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Background: Mounting evidence has demonstrated the associations between

gut microbiota, gut microbiota-derived metabolites, and cerebrovascular

diseases (CVDs). The major categories of CVD are ischemic stroke (IS),

intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH).

However, the causal relationship is still unclear.

Methods: A two-sample Mendelian randomization (MR) study was conducted

leveraging the summary data from genome-wide association studies. The

inverse variance-weighted, maximum likelihood, weighted median, and

MR.RAPS methods were performed to detect the causal relationship. Several

sensitivity analyses were carried out to evaluate potential horizontal pleiotropy

and heterogeneity. Finally, reverse MR analysis was conducted to examine the

likelihood of reverse causality, and multivariable MR was performed to adjust the

potential confounders.

Results: We collected 1,505 host single nucleotide polymorphisms (SNPs) linked

to 119 gut microbiota traits and 1,873 host SNPs associated with 81 gut

metabolite traits as exposure data. Among these, three gut bacteria indicated

an elevated risk of IS, two of ICH, and one of SAH. In contrast, five gut bacteria

were associated with a reduced risk of IS, one with ICH, and one with SAH. Our

study also demonstrated the potential causal associations between 11 gut

microbiota-derived metabolites and CVD.

Conclusions: This study provided evidence of the causal relationship between

gut microbiota, gut microbiota-derived metabolites, and CVD, thereby offering

novel perspectives on gut biomarkers and targeted prevention and treatment for

CVD.

KEYWORDS

Mendelian randomization, gut microbiota, cerebrovascular diseases, gut microbiota-
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Introduction

Cerebrovascular diseases (CVDs) are characterized by

pathological changes in cerebral blood vessels resulting in brain

dysfunction, such as hemiplegia and language disorder (World

Health Organization, 2021). The major categories are ischemic

stroke (IS), intracerebral hemorrhage (ICH), and subarachnoid

hemorrhage (SAH). Despite years of prevention and treatment,

CVD continues to be the second leading cause of mortality and

disability globally (DALYs, G.B.D., and Collaborators, H, 2016;

Mortality, G.B.D., and Causes of Death, C, 2016). With the aging of

the population, the prevalence of CVD increases annually, which

poses a substantial hazard to human life and places a significant

burden on healthcare systems (Collaborators, G.B.D.C.o.D, 2017;

Feigin et al., 2017). Nevertheless, the exact pathogenesis of CVD, as

well as effective strategies for its prevention and treatment,

remained uncertain.

Gut microbiota is a complex bacterial community that resides in

the intestine. A growing body of research suggests that the gut

microbiota and microbiota-derived metabolites play a significant

role in CVD through the microbiota–gut–brain axis (Peh et al.,

2022; Zou et al., 2022). Dysbiosis of the gut microbiome leads to

increased gut permeability and activation of the intestinal immune

system, allowing it to penetrate brain tissue via the blood–brain

barrier (Hu et al., 2022). Clinical cross-sectional studies have

identified gut microbiota disorders in CVD patients (Huang et al.,

2019; Li et al., 2020; Ling et al., 2020b). It is reported that Firmicutes

displayed a growing trend, but Bacteroidetes had a declining

tendency in stroke patients (Singh et al., 2016). However, existing

studies have produced inconsistent results. For instance, Yin et al.

observed a significant decrease in the abundance of Bacteroides and

Prevotella in IS patients compared with healthy controls (Yin et al.,

2015), while another small cross-sectional study (N = 10) reported

the opposite results (Wang et al., 2018). The gut microbiota-derived

metabolites are key actors in host–microbiota crosstalk, which

influences the host’s brain function and behavior, such as short-

chain fatty acids (SCFAs) (Liu et al., 2020), trimethylamine N-oxide

(TMAO) (Schiattarella et al., 2017), and butyrate (Haak et al., 2021).

However, most evidence came from observational studies, making it

difficult to determine the temporal association between exposure

and outcome. Furthermore, confounding factors of gut microbiota–

CVD-related studies were difficult to measure and control due to

the complicated environment of the intestine and cerebral

blood vessels.

Mendelian randomization (MR) analysis integrates data from

genome-wide association studies (GWAS) and utilizes genetic

variations as instrumental variables (IVs) to assess the causal

relationship between exposures and outcomes (Greenland, 2000).

