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Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
PA, United States
Over the past decade it has become clear that various aspects of host physiology,

metabolism, and immunity are intimately associated with the microbiome and its

interactions with the host. Specifically, the gut microbiome composition and

function has been shown to play a critical role in the etiology of different

intestinal and extra-intestinal diseases. While attempts to identify a common

pattern of microbial dysbiosis linked with these diseases have failed, multiple

studies show that bacterial communities in the gut are spatially organized and

that disrupted spatial organization of the gut microbiome is often a common

underlying feature of disease pathogenesis. As a result, focus over the last few

years has shifted from analyzing the diversity of gut microbiome by sequencing

of the entire microbial community, towards understanding the gut microbiome

in spatial context. Defining the composition and spatial heterogeneity of the

microbiome is critical to facilitate further understanding of the gut microbiome

ecology. Development in single cell genomics approach has advanced our

understanding of microbial community structure, however, limitations in

approaches exist. Single cell genomics is a very powerful and rapidly growing

field, primarily used to identify the genetic composition of microbes. A major

challenge is to isolate single cells for genomic analyses. This review summarizes

the different approaches to study microbial genomes at single-cell resolution.

We will review new techniques for microbial single cell sequencing and

summarize how these techniques can be applied broadly to answer many

questions related to the microbiome composition and spatial heterogeneity.

These methods can be used to fill the gaps in our understanding of

microbial communities.

KEYWORDS
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Introduction

The human organism is colonized by a vast community of microorganisms, which

support and maintain many aspects of our health. The intestinal microbiota contributes to

multiple physiological functions of the host, including metabolic homeostasis, immunity,

and neuronal activity. In turn, the host provides a stable colonization niche for commensal
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microorganisms and ensures continuous influx of dietary nutrients.

Despite advances in sequencing and culturing techniques, a large

amount of undiscovered and otherwise undescribed microbial taxa

remains unknown, including in the human gut (Almeida et al.,

2019). The intestinal microbiota has been implicated in the etiology

of a variety of human diseases, including those localized to the

gastrointestinal tract such as inflammatory bowel disease (IBD)

(Glassner et al., 2020), Crohn’s Disease (Pascal et al., 2017),

susceptibility to pathogenic bacterial infection (Ivanov et al., 2009;

Theriot et al., 2014; Velazquez et al., 2019), as well as a number of

other extraintestinal diseases like cardiovascular diseases (Jie et al.,

2017; Yoo et al., 2021), depression (Limbana et al., 2020) and

obesity (Liu et al., 2021). Research efforts are focusing on exploring

causality between changes in the gut microbiota and disease, with

the aim to improve understanding to lead to therapeutics as well as

more robust prevention strategies. Sequencing techniques are being

continually refined, with a current goal being the focus on

sequencing at the single cell level, rather than bulk sequencing,

in order to gain finer resolution and understanding of

microbial communities.

Advancements in technologies and techniques in the field of

DNA sequencing, particularly with regards to the gut microbiota,

have added to our understanding of the role of the microbiota in

human health and disease. However, until recently, the study of the

gut microbiota was limited to the study of those microbes which

could be isolated and cultured. The usage of ribosomal RNA genes

as a classification system for microbes, along with Sanger

sequencing which allowed for the automated sequencing of DNA

in the late 1970s, set the stage for the study and classification of a

number of microbes, culturable or not (Escobar-Zepeda et al.,

2015). Improvements made to Sanger sequencing method, such as

the replacement of radio isotopes with the use of fluorometric based

detection methods, as well as detection via capillary-based

electrophoresis lead to the development of the first DNA

sequencing machines in the late 1980s and early 1990s, allowing

for the sequencing of bacterial and other more complex genomes

(Heather & Chain, 2016). Sequencing based on the Sanger method,

or dideoxy method, was prevalent for a number of years, until

second-generation DNA sequencing technology was developed.

