 2018). MVs evade the killing effect of

neutrophils in the host as well as act as molecular decoys to protect

bacteria in some cases. To protect human skin and nasal secretions

from antimicrobial fatty acids (AFAs), S. aureus releasesMVs as decoys

to bind to AFA and avoid damage caused by the combination of the

bacterial membrane and AFAs (Kengmo Tchoupa and Peschel, 2020).
4.4 Horizontal gene transfer

Microorganisms transfer genetic material via horizontal gene

transfer (HGT), which alters or influences biological functions. EVs

contain various components, including DNA and various types of

RNA, and fusion of these genetic materials encapsulated by EVs

mediates the occurrence of HGT (Erdmann et al., 2017). Three

main mechanisms underlie HGT: conjugation, transformation, and

transduction (Soucy et al., 2015). EVs carrying genetic material may

also mediate HGT (Dell’Annunziata et al., 2021). MVs of

Ruminococcus spp contain double-stranded DNA and promote

HGT in bacteria that can catabolize cellulose; thus, wild

transformants also have the heritable cellulolytic ability (Klieve

et al., 2005). Furthermore, bacteriophages in B. subtilis can help

MVs perform gene transfer and render the recipient bacterial phage

sensitive (Tzipilevich et al., 2016).

Bacterial EVs can resist pressure from the external environment

by containing antibiotic-inactivating enzymes; concordantly, bacterial

EVs can also use HGT to improve antibiotic resistance; however, most

studies focus solely on EVs produced by Gram-negative bacteria

(Rumbo et al., 2011; Li et al., 2022). Although HGT-mediated

antibiotic resistance exists in Gram-positive bacteria of frequent

clinical concern, such as E. faecalis, S. aureus, Streptococcus, and M.

tuberculosis (Derbyshire and Gray, 2014; Foster, 2017; Garcıá-Solache

and Rice, 2019), the role of Gram-positive bacterial MVs in HGT,

especially in the transfer of resistance genes, remains poorly

understood. Therefore, a comprehensive exploration of the

association between HGT and MVs could help to address the

problem of antibiotic resistance in Gram-positive bacteria.
5 Clinical application of
Gram-positive bacterial MVs

Most clinical studies have focused on the hazards of EVs

produced by pathogenic bacteria but have neglected the
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contribution of EVs in diagnosing and treating diseases and

maintaining microbial homeostasis in humans (Figure 2).
5.1 Vaccine preparations

In addition to transporting virulence factors and proteins with

immune effects to host cells and inducing inflammatory and

immune responses, the immunity and stability of EVs highlights

their potential as vaccine candidates. Currently, S. pneumoniae and

Bacillus Calmette-Guérin (BCG) vaccines are commonly used in

clinical practice. However, the capsular polysaccharide vaccine

PPSV23 and polysaccharide conjugate vaccine PCV13 in

pneumococcal vaccines cover only a limited number of serotypes,

and the occurrence of capsular conversion leads to an increase in

non-serotype patients. Therefore, there is an urgent need to develop

novel vaccines.

Mice vaccinated with nonpathogenic (noncapsular) S.

pneumoniae MVs have increased survival under live S.

pneumoniae attack compared with that in unvaccinated mice and

provide cross-protection against attacks by different S. pneumoniae

strains (Choi et al., 2017). Simultaneously, multiple specific

immunogenic proteins in S. pneumoniae MVs support their

potential as next-generation vaccines (Olaya-Abril et al., 2014).

Immunization of mice with MVs produced by S. aureus mutants

with suppression of the alpha toxin-encoding gene resulted in

increased levels of cytolysin-neutralizing antibodies in the serum

of mice and demonstrated protection in a lethal mouse model of

sepsis (Wang et al., 2018) (Figure 2).