The MR approach should conform to three fundamental

assumptions: 1) IVs should be highly associated with exposure, 2)

IVs should be independent of confounders that affect exposure and

outcome, and 3) IVs should affect the outcome only through

exposure. With the advantages of controlling confounders and

eliminating reverse causality, MR analysis has been extensively

utilized to investigate the causality between gut microbiota and
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human complex diseases like T2DM (Sanna et al., 2019), chronic

kidney disease (Xu et al., 2020), and Alzheimer’s disease (Hughes

et al., 2020). In the study, using summary data from the most

extensive and up-to-date GWAS datasets, we employed the MR

method to investigate the causal relationship between gut

microbiota, gut microbiota-derived metabolites, and CVD.
Materials and methods

Data sources

Summary data for gut microbiota serving as exposure were

obtained from a multi-ethnic GWAS, which includes 18,340

individuals (Kurilshikov et al., 2021). 16S rRNA gene sequencing

profiles and genotyping data were coordinated to perform the

genome-wide meta-analysis of the association between human

genetic variants and the gut microbiota. Employing SILVA as the

reference database (Quast et al., 2013), all the data were annotated

to genus and higher levels.

Pooled data for gut microbiota-derived metabolites were

obtained from the most comprehensive metabolite GWAS (Shin

et al., 2014) so far, which was carried out among people of European

ancestry (Twins UK and KORA cohort, N = 7,824). The GWAS

examined 486 human metabolites obtained from both cohorts at

each single nucleotide polymorphism (SNP). Then, we manually

searched the HMDB database (Wishart et al., 2018) to screen out

human gut microbiota-derived metabolites.

The MEGASTROKE consortium provided genetic variations

for IS including 34,217 cases and 406,111 controls (Malik et al.,

2018). Summary data for ICH and SAH were obtained from the

FinnGen consortium data (Kurki et al., 2022), which included

202,833 subjects (1,687 cases/201,146 controls) and 16,381,733

subjects (1,338 cases/16,380,395 controls), respectively. Genotyped

by the Illumina platform and Affymetrix chip arrays, association

studies were performed with sex, age, genotyping batch, and 10

main components adjusted.

All GWAS datasets were publicly available with limited sample

overlap and already obtained ethical approvals in original studies.

Details of GWAS utilized in this study are shown in

Supplementary Table 1.
Selection of instrumental variables

In order to select optimal instrumental variables (IVs), several

quality control steps were conducted. First, IVs were selected from

SNPs associated with gut microbiota and gut microbiota-derived

metabolites at the locus-wide significance level (P< 1 × 10−5)

(Benjamini and Hochberg, 1995). Second, the PLINK clumping

method on linkage disequilibrium (LD) with r2<0.001 and a

clumping window of 10,000 kb was performed to identify the lead

SNPs. Third, we calculated each exposure’s F-statistic using the

formula F = R2(n−1−k)
(1−R2)k , where R2, n, and k mean the estimated

exposure variance explained by IVs, sample size, and the number
frontiersin.org
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of IVs, respectively (Palmer et al., 2012). If the F-statistics were

below 10, the IVs would be excluded to prevent weak IVs’ bias

(Staiger and Stock, 1997).
Statistical analyses

To estimate the causality between gut microbiota, gut

microbiota-derived metabolites, and CVD, the two-sample MR

analysis was performed. The inverse variance-weighted (IVW)

method was performed as the primary MR analysis, which is a

meta-analysis method that combines the Wald ratio estimates of

each IV and restricts the intercept to zero. If there is no horizontal

pleiotropy, results from IVW would be unbiased (Burgess et al.,

2016). Effect estimates for causal associations were reported in odds

ratios with 95% confidence intervals for binary outcomes (Dekking,

2007; Szumilas, 2010). In addition, P-values were adjusted for

several comparisons at the significance level (q-value< 0.1) by

false discovery rate (FDR) (Storey and Tibshirani, 2003). If

exposures with P<0.05 while FDR corrected q-value >0.1, they

were reported as potentially causal associations. Other sensitivity

analyses were carried out to ensure the reliability of the results,

including maximum likelihood (Thompson et al., 2005), weighted

median (Bowden et al., 2016), and MR robust adjusted profile score

(MR.RAPS) (Zhao et al., 2020). When heterogeneity and horizontal

pleiotropy are assumed to be absent, the maximum likelihood

method is comparable to IVW with smaller standard errors and

more unbiased results (Pierce and Burgess, 2013). The weighted

median method can obtain robust assumptions when less than 50%

of SNPs are invalid (Bowden et al., 2016). MR.RAPS offers robust

estimates to correct for systematic and idiosyncratic pleiotropy

(Zhao et al., 2020).

Cochran Q statistic was performed to examine the

heterogeneity, and the leave-one-out sensitivity analysis was

employed to examine if each SNP was accountable for the

causative outcomes (Hemani et al., 2017). Moreover, the MR-

Egger intercept and the Mendelian randomization pleiotropy

residual sum and outlier (MR-PRESSO) global test were applied
Frontiers in Cellular and Infection Microbiology 03
to detect the potential horizontal pleiotropy between IVs and the

outcome (Hemani et al., 2017).