Pyrosequencing, unlike Sanger sequencing, does not require the

use of labeled dideoxy nucleotides and subsequent visualization,

rather, it takes advantage of an enzymatic reaction by which light is

produced proportional to the amount of nucleotide binding

(Heather & Chain, 2016). The advent of pyrosequencing, like

Sanger sequencing, revolutionized the field, as now sequencing

reactions could be run in parallel with near instant results. Later,

Ion Torrent sequencing was developed, which does not require the

use of fluorescence or luminescence, but rather measures nucleotide

incorporation by the change in pH cause by the proton release

during polymerization, allowing for very rapid sequencing (Heather

& Chain, 2016). However, one of the most commonly used second-

generation DNA sequencing technologies is the Illumina next

generation sequencing system. The Illumina sequencing platform

uses sequencing by synthesis methodology where sequencing takes

place in multiple cycles that capture the fluorescence signal emitted

when a correct base is added to the growing DNA strand (Gloor
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et al., 2010). Presently, third-generation technologies are being

developed with the aim of having longer read length capabilities

with lower cost, however, for many researchers, second-generation

sequencing techniques are most often used (Escobar-Zepeda et al.,

2015). One such third-generation sequencing technology is Pacific

Biosciences’ single molecule, real-time sequencing technology

(SMRT) that generates raw reads longer than 10kb in length and

is popular for sequencing complex microbial communities (Tsai

et al., 2016; Sadowsky et al., 2017; Li et al., 2021).

Investigation of the microbiome primarily relies on meta-omics,

or the analyses of microbial DNA, RNA, or metabolites recovered

from samples. The most common method used by researchers today

is the 16S rRNA gene-amplicon sequencing (Tolonen and Xavier,

2017). However, this method and other commonly used sequencing

techniques have drawbacks, including taxonomic blind spots, as well

as the loss of information of low abundance members of the

microbiota (Hatzenpichler et al., 2020; Bowers et al., 2022). The

advent of single cell isolation and sequencing have been crucial to

addressing this issue, however, there still remain further hurdles to

the application of single cell technology for the analysis of gut

microbiota. Many technical issues are being addressed by advances

in technologies which will be described here. Here, we will discuss

new technologies and techniques for the sequencing of the human

microbiome, including the spatial aspect of the microbial community.
Single cell isolation methodologies

Sequencing the microbiome at a resolution of individual

microbes has been recently gaining popularity. There has been

substantial development for single cell genomics approaches for

prokaryotes and eukaryotes, enhancing the feasibility of such

experiments for researchers. However, single cell sequencing from

microbial communities poses challenges unique to microbes that

are not considered for mammalian single cell sequencing. A few

limitations with isolating single microbial cells include aggregation

of bacteria which makes it difficult to isolate single cells efficiently

(Trunk et al., 2018); bacterial cell walls pose a challenge for many

single cell sequencing approaches and therefore require to be

permeabilized (Blattman et al., 2020; KuChina et al., 2021); low

biomass and low abundance of mRNA (Blattman et al., 2020;

KuChina et al., 2021). For these techniques, the first step involves

isolation of single cells (Figure 1). Despite the progress in the field of

genomics, limitations exist for the first step of isolating single cells,

an important part of the workflow to perform high-throughput

single cell genomics. Several widely used methods of isolating single

cells include fluorescence-activated cell sorting (FACS),

micromanipulation, and microfluidics (Blainey, 2013; Tolonen

and Xavier, 2017).

FACS is one of the most commonly used high-throughput

methods for isolation of individual cells (Stepanauskas and Sieracki,

2007). Microbial cells can be individually sorted on the basis of their

size and fluorescence by FACS (Figure 1). Rinke and colleagues

described a protocol to isolate single cells from environmental

microorganisms using FACS followed by extraction and

amplification of their genomes (Rinke et al., 2014). A key
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advantage of using FACS to isolate single cells is minimized risk of

contamination by extracellular DNA because of the low volume

requirement. Other advantages of using FACS as the method to

separate individual cells for genomic sequencing are that it has high

throughput, can be automated, and is compatible with downstream

applications. On the other hand, some limitations of using FACS for

single cell genomics are the inability to reduce reaction volumes to

nanogram range, increased caution necessary to avoid external

contamination during open-plate workflows, and lack of ability to

inspect cells visually (Stepanauskas, 2012; Rinke et al., 2014; Hu

et al., 2016; Woyke et al., 2017).