In addition to their high immunogenicity, MVs have the ability

to elicit immune responses in the absence of adjuvants. Vesicles

extracted from M. tuberculosis can elicit an immune response

comparable with that of BCG without an adjuvant and enhance

protective efficacy if injected together with BCG (Prados-Rosales

et al., 2014). However, the use of MVs as vaccines presents several

challenges that need to be addressed. For example, MVs extracted

from bacteria contain lipids, toxins, and other substances that can

be toxic to humans or result in adverse effects. Moreover, a limited

quantity of MVs can be effectively introduced into the human body

without undergoing degradation or inducing significant biological

responses. Therefore, further investigation and development are

required before MV vaccine formulations can pass adequate

clinical trials.
5.2 Assisting disease diagnosis

The release of probiotic MVs can reflect the relationship

between the host microbiome, disease, and health conditions,

providing a novel detection technique for diagnosis. MVs in the

urine and blood of patients with autism spectrum disorder (ASD)

can be used to assess the microbiota of patients and thus understand

the role of gut microbiota-brain modulation in ASD symptoms (Lee

Y. et al., 2017). The current gold standard for the rapid assessment

of tuberculosis is mainly by microbial culture and nucleic acid

amplification techniques; however, the long cycle time of microbial
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culture and poor specificity of the latter often cause delays in

diagnosis. Schirmer et al. reported that the immunostrips of

vesicles isolated from patients with latent and active tuberculosis

were consistently higher than that of healthy volunteers, which may

contribute to the diagnosis of latent TB (Schirmer et al., 2022). In

addition, pneumococcal MVs isolated from the blood or urine of

patients with Streptococcus pneumoniae-associated hemolytic

uremic syndrome contain highly abundant proteins, which can be

used as markers of MVs in Sp-HUS and become the a potential

diagnostic indicator for Sp-HUS (Battista et al., 2023).

The use of MVs in the auxiliary diagnosis of diseases is non-

invasive and rapid; however, further research must be conducted to

determine the accuracy and specificity of MV detection, which

would facilitate auxiliary diagnosis of diseases with complex or

prolonged diagnoses and deepen our understanding.
5.3 Regulating the disorder of
human microbial ecology

Lactobacillus spp. and Bifidobacterium spp. are two commonly

used probiotics and Gram-positive bacteria that maintain the

healthy state of the human intestine. They are mostly used

clinically to regulate intestinal disorders. MVs isolated from

Lactobacillus rhamnosus JB-1 are involved in the activation and

signaling of multiple PRRs between intestinal epithelial cells and the

enteric nervous system (Al-Nedawi et al., 2014). In the presence of

MVs, Lactobacillus enhances host cell adhesion and reduces the
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adhesion of opportunistic pathogens, contributing to the

maintenance of homeostasis in the vagina (Croatti et al., 2022). In

addition to probiotics, Clostridium butyricum also exhibits a similar

effect. Clostridium butyricum MVs not only ameliorated symptoms

in mice with ulcerative colitis, but also facilitated the restoration of

intestinal ecological balance and reconstruction of gut microbiota

(Liang et al., 2022).
5.4 Improving inflammatory response

In addition to inducing host immune response, MVs can use

anti-inflammatory factors to enhance the inflammatory response.

For example, Lactobacillus plantarum MVs significantly promote

the expression of cell surface markers of M2-type macrophages and

anti-inflammatory cytokines in human skin tissue cultures, which

improve the inflammatory skin state (Kim W. et al., 2020). The

blend of Lactobacillus shortusMVs and vitamin D3 lessensH. pylori

attachment to AGS human gastric carcinoma cells, strengthens cell-

to-cell connections, and diminishes H. pylori-induced

inflammation. This combination holds potential as a novel

therapy for H. pylori infection (Nabavi-Rad et al., 2023).