Reverse MR analysis was also conducted to investigate the

reverse causality between CVD and gut microbiota as well as gut

microbiota-derived metabolites, which used the same setting and

datasets as in the forward MR analysis except for changing the

original exposure to outcome. Finally, we performed a multivariable

MR (MVMR) analysis to distinguish each confounder’s direct

influence (Burgess and Thompson, 2015). Three confounders,

smoking (IEU number: ieu-b-4877), alcohol drinking (IEU

number: ukb-b-5779), and hypertension (IEU number: ukb-a-61),

were considered for the MVMR analysis by using the IVW method

(Burgess and Thompson, 2015).

The flowchart of this study is displayed in Figure 1. All

statistical analyses were performed using “TwoSampleMR,”

“MRPRESSO,” and “qvalue” packages in R software.
Results

A total of 1,505 lead SNPs associated with 119 bacterial genera

were included for gut microbiota, and 1,873 lead SNPs associated

with 81 traits were identified for gut microbiota-derived

metabolites. The characters of the selected IVs are presented in

Supplementary Tables 2-5.
Association between gut microbiota and
cerebrovascular diseases

The IVW estimations showing higher genetically predicted

Allisonella (OR, 1.08; 95% CI, 1.019–1.150; P = 0.011),

Paraprevotella (OR, 1.094; 95% CI, 1.022–1.172; P = 0.010), and

Streptococcus (OR, 1.166; 95% CI, 1.049–1.297; P = 0.004) were

associated with a higher risk of IS, while genetically increased

Barnesiella (OR, 0.899; 95% CI, 0.809–0.999; P = 0.048),

Intestinimonas (OR, 0.889; 95% CI, 0.820–0.963; P = 0.004),

LachnospiraceaeFCS020group (OR, 0.905; 95% CI, 0.823–0.995; P
FIGURE 1

Flowchart of this study. MR, Mendelian randomization; SNP, single nucleotide polymorphism; IVW, inverse variance weighted; WM, weighted mean;
ML, maximum likelihood; MR.RAPS, Mendelian randomization robust adjusted profile score; MR-PRESSO, Mendelian randomization pleiotropy
residual sum and outlier.
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= 0.039), LachnospiraceaeNK4A136group (OR, 0.893; 95% CI,

0.816–0.977; P = 0.014), and RuminococcaceaeUCG004 (OR,

0.913; 95% CI, 0.835–0.999; P = 0.048) were associated with a

lower risk of IS. However, there is no significant causal association

after q-value adjustment (Figure 2).

We also investigated the potential causality between gut

microbiota and ICH as well as SAH, using the same methods,

respectively. Our results indicated that genetically higher

abundances of Catenibacterium (OR, 1.361; 95% CI, 1.003–1.848;

P = 0.0423) and LachnospiraceaeUCG010 (OR, 1.763; 95% CI,

1.162–2.676; P = 0.008) were associated with a higher risk of

ICH, but higher abundances of Butyricimonas (OR, 0.654; 95%

CI, 0.475–0.9; P = 0.009) were associated with a protective effect

against ICH. Additionally, an increase in Eisenbergiella (OR, 1.333;

95% CI, 1.023–1.736; P = 0.033) was related to a greater risk of SAH,

but an increase in Enterorhabdus (OR, 0.574; 95% CI, 0.376–0.877;

P = 0.01) was associated with a decreased probability of

SAH (Figure 2).

In the sensitivity analyses, the association between gut

microbiota and CVD remained consistent (Table 1, Figures 3–5).

F-statistics varied from 18.41 to 59.85, indicating that no weak IV

bias was observed. Additionally, Cochran Q statistic showed no

notable heterogeneity, and the leave-one-out analysis indicated that

the causal relationship cannot be driven by any single SNP.

Moreover, the results of MR-PRESSO suggested that there was no

significant horizontal pleiotropy (Supplementary Table 6,

Supplementary Figures 1-3).

