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Introduction: Active tuberculosis (ATB), instigated by Mycobacterium

tuberculosis (M.tb), rises as a primary instigator of morbidity and mortality

within the realm of infectious illnesses. A significant portion of M.tb infections

maintain an asymptomatic nature, recognizably termed as latent tuberculosis

infections (LTBI). The complexities inherent to its diagnosis significantly hamper

the initiatives aimed at its control and eventual eradication.

Methodology: Utilizing the Gene Expression Omnibus (GEO), we procured two

dedicated microarray datasets, labeled GSE39940 and GSE37250. The technique

of weighted correlation network analysis was employed to discern the co-

expression modules from the differentially expressed genes derived from the

first dataset, GSE39940. Consequently, a pyroptosis-related module was

garnered, facilitating the identification of a pyroptosis-related signature (PRS)

diagnostic model through the application of a neural network algorithm. With the

aid of Single Sample Gene Set Enrichment Analysis (ssGSEA), we further

examined the immune cells engaged in the pyroptosis process in the context

of active ATB. Lastly, dataset GSE37250 played a crucial role as a validating

cohort, aimed at evaluating the diagnostic prowess of our model.

Results: In executing the Weighted Gene Co-expression Network Analysis

(WGCNA), a total of nine discrete co-expression modules were lucidly

elucidated. Module 1 demonstrated a potent correlation with pyroptosis. A

predictive diagnostic paradigm comprising three pyroptosis-related signatures,

specifically AIM2, CASP8, and NAIP, was devised accordingly. The established

PRS model exhibited outstanding accuracy across both cohorts, with the area

under the curve (AUC) being respectively articulated as 0.946 and 0.787.
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Conclusion: The present research succeeded in identifying the pyroptosis-

related signature within the pathogenetic framework of ATB. Furthermore, we

developed a diagnostic model which exuded a remarkable potential for efficient

and accurate diagnosis.
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Introduction

Infections caused by Mycobacterium tuberculosis (M.tb), can

present as a dynamic spectrum, from latent tuberculosis infection

(LTBI) to active tuberculosis (ATB). ATB dramatically impacts the

morbidity and mortality rates, accounting for approximately 11.6%

globally (Salari et al., 2023). A Despite the vast research focused on

deciphering the pathogenic mechanisms underpinning LTBI and

ATB, significant uncertainties persist (Alsayed and Gunosewoyo,

2023; Sengupta et al., 2023). The intricate interplay among M.tb,

host immunological responses, and environmental factors

potentially influences the diverse infection statuses of tuberculosis

(Mohidem et al., 2021; Foreman et al., 2023; Yang et al., 2023).

Additionally, the World Health Organization’s “End TB Strategy”

signifies the critical need for notable advancements in tuberculosis

diagnosis and therapies (WHO, 2022). However, the diagnosis of

tuberculosis, especially extrapulmonary tuberculosis, has always

faced many challenges. Smear microscopy is commonly applied

technique to diagnose ATB, its high false negative rate made it one

of the main reasons for the delay in case diagnosis. The classical

gold standard for identifying ATB depends on culturing methods,

which typically require more than two weeks (MacLean et al., 2020).

Modern molecular screening methods such as Xpert have also been

criticized for its high false negative rate (Engel et al., 2022).

Interferon-Gamma Release Assays (IGRAs) can assist the

diagnosis of ATB when etiological evidence is not available but

performs poor when distinguishing ATB and LTBI (Chinese Society

for Tuberculosis, Chinese Medical Association, 2022).

Pyroptosis, a proinflammatory form of programmed cell death, is

triggered by gasdermin activation, further instigating an immediate

immunological response against invasions (Ju et al., 2022). However,

multiple studies indicate that pathogens may have advanced evasive

measures that curtail pyroptosis, thereby enabling progressive

infection (Chai et al., 2023). The role pyroptosis discharge in the

genesis and progression of ATB, however, remains enigmatic.