Some probiotics can improve allergic diseases by inducing

antigen-specific regulatory T cells (Tregs). The MVs secreted by

these probiotics can exhibit a similar effect. For example,

Bifidobacterium Bifidum MVs are potential therapeutic adjuvants

as they can be used to stimulate in vitro dendritic cells to promote

Treg cell differentiation and induce proinflammatory factor
A

B

D

E

C

FIGURE 2

Clinical applications of MVs. (A) Antibodies were produced to protect mice from sepsis; (B) Increasing the adhesion of probiotics to vaginal epithelia;
(C) Promoting macrophage polarization and improving inflammatory response; (D) Downregulating genes in cancer cells to induce apoptosis;
(E) Assisting clinical disease treatment. BDNF, brain-derived neurotrophic factor; GM-CSF, Granulocyte-macrophage colony-stimulating factor. (This
figure was created using Biorender.com).
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homeostasis (López et al., 2011). Moreover, MVs produced by

Bifidobacterium longum contain bacterial extracellular solute-

binding protein (ESBP), which reduces the number of mast cells,

thereby reducing allergic reactions to food (Kim et al., 2015).

Micrococcus luteus MV-specific IgG1 and IgG4 levels were

significantly lower in asthmatic individuals than in healthy

subjects. In asthmatic mice, these MVs decreased IL-1b and IL-17

levels, along with the number of group 3 innate lymphoid cells

(ILC3s), thus contributing to asthma alleviation (Sim et al., 2023).
5.5 Anti-tumor effect

Currently, the development of cancer treatments is focused on

targeted drugs, but other strategies to identify and activate tumor

immunity are also being explored. Many bacterial products, such as

toxins, peptides, and enzymes, have been increasingly developed for

cancer therapy (Soleimani and Javadi, 2022). Some Gram-negative

bacterial OMVs have been used as anti-tumor therapeutic vector

nanovaccines to inhibit tumor growth based on their potent

adjuvant-induced antibody production ability (Huang et al.,

2020). Gram-positive bacterial MVs also exhibit properties that

could be helpful for the development of cancer treatments.

Lactobacillus rhamnosus GG is a probiotic strain commonly used

as a probiotic supplement. It produces MVs that have cytotoxic

effects on cancer cells at certain concentrations and induce

apoptosis in liver cancer cells, primarily by downregulating the

expression of bcl-2 and bax genes in cancer cells (Behzadi et al.,

2017). Similarly, MVs produced by Lacticaseibacillus paracasei PC-

H1 can penetrate colorectal cancer cells, leading to significant

suppression of phosphorylation of 3-phosphoinositide-dependent

protein kinase-1 (PDK1) and serine/threonine protein kinase

(AKT). This, in turn, downregulates Bcl-2 protein expression,

ultimately inducing apoptosis in cancer cells and demonstrating

antitumor effects (Shi et al., 2022). Kim et al. found that MVs from

Lactobacillus acidophilus and S. aureus exhibited anti-tumor effects.

The lack of an increase in tumor size in mice treated with these MVs

may be related to the induction of interferon (INF)-g production by

MV surface proteins (Kim et al., 2017). The development of Gram-

positive EVs, primarily comprising probiotics, is emerging as a

promising avenue in anticancer therapy. Compared to Gram-

negative bacteria, probiotics aid in the restoration of healthy

microbiota, ameliorating complications arising from radiation and

chemotherapy while enhancing the efficacy of cancer treatment (Li

et al., 2021).
5.6 Other clinical disease treatment

MVs aid in disease treatment in addition to assisting with

diagnosis, contributing to the establishment of a normal

ecological environment in the intestinal tract, improving

inflammatory responses, and exhibiting anti-tumor effects. The
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expression of brain-derived neurotrophic factor (BDNF) in the

hippocampus increased in depressed mice treated with L.

plantarum MVs. Depression-like behaviors were alleviated,

implying that L. plantarum MVs may have an antidepressant

effect on neuronal cells (Choi et al., 2019). In both in vivo and in

vitro trials, Lactobacillus plantarumMVs treatment notably boosted

microRNA-101a-3p expression. Elevating this miRNA distinctly

reduced ischemic neuron apoptosis, offering a new approach for

ischemic stroke treatment (Yang et al., 2022). MVs released from

Lactobacillus isolated from the vagina of healthy women help

protect human T cells against HIV-1 infection by inhibiting viral

attachment and entry into target cells (Ñahui Palomino et al., 2019).