Nevertheless, the results of reverse MR did not reveal any

correlations between CVD and gut microbiota (Supplementary

Table 7). Detailed results of the sensitivity analyses are listed in

Supplementary Table 8. We conducted an MVMR analysis to

examine the cause–effect of gut microbiota on CVD after

adjustment of three confounding factors (smoking, alcohol

drinking, and hypertension). For the genus Streptococcus, after

adjusting for alcohol drinking (OR = 1.182; 95% CI, 1.070–1.306;
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P = 0.001), smoking (OR = 1.189; 95% CI, 1.045–1.354; P = 0.009),

and hypertension (OR = 1.168; 95% CI, 1.052–1.298; P = 0.004), the

Streptococcus remained causally associated with CVD. We found

that other gut microbiota continued to be causally related to CVD

and had a more substantial impact than the causal effect found by

univariable MR (Table 2).
Association between gut metabolites and
cerebrovascular diseases

We obtained 11 suggestive estimates of the effects of gut

metabolites on CVD among the 81 gut microbiota-derived

metabolites that were included in our study. Increased

abundances of cholesterol (OR, 1.639; 95% CI, 1.053–2.55; P =

0.028), leucine (OR, 1.548; 95% CI, 1.04–2.303; P = 0.031), and

taurodeoxycholate (OR, 1.138; 95% CI, 1.005–1.289; P = 0.041)

were found to be associated with a higher risk of IS, while increased

glycerate (OR, 0.562; 95% CI, 0.319–0.993; P = 0.047), indolelactate

(OR, 0.608; 95% CI, 0.396–0.936; P = 0.024), ornithine (OR, 0.384;

95% CI, 0.172–0.857; P = 0.019), and threonate (OR, 0.783; 95% CI,

0.617–0.994; P = 0.044) were protective factors for IS. Furthermore,

7a-hydroxy-3-oxo-4-cholestenoate (7-Hoca) (OR, 0.091; 95% CI,

0.013–0.659; P = 0.018), choline (OR, 0.02; 95% CI, 0.001–0.367; P =

0.008), and glycine (OR, 0.343; 95% CI, 0.147–0.8; P = 0.013) were

revealed as protective factors of SAH, while tyrosine (OR, 5.908;

95% CI, 1.178–29.641; P = 0.099) was demonstrated to enhance the

risk of ICH (Table 3).

Additionally, following the sensitivity analyses, those

aforementioned results were deemed to be trustworthy without

pleiotropy (Table 4, Supplementary Table 6, and Supplementary

Figures 4-6), but we did not find a significant association after the q-

value adjustment. Reverse MR analysis demonstrated that CVD had

no causal association with gut microbiota-derived metabolites

except for the association between IS and cholesterol, leucine, and
FIGURE 2

Associations of genetically predicted gut microbiota with risk of CVD using the IVW method. The colored block represents the point estimation of
OR and the horizontal black line represents the 95% CI of OR. CVD, cerebrovascular disease; IVW, inverse variance weighted; IS, ischemic stroke;
ICH, intracerebral hemorrhage; SAH, subarachnoid hemorrhage; OR, odds ratio; CI, confidence interval.
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taurodeoxycholate (Supplementary Tables 7, 8). We conducted an

MVMR analysis to examine the causality of gut microbiota-derived

metabolites on CVD after adjusting for confounding factors. For the

protective factor ornithine, after adjusting for alcohol drinking (OR

= 0.547; 95% CI, 0.326–0.916; P = 0.022), smoking (OR = 0.527;

95% CI, 0.348–0.798; P = 0.002), and hypertension (OR = 0.548;

95% CI, 0.311–0.967; P = 0.038), we found it continued to be

causally associated with CVD and had a more significant impact

than the causal relationship found by univariable MR (Table 5).
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Discussion

Previous studies suggested that the gut microbiome exhibits

high heritability and plays a pivotal role in cardiovascular disease

(Kurilshikov et al., 2021; Zou et al., 2022), emphasizing the need for

conducting microbial genome-wide association studies (mGWAS)

in CVD. In the present study, we performed MR analyses to explore

the causal relationship between gut microbiota, gut microbiota-

derived metabolites, and CVD. Using summary data from the
TABLE 1 MR analyses of gut microbiota on CVD by different methods.

Exposure Outcome
F

statistics

Inverse variance
weighted

Maximum
likelihood

Weighted
median

MR.RAPS

OR (95%
CI)

P
OR
(95%
CI)

P
OR
(95%
CI)

P
OR (95%

CI)
P

Allisonella IS 25.49
1.082 (1.019,

1.150)
0.011

1.085
(1.019,
1.155)

0.011
1.081
(0.996,
1.174)

0.063
1.103 (1.037,

1.174)
0.002

Barnesiella IS 24.81
0.899 (0.809,

0.999)
0.048

0.896
(0.810,
0.991)

0.032
0.929
(0.806,
1.070)

0.304
0.902 (0.821,

0.991)
0.030

Intestinimonas IS 26.20
0.889 (0.820,

0.963)
0.004

0.890
(0.819,
0.966)

0.006
0.917
(0.821,
1.024)