In addition to the use of FACS, traditional methods of

micromanipulation that include using micro pipetting combined

with an inverted microscope as a visual aid have been used to isolate

single bacterial cells (Figure 1) (Stepanauskas, 2012; Hu et al., 2016;

Woyke et al., 2017). Using this approach, individual cells are

selected and physically delivered to be processed for downstream

applications. Micromanipulation has been used to capture single

microbial cells from different bacterial habitats including a low pH

and high temperature hot spring to study the microbial ecology in

their natural environments (Ishøy et al., 2006). Hohnadel and
Frontiers in Cellular and Infection Microbiology 03
colleagues developed an improved micromanipulation method to

isolate and detect single microbial cells in food samples (Hohnadel

et al., 2018). Automated versions of this method to select single cells

using capillary micropipettes and associated robotics have been

developed and used for bacterial single cell gene expression analysis

(Anis et al., 2008; Gao et al., 2011). Major drawbacks of this

approach are that it is extremely time-consuming, labor-intensive,

and low-throughput (Blainey, 2013; Chen et al., 2017). Another

limitation associated with this method is the risk of contamination

from the laboratory environment, equipment, and RNA

contamination (Blainey, 2013; Hodne and Weltzien, 2015; Chen

et al., 2017).

Another widely growing technique for isolating single cells for

the downstream application of genomics is the microfluidics

method (Figure 1). Microfluidics was one of the first methods

used for cell isolation for microbial single cell studies (Marcy et al.,

2007; Leung et al., 2012). Key advantages of microfluidics include

the ability to visualize target cells and reduce reaction volumes. The

microfluidics approach provides the benefits of high-throughput

isolation and barcoding individual genomes (Leung et al., 2012;

Chen et al., 2017; Woyke et al., 2017). Newer techniques involving a
FIGURE 1

Single cell sequencing workflow. Single cell isolation: The first step for performing single cell microbial genomics is isolating single cells. Some
commonly used single cell isolation techniques include fluorescence-activated cell sorting (FACS), micromanipulation, and microfluidics. (1) FACS
involves size- and fluorescence-based separation that separates single cells from a complex microbial community (Rinke et al., 2014). (2) The
traditional micromanipulation method includes micro-pipetting in combination with an inverted microscope for the isolation of single cells from a
mix of microbial cells (Ishøy et al., 2006). (3) The microfluidics approach combined with droplet encapsulation involves encapsulating individual cells
in hydrogel microspheres resulting in isolated single cells in each droplet (Marcy et al., 2007). There have been different modifications of the
microfluidics method, based on the core concept of encapsulating single cells in droplets, to yield single cells. Spatial resolution: Various new
techniques have been developed in order to obtain spatial genomics information of the gut microbiota, generally either imaging based or
sequencing based. (1) High phylogenetic resolution fluorescence in-situ hybridization (HiPR-FISH) employs a binary barcode system based on
hybridization of distinct fluorophores (Shi et al., 2020). Spectra are measured using fluorescence microscopy, and spectral barcodes are decoded
using machine learning. Identification and spatial visualization of taxa are possible. Tunable expression tools (Whitaker et al., 2017) is a platform for
engineering Bacteroides using a novel phage promoter and translation tuning strategy to enable imaging of fluorescent bacteria. Unique fluorescent
signals can be used to allow differentiation of species within the gut. (2) Metagenomic plot sampling by sequencing (MaPS-seq) combines genomic
and spatial resolution (Sheth et al., 2019). Intact microbiota samples are fractured into particles and are encapsulated in droplets before deep
sequencing. This results in the retention of spatial information and can identify species that tend to co-localize in complex samples such as the gut
microbiota. Sequencing: (1) The sequencing step of the single cell genomics workflow involves using DNA from the isolated cells to prepare a
library. (2) This is followed by high-throughput sequencing which yields (3) critical information identifying the genetic composition microbes and
associated gene expression changes in a complex microbial community.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1271092
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Madhu et al. 10.3389/fcimb.2023.1271092
combination of microfluidics and single cell encapsulation in

droplets are rapidly growing. The droplet microfluidics method

involves encapsulating single cells in hydrogel microspheres or

generating water-in-oil droplets. This is followed demulsifying the

droplets followed by sequencing (Tauzin et al., 2020; Pryszlak et al.,

2022) or by fragmenting and barcoding individual genomes from

the cells in each droplet, enabling pooled sequencing of many

tagged genomes simultaneously (Zengler et al., 2002; Hosokawa

et al., 2017; Woyke et al., 2017). Lan and colleagues successfully

used gel microdroplets combined with microfluidics to perform

single cell genomics of a synthetic community of Gram-negative

and Gram-positive bacteria (Lan et al., 2017). Lim and colleagues

developed PCR-Activated Cell Sorting (PACS) that utilizes the

microfluidic droplet method to encapsulate individual bacteria in

picoliter volume droplets which are then subjected to TaqMan PCR

to identify bacteria of interest (Lim et al., 2015). These can then be

used for downstream applications including genome sequencing.