The Back-Propagation (B-P) neural network, a prevalent deep

learning neural network algorithm, has demonstrated substantial

applicability (Wei et al., 2020). Incorporating machine learning

techniques in biomedical research has facilitated the screening of

novel biomarkers and the creation of more sophisticated diagnostic

models (Chen and Wei, 2023; Gao et al., 2023; Jin et al., 2023). This

methodological advancement appears promising in elucidating

biomarkers critical for effective ATB management and diagnosis.
02
As the pathogenesis dictating the activation of tuberculosis

remains complex and undiscovered, it is of imperative

importance to elucidate the significance of pyroptosis in this

context. This study endeavors to contribute to this overlooked

area through a comprehensive bioinformatic analysis. The

discovery from our research is anticipated to grant fresh

perspectives into the understanding of tuberculosis.
Methods

Research design and data acquisition

Our investigation employed a comprehensive bioinformatics

analysis with the aim of illuminating the Pyroptosis-Related

Signature (PRS) in ATB. We identified differentially expressed

genes (DEGs) within our exploratory cohort, subsequently

utilizing weighted gene co-expression network analysis

(WGCNA) to evaluate co-expressed genetic modules. This

analysis was then followed by functional annotation to determine

the module related to pyroptosis.

A neural network was employed to craft a diagnostic model,

whose diagnostic prowess was verified within both the exploratory

cohort and a separate validation cohort. In further pursuit of

understanding the microenvironment linked to pyroptosis, a

single-sample gene set enrichment analysis (ssGSEA) served to

unearth the correlation between immune cells and pathways with

our developed PRS model. The flowchart of the study is presented

in Figure 1.

Transcriptomic and clinical informational data from patients

containg ATB and LTBI were procured from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). We

achieved our dataset by using search term “(‘active tuberculosis’ OR

‘ATB’ OR ‘active TB’)AND (‘LTBI’ OR ‘latent tuberculosis

infection’)” and sorted by sample size, the top two datasets were

selected as validation cohort 1 and exploratory cohort. The

validation cohort is selected by the search term “(‘active

tuberculosis’ OR ‘ATB’ OR ‘active TB’)AND ‘pneumonia’ AND

‘sarcoidosis’” and sorted by sample size. The exploratory cohort

[GSE39940 (Anderson et al., 2014)] and the validation cohort

[GSE37250 (Kaforou et al., 2013)] were both comprised of

transcriptome information derived from peripheral blood samples,

another validation cohort, GSE144127 (Hoang et al., 2021)
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compromising of 300 ATB samples, 61 pneumonia samples and 31

sarcoidosis samples is used to further validate the diagnostic

potential of our model. Detailed clinical data pertaining to both

cohorts is comprehensively summarized in Table 1.

Module investigation and functional annotation

We first investigated the pyroptosis related genes through GO

and KEGG analysis via ‘cluster profiler’ package in R (Yu et al.,

2012). The expression of genes related to GO_BP pyroptosis,

GO_BP regulation of cysteine-type endopeptidase activity

involved in the apoptotic process and GO_BP regulation of

cysteine-type endopeptidase activity involved in apoptotic

process. The DEGs between ATB and LTBI patients of GSE39940

are analyzed through ‘limma’ package. DEGs were defined as

|log2FC|>1 (FC, fold change) and adj.P<0.05.

Weighted Gene Co-expression Network Analysis (WGCNA)

was utilized in our study to identify co-expressed genes in

macrophages (Langfelder and Horvath, 2008). This method has

the ability to convert co-expression correlation into connection

weights or topological overlap values. The network type was kept as

the “unsigned” type. Our WGCNA parameters were networkType

=“unsigned”, minModuleSize = 20, mergeCutHeight = 0.25 and

deepSplit = 2. The modules generated by WGCNA is shown in

Supplementary Material 1.

We then used GSEA via ‘gsva’ package to quantize the

difference of the defined module between the ATB and the LTBI

patients (Hänzelmann et al., 2013; Powers et al., 2018). To

investigate the role of pyroptosis, the enrichment of GO_BP

pyroptosis, GO_BP regulation of cysteine-type endopeptidase

activity involved in the apoptotic process and GO_BP regulation

of cysteine-type endopeptidase activity involved in apoptotic
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process are illustrated through the ‘clusterProfiler’ of R (Yu et al.,

2012). We selected the c5.all.v7.0.symbols.gmt gene set as the

reference gene set.
Development of diagnostic model using
machine learning

We used B-P neural network algorithm to construct the

diagnostic model, the ‘nnet’ package of R. The visualization is

finalized via ‘Neural NetTools (Beck, 2018). A beanplot was

leveraged to depict the risk affiliated with individuals within both

the exploratory and validation cohorts.
Assessment of the diagnostic potential of
the PRS diagnostic model

We then examined the diagnostic potential of our diagnostic

model in both cohorts by presenting the receiver operation curve

(ROC). Its visualization is realized through ‘ROCR’ of R language.