0.124
0.889 (0.822,

0.963)
0.004

LachnospiraceaeFCS020group IS 29.58
0.905 (0.823,

0.995)
0.039

0.904
(0.820,
0.997)

0.044
0.934
(0.824,
1.059)

0.287
0.981 (0.898,

1.073)
0.072

LachnospiraceaeNK4A136group IS 23.66
0.893 (0.816,

0.977)
0.014

0.891
(0.811,
0.980)

0.017
0.941
(0.829,
1.068)

0.348
0.892 (0.812,

0.980)
0.017

Paraprevotella IS 22.92
1.094 (1.022,

1.172)
0.010

1.097
(1.022,
1.176)

0.010
1.091
(0.991,
1.201)

0.076
1.098 (1.022,

1.181)
0.036

RuminococcaceaeUCG004 IS 23.66
0.913 (0.835,

0.999)
0.048

0.910
(0.830,
0.998)

0.045
0.915
(0.808,
1.037)

0.164
0.917 (0.837,

1.005)
0.063

Streptococcus IS 23.66
1.166 (1.049,

1.297)
0.004

1.175
(1.062,
1.300)

0.002
1.172
(1.021,
1.346)

0.024
1.157 (1.048,

1.277)
0.004

Butyricimonas ICH 28.77
0.654 (0.475,

0.900)
0.009

0.653
(0.472,
0.904)

0.010
0.567
(0.370,
0.868)

0.009
1.109 (0.355,

3.464)
0.045

Catenibacterium ICH 18.41
1.361 (1.003,

1.848)
0.048

1.367
(0.997,
1.874)

0.052
1.377
(0.957,
1.981)

0.085
10.086
(0.227,
447.877)

0.066

LachnospiraceaeUCG010 ICH 26.02
1.763 (1.162,

2.676)
0.008

1.814
(1.207,
2.724)

0.004
2.262
(1.341,
3.817)

0.002
3.248 (0.914,

11.546)
0.106

Eisenbergiella SAH 23.66
1.333 (1.023,

1.736)
0.033

1.334
(1.018,
1.749)

0.037
1.374
(0.979,
1.930)

0.067
1.365 (1.046,

1.781)
0.022

Enterorhabdus SAH 33.98
0.574 (0.376,

0.877)
0.010

0.570
(0.367,
0.886)

0.012
0.582
(0.339,
1.000)

0.050
0.803 (0.568,

1.135)
0.214
frontier
MR, Mendelian randomization; CVD, cerebrovascular disease; OR, odds ratio; CI, confidence interval; MR.RAPS, Mendelian randomization robust adjusted profile score; IS, ischemic stroke;
ICH, intracerebral hemorrhage; SAH, subarachnoid hemorrhage.
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largest and latest GWAS, we detected the causal associations

between 13 gut microbial genera and CVD subtypes. Moreover, it

was suggested that the increased concentration of 11 metabolites

was potentially protective or risk factors for different CVD

subtypes, respectively.

As for gut microbiome and IS, a previous MR study reported

that the bacterial genera Intestinimonas and Lachnospiraceae

NK4A136group play significant protective roles in more than one

IS subtype (Meng et al., 2023), which supported our results.

Consistent with other previous observational studies (Denes et al.,

2014; Huang et al., 2019; Ling et al., 2020a), Streptococcus was

demonstrated to be related to a higher risk of IS in this study. In-

vitro experiments also found that Streptococcus infection promoted

atherosclerosis and aggravated ischemic brain damage through

platelet and IL-1-mediated systemic inflammation (Denes et al.,

2014). In a population-based study, Zeng et al. observed
Frontiers in Cellular and Infection Microbiology 06
significantly lower levels of butyrate-producing bacteria

Lachnospiraceae and Ruminococcaceae in the high-risk stroke

group (Zeng et al., 2019), which was in line with our study. It is

noteworthy that our results indicate varying effects of

LachnospiraceaeNK4A136group, LachnospiraceaeFCS020group,

and LachnospiraceaeUCG010 on IS and ICH. This highlights the

importance of conducting studies at a more specific species level

and across different CVD subtypes to elucidate the potential

mechanisms from the perspective of gut microbiota. As for ICH,

a mouse model demonstrated a notably higher abundance of

Butyricimonas in the exercise group (Liu et al., 2017). Regular

exercise is known to reduce the risk of ICH (Carpenter et al., 2016),

which supported our result that Butyricimonas exhibits a protective

effect on the risk of ICH. Our findings indicated that

Catenibacterium is associated with an elevated risk of ICH.