This method offers the advantage of performing single cell

genomics in complex ecosystems.
Bacterial single cell whole
genome sequencing

Bacterial single cell whole genome sequencing field is advancing

rapidly. There are many technologies that have contributed to the

efficient characterization of microbes at a single cell resolution.

Chijiiwa et al. reported identification of gut bacteria that responded

to dietary fiber by using a novel single cell genome sequencing

method (Chijiiwa et al., 2020). This method includes single cell

isolation of gut microbes by capturing them in agarose gel beads by

a microfluidic droplet generator. This was followed by amplification

of single cell amplified DNA, captured into the gel beads, as a single

cell amplified genome (SAG) library. The SAG-gel platform allows

for the specific sequencing of researcher-selected samples out of the

large numbers of SAGs and is also cost-efficient. Lan et al., described

a high-throughput single-cell genomic sequencing (SiC-seq). SiC-

seq utilizes droplet microfluidics to capture individual microbial

cells in microgels. This is followed by cell lysis, DNA fragmentation

and barcoding, pooling tagged DNA fragments, and sequencing.

The workflow of SiC-seq was validated using an artificial microbial

community comprising of yeast, Gram-negative bacteria, and

Gram-positive bacteria (Lan et al., 2017). A newer high-

throughput single cell sequencing method called Microbe-seq was

developed by Zheng and colleagues. The Microbe-seq methodology

yielded a large number of individual microbial genomes-without

culturing-from longitudinally collected human gut microbial

samples. This technique involves encapsulating individual

microbes in droplets using a microfluidics platform followed by

performing whole-genome amplification and barcoding DNA

within the droplets, generating multiple SAGs per sample. The

tagged DNA is then pooled and sequenced. The SAGs obtained

from the Microbe-seq were then co-assembled to yield strain-level

resolution of the gut microbiota samples (Zheng et al., 2022).

However, techniques such as SiC-seq and Microbe-seq offer low

recovery of genomes. Hosokawa and colleagues used the SAG-gel
Frontiers in Cellular and Infection Microbiology 04
technology to recover high-quality, near complete bacterial

genomes from propidium monoazide-treated human gut

microbiome samples (Hosokawa et al., 2022). Arikawa et al.,

integrated single cell genomics and metagenomics to create a

single-cell metagenomics workflow to improve the recovery of

strain-resolved genomes from human microbiota samples which

yielded high-quality recovery of nearly complete microbial genomes

(Arikawa et al., 2021). Jin and colleagues developed a high-

throughput method called Barcoding Bacteria for Identification

and Quantification (BarBIQ) that provides abundance and

identification at an individual microbe resolution. BarBIQ

involves encapsulation of barcoded-single cells in droplets and

uses 16s rRNA sequences to classify and quantify individual

microbes into cell-based operational taxonomy units. This study

validated the workflow of BarBIQ by comparing the effect of

vitamin A deficiency on proximal and distal cecal microbiota

abundance and composition in mice (Jin et al., 2022). One

limitation of SAGs is that they have incomplete sequences

because of the introduction of biased sequencing during

amplification cycles. To address this, Kogawa and colleagues

developed a single-cell amplified genome long-read assembly

workflow that enables construction of complete SAGs using long

reads (Kogawa et al., 2023).

Another technique for single cell genomic sequencing used by

investigators is the single droplet multiple displacement alignment

(sd-MDA) method. This technique also involves the encapsulation

of single cells in droplets followed by whole genome alignment

(WGA). Single cells are passed through a droplet generator.