The area under the curve (AUC) is also calculated to demonstrate

its diagnostic potential.
Investigation of the immune infiltration

To scrutinize the associated microenvironment and immune

infiltration, we performed ssGSEA to quantify the infiltration of 16

immune cells and 13 related immune pathways. The ‘GSVA’
TABLE 1 General information of the exploratory and the validation cohort.

platform Sample ATB LTBI

GSE39940 GPL10557 165 111 54

GSE37250 GPL10558 362 195 167
FIGURE 1

Flowchart of this study.
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package is used to perform ssGSEA in the GSE39940 (Hänzelmann

et al., 2013).
Statistical analysis

All statistical analyses were performed via R language (ver.

4.0.2) and R Studio. The Wilcoxon rank-sum test was used to

compare non-normally distributed variables between groups.

Spearman’s correlation test is used in discovering the relationship

between immune infiltration and the PRS. A P<0.05 was considered

statistically significant in the manuscript.
Results

Identification of pyroptosis-related genes
and DEGs

To accomplish this task, we utilized the ‘GEOquery’ tool, a

Bioconductor package that facilitates the downloading of gene

expression data from the GEO (Gene Expression Omnibus)

database. Specifically, we downloaded the gene expression matrix

and related clinical data of the dataset GSE39940. The ‘limma’

package was used for data preprocessing. The DEG selecting criteria

were set as following: log2|FC|≥1 and adj.P ≤ 0.05. (FC, fold change;

adj.P: adjusted P value).We then identified 4103 down-regulated DEGs

and 4934 up regulated DEGs. The DEGs are shown in Figure 2A.
Frontiers in Cellular and Infection Microbiology 04
Construction and enrichment analysis of
the modules

First, we performed GO analysis to identify the PRS in the

down-regulated genes (Figure 2B). The PRS are overall suppressed

in ATB compare to LTBI and are associated with GO_BP proptosis

and GO_BP regulation of cysteine-type endopeptidase activity

involved in apoptotic process. These intricate associations have

been meticulously depicted and demonstrated in Figure 2B.

We conducted an unambiguous exploration of WGCNA in the

DEGs, soft threshold is calculated by the ‘pickSoftThreshold’

function in the WGCNA. This soft threshold was eventually

established at a value of 9, as represented in Figure 2C.

Consequently, this led to the identification of the various

encapsulating modules, the visual depiction of which can be

observed in Figure 2D. Subsequently, we engaged in the

construction of a hierarchical clustering tree. Each diverse branch

of this tree epitomizes gene signatures exhibiting a trend of

similarity within their expression and potential biological

functionalities, as graphically presented in Figure 2E. For further

consolidation of our findings, we proceeded to calculate the degree

of connectivity between these identified modules. This process

enabled us to study and understand the integral interactions that

pervade such modules; Figure 2F elucidates this aspect of

our research.

Following the initial phase of investigation, our accomplished

task centered around discerning the module with the most intimate

interactive connection to the process of pyroptosis. This was

achieved through an in-depth deployment of descriptive GO
A B

D E F

C

FIGURE 2

Volcano plots of partial DEGs between ATB and LTBI (A). The identified PRS within GSE39940 (B). The scale-free index and mean connectivity of
various soft thresholds, the red line indicating the selected soft threshold (C). Module dendrogram of the analyzed modules (D). Cluster dendrogram
demonstrating modules made up by genes with similar expression pattern (E). Topological overlap matrix of the identified DEGs (F).
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analysis, the result of which culminated in us identifying this

attribute within module 1.

Upon this recognition, we further advanced to utilizing GSEA

to quantitatively assess and thereby determine the extent of activity

associated within relative biological pathways, explicitly situated

within module 1. This analytical method was paramount, serving as

a facilitative tool to substantiate our investigation with tangible

numeric values.

Furthermore, we meticulously identified the distinct PRS within

module 1, specifically pinpointing the presence of AIM2, CASP8,

and NAIP). These are vital pieces of information since they could

provide indicators to the understanding of the dynamics underlying

this process.