Multiple observational studies have reported increased levels of
FIGURE 3

Scatter plots for the causal association between gut microbiota and IS. SNP effects were plotted into lines for the inverse variance-weighted test
(light blue line), maximum likelihood (dark blue line), MR.RAPS (light green line), and weighted median (dark green line). The slope of the line
corresponded to the causal estimation. IS, ischemic stroke; MR.RAPS, Mendelian randomization robust adjusted profile score.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1269414
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Lin et al. 10.3389/fcimb.2023.1269414
Catenibacterium in obese patients (Gallardo-Becerra et al., 2020;

Pinart et al., 2021). Meanwhile, a multicenter case–control study

demonstrated that obesity can increase the risk of ICH (Pezzini

et al., 2013). This suggests that Catenibacterium might influence

ICH through the pathway of obesity. As for SAH, a previous study
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observed an increase in the relative abundance of Enterorhabdus

following a low-calorie Mediterranean diet intervention (Pagliai

et al., 2020). The Mediterranean diet is advised for preventing the

development and rupture of cerebral aneurysms, which accounts

for 85% of SAH cases (Czekajlo, 2019). The evidence above showed
FIGURE 4

Scatter plots for the causal association between gut microbiota and ICH. SNP effects were plotted into lines for the inverse variance-weighted test
(light blue line), maximum likelihood (dark blue line), MR.RAPS (light green line), and weighted median (dark green line). The slope of the line
corresponded to the causal estimation. ICH, intracerebral hemorrhage; MR.RAPS, Mendelian randomization robust adjusted profile score.
FIGURE 5

Scatter plots for the causal association between gut microbiota and SAH. SNP effects were plotted into lines for the inverse variance-weighted test
(light blue line), maximum likelihood (dark blue line), MR.RAPS (light green line), and weighted median (dark green line). The slope of the line
corresponded to the causal estimation. SAH, subarachnoid hemorrhage; MR.RAPS, Mendelian randomization robust adjusted profile score.
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that Enterorhabdus may contribute to SAH risk with their function

to the rupture of cerebral aneurysms.

Regarding the connection between gut microbiota-derived

metabolites and CVD, consistent with our findings, a rat experiment

using middle cerebral artery occlusion as the model confirmed the

protective effect of ornithine against IS (Barakat et al., 2018). The

NLRP3 inflammasome, characterized by leucine-rich repeat (LRR)

domains at the C-terminus, promotes the initiation of an inflammatory

response (Schroder and Tschopp, 2010). An experimental mouse

model confirmed that NLRP3 inflammasome activation in neurons

triggers neuroinflammation during acute IS. Early inhibition of NLRP3
Frontiers in Cellular and Infection Microbiology 08
reduces inflammation and stabilizes the blood–brain barrier, providing

protection against ischemia/reperfusion injury (Franke et al., 2021).

The evidence presented above supports our study’s conclusion that

leucine is a risk factor for IS. Nagata et al. conducted a clinical trial to

compare the cerebrospinal fluid of 6 aneurysmal SAH patients with 11

healthy controls and observed a higher concentration of 7-Hoca in

patients (Nagata et al., 1995), which contradicted our findings. The

limited sample size and sample heterogeneity are likely responsible for

the conflicting results.

This study has several advantages. First, this study is the first to

evaluate the causality between gut microbiota, gut microbiota-
TABLE 2 Multivariable MR analyses of gut microbiota on CVD after adjusting confounding factors.

Exposure Outcome
Alcohol drinking Smoking Hypertension

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Allisonella IS 1.069 (1.003, 1.139) 0.040 1.098 (1.014, 1.189) 0.021 1.059 (1.007, 1.113) 0.025

Barnesiella IS 0.887 (0.785, 1.001) 0.052 0.873 (0.762, 0.999) 0.048 0.876 (0.777, 0.988) 0.031

Intestinimonas IS 0.909 (0.843, 0.980) 0.013 0.892 (0.831, 0.958) 0.002 0.894 (0.823, 0.971) 0.008

LachnospiraceaeFCS020group IS 0.907 (0.833, 0.987) 0.024 0.955 (0.880, 1.036) 0.265 0.932 (0.868, 1.000) 0.052

LachnospiraceaeNK4A136group IS 0.884 (0.806, 0.968) 0.008 0.897 (0.807, 0.998) 0.047 0.949 (0.824, 1.094) 0.473

Paraprevotella IS 1.087 (0.994, 1.188) 0.069 1.109 (1.032, 1.191) 0.005 1.097 (1.002, 1.201) 0.046

RuminococcaceaeUCG004 IS 0.893 (0.796, 1.002) 0.055 0.908 (0.807, 1.021) 0.107 0.907 (0.852, 0.966) 0.002