Hosokawa and colleagues successfully used this method for single

cell genome sequencing involving both bacterial cells and human

cancer cells. Some advantages of this method include increased

efficiency of sample preparation and reduced cost and labor

investment (Hosokawa et al., 2017). Despite being indispensable

for whole-genome sequencing, there are some limitations of this

method associated with MDA. The limitations include low coverage

due to genome coverage bias and potential DNA contamination

(Džunková et al., 2014; Hosokawa et al., 2017). Advances in the

isolation of single cells have made downstream single cell

sequencing possible.
Bacterial single cell transcriptomics

Single cell sequencing has tremendously helped in studying

phenotypic heterogeneity of microbes. It has also enabled exploring

rare organisms using high throughput single cell analysis (KuChina

et al., 2021). A number of new technologies have emerged which

have refined single-cell transcriptional analysis of microbes,

especially in mixed and complex communities like the human

gut microbiome.

One of the recently developed single cell transcriptomics that

can be applied to microbes is split-pool ligation-based

transcriptome sequencing (SPLiT-Seq). SPLiT-seq overcomes the

need for microfluidics as it utilizes a combinatorial barcoding

approach. In this method, cells are distributed in individual wells

and barcoded primers are used to synthesize cDNA through
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intracellular reverse transcription. This step is followed by multiple

rounds of pooling and splitting accompanied by barcoding in every

round. Finally, the reads are combined by referring to the barcode

combination to assemble the transcriptome. An advantage of this

technique is that it circumvents the need of isolating single cells, and

it enables scalable multiplexing (Rosenberg et al., 2018). Kuchina

and colleagues developed a modified version of SPLiT-seq tailored

to identify microbial subpopulations and associated gene expression

changes, called microSPLiT (microbial split-pool ligation-based

transcriptomics). Transcriptional responses to heat shock

exposure to Escherichia coli and Bacillus subtilis were reliably

detected using microSPLiT. Furthermore, this technique also

captured signature transcriptional changes through the growth

cycle of B. subtilis. Transcriptional changes in stress responses,

regulation of carbon utilization, developmental decisions, and metal

uptake were revealed through microSPLiT, indicating its

capabilities of identifying heterogeneity in cellular and regulatory

pathways. Together, these analyses demonstrate the potential of

microSPLiT for detecting differential gene expression associated

with heterogeneous cell populations in varied environments

(KuChina et al., 2021).

Another recently developed high throughput prokaryotic single

cell RNA-seq (scRNA-seq) technique is prokaryotic expression

profiling by tagging RNA in situ and sequencing (PETRI-Seq)

(Blattman et al., 2020). PETRI-seq uses an in situ combinatorial

indexing approach to barcode bacterial transcripts. The

methodology of PETRI-seq involves fixation and permeabilization

of cells, split-pool barcoding, and library preparation for

sequencing. Blattman and colleagues developed PETRI-seq and

successfully used it for high-throughput sequencing E. coli and

Staphylococcus aureus with high single cell purity. The authors

demonstrated that PETRI-seq enabled successful distinction

between E. coli populations in different growth phases. This was

achieved by using complementary approaches of comparing operon

expression patterns and Gene Ontology terms associated with

exponential and stationary phases. PETRI-seq, owing to its high

throughput capacity, detected a rare subpopulation of S. aureus

undergoing prophage induction by applying principal component

analysis to 6,663 single cell transcriptomes of S. aureus (Blattman

et al., 2020).

A FACS-based bacterial scRNA-seq workflow was developed by

Imdahl et al. which utilizes poly(A)-independent multiple

annealing and dC-tailing-based quantitative scRNA-seq (MATQ-

seq) protocol. The bacteria are sorted into single cells using FACS

and are then enzymatically lysed. The MATQ-seq protocol is used

to obtain cDNA from individual bacterial cells followed by

tagmentation and library preparation to generate libraries for

sequencing. The study used this scRNA-seq workflow to

characterize global transcriptomes of Salmonella populations

under different growth conditions resolved at a single cellular

level (Imdahl et al., 2020). The same group recently developed an

improved version of this workflow that resulted in improved gene

detection limit and coverage at a single bacterial cell resolution. This

version of scRNA-seq involves the use of a more efficient reverse

transcriptase and has a Cas9-based rRNA depletion step integrated

in the workflow (Homberger et al., 2023).
Frontiers in Cellular and Infection Microbiology 05
Another FACS-based scRNA-seq was developed by Nishimura

and colleagues which incorporates RamDA-seq in its workflow. The

methodology involves FACS-based isolation of single bacterial cells

followed by cell lysis. The workflow includes library construction

using the RamDA-seq technique which is a full-length RNA

sequencing method. Before sequencing, the amplified cDNA

libraries are then depleted of rRNA using Cas9. The study used

this hybrid scRNA-seq approach to reveal heterogeneity in different

growth stages of live E. coli and in heat-shocked E. coli populations

in about a quarter of E. coli genes at a single cell resolution

(Nishimura et al., 2023).