It ’s noteworthy to clarify that our selected module

demonstrated the most intimate connection with three specific

Gene Ontology Biological Processes (GO : BP), all of which are

crucial to the process of cellular death and immune response. These

identified pathways are Regulation of Proteolysis (Figure 3A),

Apoptosis Process (Figure 3B), and Innate Immune Response

(Figure 3C). These identified closeness of relationships provide an

in-depth understanding of the molecular interactions and

regulatory functions taking place within the process of pyroptosis.
Construction and evaluation of the
PRS model

We acquired the expression data of AIM2, CASP8 and NAIP

from GSE39940 as the training set. B-P neural network algorithm, a

robust method for predictive model construction due to its ability to

better adjust internal parameters through iterative comparison of

original and predicted outcomes, was crucial in effectuating the

development of the diagnostic model under consideration

(Figure 4A). The model is demonstrated in Supplementary

Material 1. In order to ascertain the significance and influence of

individual predictors on the output of our model, we utilized the

‘garson’ algorithm, instituted within the ‘nnet’ package of R

programming language – an esteemed tool for statistical analysis

which enables an insightful comprehension of complex patterns in

our data (Figure 4B).
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We remained committed to unravelling the undiscovered

diagnostic potential of our meticulously crafted model. We

obtained the expression of AIM2, CASP8 and NAIP from

GSE37250 as an outside validation cohort. We calculated the risk

score determined by our model. The calculated risk scores were

lucidly exhibited through the deployment of bean plots, visually

representing the distribution of risk scores in our exploratory

cohort (Figure 4C) and the validation cohort (Figure 4D).

Further, we opted to present the ROC of GSE39940 is shown in

Figure 4E and the ROC of GSE37250 is shown in Figure 4F. The

AUC of GSE39940 and GSE37250 is 0.946 and 0.793, these results

communicate an excellent diagnostic potential housed by our

model, hence holding promise for advancing diagnostic processes

in the field.

In addition to our initial findings, we also embarked on an

exploration of the diagnostic capabilities of our constructed model

in terms of its potential to differentiate between ATB, pneumonia,

and sarcoidosis, an investigation which utilized an entirely separate

dataset as portrayed in Figure 5A. The performance of the

diagnostic procedure was further assessed and validated by the

creation of ROC curves, graphically represented in Figures 5B, C.

These provided a visualization of the dichotomy between sensitivity

and specificity, thereby reflecting the overall diagnostic accuracy of

our model.

The AUC was calculated for our model. These calculations

resulted in the AUC values of 0.768 and 0.784, which affirm the

potential of our model to produce reliable results while

distinguishing between ATB, pneumonia, and sarcoidosis. The

values solidified our confidence in the model’s clinical utility.
Analysis of the microenvironment and
related genes

We used ssgsea to analyze the immune infiltration associated

with pyroptosis (Figure 6A).

The cut off value of risk score is determined by the specificity

and sensitivity determined through the ROC and is settled as

0.64725. Among which, B cells, CD8+ T cells, cytotoxic cells,

eosinophils, T cells, T helper cells and immature Dendritic Cells
A B C

FIGURE 3

GSEA analysis of the related pathways in module 1. GO : BP Regulation of Proteolysis (A), GO : BP Apoptosis Process (B) and GO : BP Innate Immune
Response (C) are significantly enriched in module 2.
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(iDCs) displayed a noteworthy disparity when comparing the high-

risk group with the low-risk counterparts. These findings not only

contribute additional granular insights but also pave the way for

further explorations of potential mechanisms underpinning disease

progression. We then used Spearman’s correlation to examine the

relationship of the immune cells with our model. The Spearman’s

correlation between B cells (Figure 6B), CD8+ T cells (Figure 6C),

cytotoxic cells (Figure 6D), eosinophils (Figure 6E), T cells

(Figure 6F), T helper cells (Figure 6G) and iDCs (Figure 6H) with

the PRS are evaluated and demonstrated. The B cells, CD8+ T cells,
Frontiers in Cellular and Infection Microbiology 06
T cells and T helper cells showed a significant correlation with the

PRS (|R|>0.5, P<0.01). These findings underscore the potential of

these cellular subpopulations in playing a pivotal role in disease

progression as reflected by our model’s risk prediction.
Investigation of related PRS genes

We employed the use of GeneMANIA, an advanced gene-

centric data-mining tool accessible at http://GeneMANIA.org.
A B

C

FIGURE 5

The risk determined by our model in distinguishing ATB from pneumonia and sarcoidosis (A). The ROC curve for distinguishing ATB from pneumonia
(B) and sarcoidosis (C). ***P<0.001.
A B D