Streptococcus IS 1.182 (1.070, 1.306) 0.001 1.189 (1.045, 1.354) 0.009 1.168 (1.052, 1.298) 0.004

Butyricimonas ICH 0.587 (0.416, 0.828) 0.002 0.545 (0.325, 0.915) 0.022 0.545 (0.329, 0.905) 0.019

Catenibacterium ICH 1.577 (1.394, 1.785) 5.02E−13 1.459 (0.967, 2.201) 0.072 1.301 (1.051, 1.610) 0.015

LachnospiraceaeUCG010 ICH 1.609 (1.153, 2.244) 0.005 1.659 (1.104, 2.494) 0.015 1.759 (1.137, 2.722) 0.011

Eisenbergiella SAH 1.332 (1.053, 1.685) 0.017 1.352 (1.065, 1.717) 0.013 1.300 (1.008, 1.677) 0.043

Enterorhabdus SAH 0.579 (0.378, 0.888) 0.012 0.578 (0.463, 0.721) 1.15E−06 0.619 (0.485, 0.790) 1.21E−04
fron
Multivariable MR (MVMR) analyses were conducted by using the inverse variance-weighted (IVW) method.
MR, Mendelian randomization; CVD, cerebrovascular disease; OR, odds ratio; CI, confidence interval; IS, ischemic stroke; ICH, intracerebral hemorrhage; SAH, subarachnoid hemorrhage.
TABLE 3 MR analyses of gut microbiota-derived metabolites on CVD by the IVW method.

Exposure Outcome F statistics OR (95% CI) P q-value

Cholesterol IS 29.07 1.639 (1.053, 2.550) 0.028 0.320

Glycerate IS 29.59 0.562 (0.319, 0.993) 0.047 0.320

Indolelactate IS 27.40 0.608 (0.396, 0.936) 0.024 0.320

Leucine IS 56.91 1.548 (1.040, 2.303) 0.031 0.320

Ornithine IS 40.09 0.384 (0.172, 0.857) 0.019 0.320

Taurodeoxycholate IS 29.18 1.138 (1.005, 1.289) 0.041 0.320

Threonate IS 21.86 0.783 (0.617, 0.994) 0.044 0.320

Tyrosine ICH 27.88 5.908 (1.178, 29.641) 0.031 0.990

7-Hoca SAH 30.36 0.091 (0.013, 0.659) 0.018 0.476

Choline SAH 32.14 0.020 (0.001, 0.367) 0.008 0.476

Glycine SAH 59.85 0.343 (0.147, 0.800) 0.013 0.476
MR, Mendelian randomization; CVD, cerebrovascular disease; IVW, inverse variance weighted; OR, odds ratio; CI, confidence interval; IS, ischemic stroke; ICH, intracerebral hemorrhage; SAH,
subarachnoid hemorrhage.
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derived metabolites, and CVD. Second, the application of the MR

method decreased the interference of confounding factors and the

reverse causality of the results. Finally, based on the dataset from the

largest GWAS up-to-date, we performed reverse MR, MVMR, and
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several sensitivity analyses to support the results. However, it has to

be admitted that there are some limitations. First, the results should

be interpreted with caution due to the inadequate IVs under

genome-wide significance, which is why we utilized a loose cutoff
TABLE 4 MR analyses of gut microbiota-derived metabolites on CVD by different methods.

Exposure Outcome

Inverse variance
weighted

Maximum likeli-
hood

Weighted median MR.RAPS

OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95%CI) P

Cholesterol IS 1.639 (1.053,
2.550)

0.028 1.676 (1.135,
2.474)

0.009 1.768 (0.994, 3.148) 0.053 1.686 (1.151, 2.472) 0.007

Glycerate IS 0.562 (0.319,
0.993)

0.047 0.544 (0.313,
0.945)

0.031 0.507 (0.243, 1.057) 0.070 0.497 (0.312, 0.793) 0.003

Indolelactate IS 0.608 (0.396,
0.936)

0.024 0.618 (0.431,
0.886)

0.009 0.604 (0.371, 0.986) 0.044 0.562 (0.397, 0.797) 0.001

Leucine IS 1.548 (1.040,
2.303)

0.031 1.579 (1.100,
2.266)

0.013 1.188 (0.667, 2.115) 0.559 1.527 (1.080, 2.158) 0.017

Ornithine IS 0.384 (0.172,
0.857)

0.019 0.347 (0.155,
0.777)

0.010 0.484 (0.187, 1.249) 0.133 0.593 (0.334, 1.054) 0.075

Taurodeoxycholate IS 1.138 (1.005,
1.289)

0.041 1.141 (1.005,
1.296)