An additional high-throughput scRNA-seq technique that has

been successfully used for bacterial populations is the BacDrop that

is droplet-based. The workflow of BacDrop involves fixation and

permeabilization of cells followed by rRNA and gDNA depletion.

The next step is generation of barcoded cDNA by reverse

transcription which is then followed by capturing single cells in

droplets and droplet barcoding. The last step is library preparation

for sequencing. The group used BacDrop to characterize previously

unknown heterogeneity based on mobile genetic elements in

Klebsiella pneumoniae at a single cell resolution. However, the

working efficiency of BacDrop remains to be validated on more

complex microbial communities involving unknown genomes (Ma

et al., 2023).

Together, these methodologies of single cell isolation and single

cell sequencing offer the flexibility to choose the best suited

approach of isolating and sequencing single cell genomes of

bacteria, depending on the need of experiments.
Gut biogeography through the lens of
community analysis

Single cell sequencing at the base level does not maintain

information about where in space the cells were located in the

original sample, but newer methods have been applied to tackle

this problem.

The spatial localization of pathogens within the host has been

understood as a key factor to their pathogenesis, however, less is

understood about the localization of commensals, and how the

change in localization affects health and disease (Lopez et al., 2016;

Spiga and Winter, 2019; Rogers et al., 2021). Localization of gut

microbiota members along the gastrointestinal tract differs in both

cross-sectional (from epithelium and mucus-associated to the

lumen) and longitudinal (from stomach to distal colon)

heterogeneity, the latter of which does not require novel

technologies to study, as researchers can sample from different

locations longitudinally along the GI tract (Donaldson et al., 2016;

Tropini et al., 2017). However, identification of localization of gut

microbiota members in the cross-sectional aspect is more difficult to

address. There are many factors known to influence not only the gut

microbiota, but also the spatial distribution of the members of the

microbiota, such as oxygen and ROS species (Albenberg et al., 2014;

Lopez et al., 2016; Miller et al., 2020), the physical barrier mucus

(Van der Sluis et al., 2006; Johansson and Hansson, 2016), pH

(O’May et al., 2005; Ilhan et al., 2017), various immune effectors
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produced by the host, such as antimicrobial peptides (Bevins and

Salzman, 2011), and availability of nutrients (Koropatkin et al.,

2012). Additional habitat filters varying both longitudinally and

cross-sectionally include electron acceptor availability (Miller et al.,

2021; Liou et al., 2022).

Research on changes in the microbiota has often been focused

on large changes in community composition associated with

disease, especially with the growth of certain pathogenic species.

It is now becoming better appreciated that changes in the spatial

distribution of species in the gut is also associated with disease and

infection, as well as several chronic conditions, such as IBD

(Swidsinski et al., 2005), and colorectal cancer (Dejea et al., 2014;

Saffarian et al., 2019), and various other perturbations such as

starvation, antibiotics, and surgery (Zaborin et al., 2020). It is

therefore necessary for analysis of gut microbial communities to

move beyond defining the composition of the microbiota to a

spatial understanding, to better probe questions about microbiota

function and interaction between other species and the host.

Answering questions about how certain members of the

microbiota are interacting with both the host as well as other

microbiota members will shed light on a variety of human

diseases, as well as help define homeostasis and dysbiosis of the

gut, and moving towards causation of the later (Tiffany and

Bäumler, 2019).

High-throughput -omics techniques have revolutionized the

field of gut microbiota research. Much work has relied on the use

of fecal samples, whose use is pervasive due to the ease of sample

collection, however, fecal samples usage faces drawbacks such as

decay of microbes, and the loss of information about spatial

differences in community members, both along the GI tract and

in the cross-sectional plane. Many genomic techniques rely on a

homogenized sample, which therefore results in the loss of

important spatial information in the larger picture of the host-

microbiota environment. Laser Capture Microdissection (LCM) has

provided a method of high-resolution site-specific sampling of

microbial communities (Espina et al., 2006). Using LCM,

researchers can select a sample region with use of a microscope,

capturing the specific area of interest, and the sample can be used

downstream for metagenomic or other analyses. Several studies

have delved into newer technologies providing single-cell spatial

genomic information. Generally, these technologies can be classified

as image-based or sequencing-based.
Spatial resolution of DNA sequencing

The use of in situ hybridization (ISH), an image-based

approach, has been available to researchers for a number of years

(Rudkin and Stollar, 1977). ISH depends on labeled probes

hybridizing specific DNA or RNA targets, often employing use of

a fluorophore, as in fluorescent in situ hybridization (FISH), which

allows for the location of the target of interest under the microscope.