In addition, Lactobacillus druckerii MVs and Streptococcus

epidermidis MVs have potential therapeutic value for

dermatological issues such as hyperplastic scars and psoriasis,

respectively (Gómez-Chávez et al., 2021; Han et al., 2023).
6 Summary and outlook

Gram-positive bacteria are a vital class of pathogens that cause

infections in humans. With the continuous improvement of

bacterial EV extraction technology, many studies have

demonstrated that Gram-positive bacteria can produce MVs and

that these MVs are closely related to the virulence, immune ability,

and pathogenic factors of bacteria. MVs perform many functions,

including assisting bacteria in evading host killing, eliciting immune

responses, and mediating drug-resistance gene transfer. However,

these findings are in the primary research phase, and we lack

comprehensive information on the molecular mechanisms of MV

production, immune response, and gene transfer. Furthermore,

several phenomena and problems remain unsolved.

MVs resist the survival mechanism of external environmental

stress, such as antibiotic killing. These findings suggest a novel

therapeutic approach to counter the threat of antibiotic resistance in

bacteria. In addition, the immune response triggered by MVs

highlights their potential as candidates for vaccine development.

However, there is no clear experimental evidence regarding the

safety of MVs or the development of sequelae when they are

injected into humans as a vaccine. These issues require further

exploration to expand the application of MVs.

Disparate attention has been paid to the deleterious effects of

MVs from clinically pathogenic Gram-positive bacteria while

ignoring the beneficial effects of MVs on the human body. Some

probiotics, specifically Gram-positive bacteria, exhibit important

roles in anti-allergy, anti-inflammatory, and disease suppression

responses; these characteristics can be utilized to apply probiotic

MVs as oral preparations or pharmaceutical supplements to prevent

or treat diseases. Moreover, investigating the role of intestinal

probiotic MVs in immunomodulation and signaling will offer a

new direction in research of the microbe-gut-brain axis. Therefore,

further mechanistic research on MVs is essential, and the roles of

several Gram-positive bacteria remain to be explored.
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Doré, E., and Boilard, E. (2023). Bacterial extracellular vesicles and their interplay
with the immune system. Pharmacol. Ther. 247, 108443. doi: 10.1016/
j.pharmthera.2023.108443

Dorward, D. W., and Garon, C. F. (1989). DNA-binding proteins in cells and
membrane blebs of Neisseria gonorrhoeae. J. Bacteriol 171, 4196–4201. doi: 10.1128/
jb.171.8.4196-4201.1989

Erdmann, S., Tschitschko, B., Zhong, L., Raftery, M. J., and Cavicchioli, R. (2017). A
plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to
disseminate and infect plasmid-free cells. Nat. Microbiol. 2, 1446–1455. doi: 10.1038/
s41564-017-0009-2

Ferreira, D., Seca, A. M. L., C.G.A., D., and Silva, A. M. S. (2016). Targeting human
pathogenic bacteria by siderophores: A proteomics review. J. Proteomics 145, 153–166.
doi: 10.1016/j.jprot.2016.04.006

Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status
and future prospects. FEMS Microbiol. Rev. 41, 430–449. doi: 10.1093/femsre/fux007

Frantz, R., Teubner, L., Schultze, T., La Pietra, L., Müller, C., Gwozdzinski, K., et al.
(2019). The secRNome of Listeria monocytogenes Harbors Small Noncoding RNAs
That Are Potent Inducers of Beta Interferon. mBio 10, e01223–e01219. doi: 10.1128/
mBio.01223-19
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