0.042 1.062 (0.901, 1.252) 0.472 1.125 (1.000, 1.265) 0.049

Threonate IS 0.783 (0.617,
0.994)

0.044 0.787 (0.616,
1.006)

0.056 0.868 (0.621, 1.214) 0.409 0.775 (0.601, 1.000) 0.049

Tyrosine ICH 5.908 (1.178,
29.641)

0.031 6.400 (1.210,
33.860)

0.029 19.397 (1.799,
209.111)

0.015 27.563 (0.040,
18,891.070)

0.023

7-Hoca SAH 0.091 (0.013,
0.659)

0.018 0.084 (0.011,
0.663)

0.019 0.181 (0.011, 3.043) 0.235 0.280 (0.048, 1.645) 0.159

Choline SAH 0.020 (0.001,
0.367)

0.008 0.022 (0.001,
0.362)

0.008 0.044 (0.001, 2.247) 0.120 0.000 (0.000, 0.125) 0.004

Glycine SAH 0.343 (0.147,
0.800)

0.013 0.355 (0.151,
0.836)

0.018 0.404 (0.145, 1.122) 0.082 0.326 (0.140, 0.758) 0.009
frontier
MR, Mendelian randomization; CVD, cerebrovascular disease; OR, odds ratio; CI, confidence interval; MR.RAPS, Mendelian randomization robust adjusted profile score; IS, ischemic stroke;
ICH, intracerebral hemorrhage; SAH, subarachnoid hemorrhage.
TABLE 5 Multivariable MR analyses of gut microbiota-derived metabolites on CVD after adjusting confounding factors.

Exposure Outcome
Alcohol drinking Smoking Hypertension

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Cholesterol IS 1.666 (1.091, 2.544) 0.018 1.621 (1.044, 2.517) 0.031 1.394 (0.921, 2.110) 0.116

Glycerate IS 0.566 (0.312, 1.025) 0.060 0.597 (0.321, 1.108) 0.102 0.760 (0.418, 1.382) 0.369

Indolelactate IS 0.654 (0.443, 0.967) 0.033 1.260 (0.849, 1.871) 0.251 0.642 (0.460, 0.897) 0.009

Leucine IS 1.228 (0.861, 1.751) 0.257 1.267 (0.881, 1.821) 0.202 1.284 (0.905, 1.823) 0.162

Ornithine IS 0.547 (0.326, 0.916) 0.022 0.527 (0.348, 0.798) 0.002 0.548 (0.311, 0.967) 0.038

Taurodeoxycholate IS 1.134 (1.049, 1.225) 0.001 1.132 (1.034, 1.239) 0.008 1.125 (1.030, 1.229) 0.009

Threonate IS 0.817 (0.672, 0.994) 0.043 0.809 (0.614, 1.066) 0.131 0.820 (0.654, 1.028) 0.085

Tyrosine ICH 3.352 (0.550, 20.426) 0.190 2.275 (0.393, 13.151) 0.359 2.146 (0.369, 12.473) 0.395

7-Hoca SAH 0.331 (0.033, 3.331) 0.348 0.299 (0.038, 2.341) 0.250 0.229 (0.024, 2.224) 0.204

Choline SAH 0.050 (0.004, 0.695) 0.026 0.035 (0.003, 0.491) 0.013 0.016 (0.001, 0.183) 0.001

Glycine SAH 0.370 (0.152, 0.896) 0.028 0.320 (0.074, 1.380) 0.126 0.216 (0.062, 0.754) 0.016
Multivariable MR (MVMR) analyses were conducted by using the inverse variance-weighted (IVW) method.
MR, Mendelian randomization; CVD, cerebrovascular disease; OR, odds ratio; CI, confidence interval; IS, ischemic stroke; ICH, intracerebral hemorrhage; SAH, subarachnoid hemorrhage.
sin.org

https://doi.org/10.3389/fcimb.2023.1269414
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Lin et al. 10.3389/fcimb.2023.1269414
for exposure-related SNPs at a threshold of P< 1 × 10−5. Second,

bacterial taxa were only analyzed at the genus level rather than at a

more specific species level. Finally, previous studies have

demonstrated the contentious nature of gene–microbial

interactions across diverse ethnicities. Therefore, the findings of

this study may not be fully generalizable to other ethnic

populations, given that the original GWAS primarily enrolled

individuals of European descent.

In conclusion, by performing the two-sample MR analysis, we

assessed the potential causality between gut microbiota, gut

microbiota-derived metabolites, and CVD. Our findings could

offer new perspectives on novel biomarkers for the targeted

prevention and treatment of CVD. However, further randomized

clinical trials and functional experimental studies are required to

verify these findings and clarify the potential mechanism.
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