A limitation of FISH in microbiota samples is the limited number of

fluorophores available for visualization and discrimination of

different targets. Advances in the field of RNA-FISH have

alleviated issues with multiplexity and other problems with FISH,
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such as the analysis of targets with low copy numbers and could be

applied to DNA targets in the microbiota in the future (Eng

et al., 2019).

A recently developed method known as High Phylogenetic

Resolution FISH (HiPR-FISH) combines FISH, a visual assay

targeting ribosomal RNA for visualization and identification, with

a binary barcoding scheme and machine learning of fluorophore

combinations (Figure 1) (Shi et al., 2020). This method provides a

microbial mapping technology that can identify various taxa with

aid of a microscope. Using ten fluorophores, probes with the same

encoding sequence, but different readout sequences, can bind in

equal amounts to ribosomal RNA (rRNA) molecules within the

same cell. As bacterial cells contain hundreds of 16S rRNA copies,

each species can be targeted by encoding probes targeting the same

sequence, but flanked by different readout sequences, allowing for

the assignment of a unique combination of fluorophores. The

fluorescence emission spectra are measured, and a spectral

barcode is computed. The spectra recorded on each pixel is

averaged, and a machine learning classifier decodes the cell

barcodes. The authors were able to achieve single-cell

quantitation and found previously undescribed genera in the

human oral plaque microbiome (Shi et al., 2020). The authors

additionally applied this novel method to study the effect of

antibiotics on the spatial organization of the gut microbiome,

targeting up to 47 genera using HiPR-FISH, and revealed spatial

association disruption between several genera. The authors

demonstrate single-cell mapping of complex communities, which

allows for bacterial spatial organization questions to be addressed.

Another image-based method described recently by Whitaker

et al. (2017) uses a phage promoter system to introduce genomically

integratable vectors into Bacteroides in a high-throughput fashion,

using an adaptation on the Golden Gate cloning method (Figure 1).

This method allows for the in vivo imaging of fluorescent

Bacteroides, as the fluorescent proteins were expressed at higher

levels than achievable previously using other promoters, such as the

16s rRNA promoter. Importantly, the authors show this does not

come at a fitness cost for the bacteria in vivo. Their technique

allowed for the differentiation of each species at a single-cell level,

using unique combinations of GFP and mCherry expression. The

authors use this technique to visualize Bacteroides in colonic crypts

of the mouse gut and show that colonizing a mouse with one

isogenic strain of B. thetaiotaomicron provides colonization

resistance against a sequentially gavaged isogenic strain. This

study provides a great example of how new techniques can be

used to provide strain-level resolution of spatial heterogeneity.

While not a sequencing technique, this method can give insight

into where a particular gut microbiota member is localized, and for

the use of resolution of localization of several strains of the same

microbe, as shown by the authors.

A recently described sequencing-based spatial technology,

termed Metagenomic Plot Sampling by Sequencing (MaPS-seq),

is an unbiased technique that avoids the use of a microscope that

does not involve single cell analysis, and instead analyzes the

sequences of microbial cells in their native geographical context

(Figure 1) (Sheth et al., 2019). An input sample is first fixed and

embedded into a polymer matrix. The matrix is then fractured into
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clusters, the cells are lysed, and clusters of desirable size are selected.

This process ensures that the clusters contain the genomic DNA

immobilized in the original spatial location, preserving this

information. The clusters are then encapsulated with barcoded

beads, containing the 16s rRNA amplification primers. The

primers are cleaved from the beads, genomic DNA is released,

and PCR amplification of the 16s V4 region is performed. Droplets

are separated, and the library is deep sequenced. The authors

applied MaPS-seq to analyze spatial metagenomics of the mouse

colon microbiome and found that certain community members

aggregate or clump together across the distal colon. They then use

MaPS-seq to investigate the spatial organization along the GI tract

and found that certain taxa tended to be found close to each other,

or co-associate, such as Lactobacillaceae and Lachnospiraceae.