E F

C

FIGURE 4

Interaction of the hidden layer, the input layer and the output layer (A). The importance of each input variable in the model (B). The risk score
calculated in the exploratory (C) and the validation cohort (D). The ROC of GSE39940 (E) and ROC37250 (F). ***P < 0.05.
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Our primary objective was to delve deeper into the intricate genetic

interdependencies, specifically focusing on identifying the twenty

most intimately correlated genes in relation to the Polygenic Risk

Score (PRS), the details of which have been visually elucidated

in Figure 7.

In engaging with this complex network of genes, our analysis

precipitated an understanding of several predicted associated

biochemical pathways. Notably, these included the positive

regulation of proteolysis, denoting a mechanism responsible for

the induction of the breakdown of proteins into smaller

polypeptides or single amino acids.

Furthermore, the necrotic processes emerged as a significant

conjoined element acting within the network—these are pathways

leading to programmed cell death, particularly of a pathological

nature, where premature death of cells in living tissue is caused by

factors external to the cells or tissues themselves.

The investigation also highlighted the regulation of cysteine-

type endopeptidase activity—suggesting an involvement of enzymes

that use a cysteine residue in their active site and function in the

regulation of diverse cellular processes through protein hydrolysis.

Lastly, the analysis brought to light the role of cysteine-type

endopeptidase activity implicated in the apoptotic process, thus

providing insights into the programmed cell death mediated by the

targeted activation of such enzymes for cellular self-destruction.
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These predicted associated pathways underscore the intricate

interplay of genetic and biochemical interactions inextricably

entwined with the PRS investigated, and are instrumental in

deepening our understanding of the topics at hand.
Discussion

Tuberculosis, a profoundly pervasive infectious disease, continually

affects vast multitudes of individuals globally, recording overwhelming

figures that run into the millions (Ding et al., 2022). Although a large

proportion of individuals infected by M.tb conspicuously exhibit no

symptoms (Gong and Wu, 2021). There remains a subpopulation of

individuals where the disease manifests itself in an array of clinical

presentations. ATB is known for its clinical heterogeneity, comprise

pulmonary or systemic symptoms such as febrile conditions, a

persistent cough, excruciating chest discomfort, and unintentional

weight loss; such individuals are characteristically diagnosed as

patients with ATB (Furin et al., 2019). The current golden diagnostic

criterion relies on culture- and sputum- based technology, which have

been criticized for its low sensitivity (Kontsevaya et al., 2023). The

interferon-g release assay (IGRA) and TST, have been used to screen

for tuberculosis infection, however, such tests are unable to distinguish

LTBI and ATB (Ludi et al., 2023). By elucidating the complex biological
A

B D EC

F HG

FIGURE 6

(A) The immune infiltration of the high- and low- risk group, *P<0.05, **P<0.01; ***P<0.001. Spearman’s correlation analysis of B cells (B), CD8+ T
cells (C), cytotoxic cells (D), eosinophils (E), T cells (F), T helper cells (G) and iDCs (H).
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processes and pathways that trigger the transition of tuberculosis from

a latent state to an active disease, we not only enhance our

understanding of tuberculosis pathogenesis but also unfold a

potential diagnostic technique.

The pathogenesis that precipitates the transition from latent

infection to active disease, colloquially known as tuberculosis

activation, remains a formidable scientific enigma of considerable

proportions. Concurrently, an intriguing focus has been directed

towards the potential role played by programmed cell death

mechanisms within this complex disease process. The functions

of various forms of programmed cell death such as apoptosis – a

controlled cellular suicide, and pyroptosis – a highly inflammatory

form of programmed cell death, are under rigorous investigation in

relation to their specific contributions towards the advancement

and progression of tuberculosis (Alemán, 2015; Lam et al., 2017).

Pyroptosis, a programmed cell death that considered to be part of

the innate immune response in host defense while facing pathogens

(Brokatzky andMostowy, 2022). Studies have identified a phospholipid

phosphatase produced by M.tb that inhibits the host inflammasome

pyroptosis pathway, PtpB (Chai et al., 2022). The implications of these

findings suggest that the evaluation of pyroptosis in patients with ATB

and those with latent tuberculosis infection (LTBI) could hold

immense potential for the early detection of the former.