Further investigation into the benefit of co-associations of

bacteria that tend to aggregate together spatially in the gut will be

illuminating to the field and could help uncover factors necessary

for the culture of certain currently unculturable microbes. MaPS-

seq also has the potential to profile interactions between bacteria

and eukaryotes, such as fungi or epithelial cells, by modifying the

capture primers, as noted by the authors.

While further new technique development is necessary, many

cutting-edge techniques for capturing spatial information have been

developed recently, as described here. In addition to the techniques

described that have been applied to the gut microbiota, several spatial

transcriptomics tools have been described in the study of mammalian

tissues, especially with regards to the brain. MultiplexedmRNA-FISH

has been applied to spatial mapping of mRNA molecules, with the

washing and adding fluorophores, to image the same section multiple

times for different targets, achieving high multiplexity (Goh et al.,

2020). Slide capture technology, a technique where mRNA molecules

are hybridized to DNA anchors on a slide, followed by reverse

transcription and sequencing, has been applied to the mouse brain

to reveal responses to traumatic brain injury (Rodriques et al., 2019),

and in the study of breast cancer tissues (Vickovic et al., 2019).

However, as this method relies on the polyadenylation of mRNA for

capture, it cannot be used for the spatial mapping of microbes, as

microbes generally do not have polyadenylated mRNAs. Another

method described recently that proves more promising for the gut

microbiota field, DNA Microscopy, is a microscope-free method by

which transcripts are tagged with randomized nucleotides, followed

by amplification tags and concatenation of the copies (Weinstein

et al., 2019). A computer algorithm then decodes proximities based

on these concatenated sequences and infers an image of the original

transcripts at cell-level resolution. DNA Microscopy could

theoretically be applied to mapping the spatial relationship of

microbes in the gut microbiota but has yet to be applied in practice.
Discussion

High-resolution single cell analysis for microbes allow

capturing heterogeneity in bacterial populations identifying rare

subpopulations of bacteria, which might be missed in traditional

bulk sequencing (KuChina et al., 2021). Various methodologies

have been developed to isolate single eukaryotic cells which have
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been optimized for bacterial cells. This allows performing single cell

sequencing and is of great value for in-depth characterization of the

microbiome as well as host-microbiome interactions (Woyke et al.,

2017). Powerful high throughput sequencing of single microbial

cells allows researchers to address questions that will provide

insights into their genomes and spatial function of gut

microbiome in the etiology of gut and other related diseases

(Tolonen and Xavier, 2017; Sharma and Thaiss, 2020).

Sequencing gut bacteria at the level of single cells better captures

the heterogeneity compared to traditional bulk sequencing and

enables the study of microbes that make up a small fraction of a

population. This could aid with the tracking emergence of drug

resistance in bacteria (Tolonen and Xavier, 2017).

Resolving gut microbiome at the single cell level opens the

possibility of addressing new scientific questions. A cross sectional

study showed that immunocompromised patients, particularly

children with sickle cell disease (SCD) receiving penicillin

prophylaxis in the cohort, showed differences in alpha diversity and

bacterial abundance of the gut microbiota compared to patients not

receiving penicillin (Mohandas et al., 2020). Single cell resolution of

gut microbiota will provide a closer look at their functional

implications in SCD and other immunodeficiency diseases.

Gut microbiota composition and function are heavily

influenced by environmental factors, diet, and age. Studies report

patterns of gut microbes that not only influence aging but can also

predict age-associated decline (Bosco and Noti, 2021). It will be of

interest to identify the effect of diet and age on gut microbiome in

immunocompromised patients. The technological advancements in

resolving gut microbiota at the level of single cells will allow

dissecting functional relationships between gut microbiome and

immunocompromised host and how it is influenced by intrinsic and

extrinsic factors such as age and diet.

In addition to being impacted by host and environmental

factors, the gut microbes also influence each other. These inter-

microbial interactions can be effectively captured by the genomics

tools optimized for microbial communities. This will facilitate

studying how the microbes impact each other and shape the gut

microbiome (Bäumler and Sperandio, 2016; Coyte and Rakoff-

Nahoum, 2019).
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