Furthermore, the potential to target pyroptosis emerges as an
Frontiers in Cellular and Infection Microbiology 08
innovative paradigm shift that could offer new avenues for

therapeutic intervention, particularly in dealing with the persistent

problem of drug-resistant TB.

Within the context of our comprehensive scientific investigation,

our primary objective was to shed light on a genetic signature

pertaining to pyroptosis, with the potential to be leveraged as a

viable diagnostic tool for ATB. In order to accomplish this endeavor,

our initial step was to carry out a comparative analysis of

transcriptomic data sourced from ATB and LTBI patients. This

analytical process yielded 4103 down-regulated DEGs and 4934 up-

regulated DEGs. Following this, we implemented the WGCNA to

identify the co-expressed modules. Further, we utilized GO enrichment

analysis to distinguish the module share the closest interaction with

pyroptosis and identified the 3 PRS: AIM2, CASP8 and NAIP.

Moreover, we applied GSEA to quantify the related pathway of

pyroptosis. Next, we used B-P neural network to construct a PRS

model. It demonstrated excellent diagnostic potential distinguishing

ATB from LTBI patients in both the exploratory and an outside

validation cohort. We used the developed PRS model to divide the

cohort into a high- and a low-risk group, followed by ssgsea to illustrate

the immune infiltration. Furthermore, we analyzed the related genes

and their predicted pathways that are closely related to the PRS.

The PRS model elucidated based on neural network of AIM2,

CASP8 and NAIP. AIM2 (absent in melanoma 2) is a pivotal
FIGURE 7

Top 20 genes that shares closest relationship with the PRS.
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component of the AIM2 inflammasome, well-documented for its

ability to perceive double stranded DNA (Lee et al., 2021). has

observed the critical functionalities of inflammasomes, specifically

in promoting cell death in cells laden with pathogens (Man et al.,

2017). Substantiation for this can be found in studies on AIM2-

deficient models, revealing enhanced susceptibility to intratracheal

infection with Mycobacterium tuberculosis (Saiga et al., 2012).

CASP8(cysteine-aspartic acid protease 8) is a constituent member

of the caspase family, acknowledged for its involvement in the

sequence leading to pyroptosis. Our investigation uncovered

scientific reports indicating that the presence of extracellular RNA

fragments from Mycobacterium tuberculosis sparks increased

expression of CASP8 in in-vitro environments (Fritsch et al., 2019;

Zhang et al., 2021). NAIP(NLR family apoptosis inhibitory protein)

collaborates with NLRC4 to form the NAIP-NLRC4 inflammasome

(Barnett et al., 2023). Although its involvement in ATB have not been

reported, in vivo experiments highlight the significance of its

involvement in infections festering in the lung, spleen, liver, and

systemic sepsis-like conditions (Bauer and Rauch, 2020).

Our comprehensive study of the intertwined web of bioinformatics

slated an objective to unravel the signatures associated with pyroptosis

in patients afflicted with tuberculosis. This investigative venture has

shown us the potential of a diagnostic model, bolstered by a machine

learning mechanism.We verified the diagnostic capacities of the model

using an independent cohort. We have also verified our model in a 3rd

cohort to distinguish between ATB and pneumonia/sarcoidosis, which

reaffirmed its usefulness in a clinical context, confirming its potential

for clinical assessment and management. Our finding might serve as

resource for clinicians to improve the patients’condition through early

diagnosis and targeted medical strategy.

Though our research presented promising results, several

limitations exist. Firstly, the sample size of our study is rather

limited, therefore it is crucial to assess our model in larger

population. Secondly, our study lacks verification from in vitro/in

vivo experiments, in which case the authors manage to use independent

cohorts to assess the diagnostic potential of our model, to ensure the

strength of our result. Future researchers could focus on evaluating the

underlying mechanism of the signatures involved in our model

through laboratory experiments, including validating the differential

expression of candidate genes in vitro or using animal models to

investigate the relevance of these genes in ATB pathogenesis.

In summation, our precarious yet promising research

undertakings continue to unravel the role of pyroptosis in ATB

and bring to light the potential of PRS as an invaluable tool in

diagnosing ATB. Nonetheless, for a comprehensive understanding

and evaluation of the clinical utility of our proposed approach in

diagnosing and management of ATB, substantial expansions in the

future research are fundamentally imperative.
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