
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Jianmin Chai,
Foshan University, China

REVIEWED BY

Valeriy Poroyko,
Laboratory Corporation of America
Holdings (LabCorp), United States
Haipeng Sun,
Rutgers, The State University of New
Jersey, United States

*CORRESPONDENCE

Ling Li

liling25@fmmu.edu.cn

Ke Wang

wangke@fmmu.edu.cn

Jian Zhang

zjfmmu19700227@163.com

†These authors have contributed equally to
this work

RECEIVED 19 July 2023

ACCEPTED 20 September 2023

PUBLISHED 16 October 2023

CITATION

Zhang Y, Chen X, Wang Y, Li L, Ju Q,
Zhang Y, Xi H, Wang F, Qiu D, Liu X,
Chang N, Zhang W, Zhang C, Wang K, Li L
and Zhang J (2023) Alterations of lower
respiratory tract microbiome and short-
chain fatty acids in different segments in
lung cancer: a multiomics analysis.
Front. Cell. Infect. Microbiol. 13:1261284.
doi: 10.3389/fcimb.2023.1261284

COPYRIGHT

© 2023 Zhang, Chen, Wang, Li, Ju, Zhang,
Xi, Wang, Qiu, Liu, Chang, Zhang, Zhang,
Wang, Li and Zhang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 16 October 2023

DOI 10.3389/fcimb.2023.1261284
Alterations of lower respiratory
tract microbiome and short-
chain fatty acids in different
segments in lung cancer: a
multiomics analysis
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Introduction: The lower respiratory tract microbiome is widely studied to

pinpoint microbial dysbiosis of diversity or abundance that is linked to a

number of chronic respiratory illnesses. However, it is vital to clarify how the

microbiome, through the release of microbial metabolites, impacts lung health

and oncogenesis.

Methods: In order to discover the powerful correlations between microbial

metabolites and disease, we collected, under electronic bronchoscopy

examinations, samples of paired bronchoalveolar lavage fluids (BALFs) from

tumor-burden lung segments and ipsilateral non-tumor sites from 28 lung

cancer participants, further performing metagenomic sequencing, short-chain

fatty acid (SCFA) metabolomics, and multiomics analysis to uncover the potential

correlations of the microbiome and SCFAs in lung cancer.

Results: In comparison to BALFs from normal lung segments of the same

participant, those from lung cancer burden lung segments had slightly

decreased microbial diversity in the lower respiratory tract. With 18

differentially prevalent microbial species, including the well-known

carcinogens Campylobacter jejuni and Nesseria polysaccharea, the relative

species abundance in the lower respiratory tract microbiome did not

significantly differ between the two groups. Additionally, a collection of

commonly recognized probiotic metabolites called short-chain fatty acids

showed little significance in either group independently but revealed a strong

predictive value when using an integrated model by machine learning.

Multiomics also discovered particular species related to SCFAs, showing a
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positive correlation with Brachyspira hydrosenteriae and a negative one with

Pseudomonas at the genus level, despite limited detection in lower airways. Of

note, these distinct microbiota and metabolites corresponded with clinical traits

that still required confirmation.

Conclusions: Further analysis of metagenome functional capacity revealed that

genes encoding environmental information processing and metabolism

pathways were enriched in the lower respiratory tract metagenomes of lung

cancer patients, further supporting the oncogenesis function of variousmicrobial

species by different metabolites. These findings point to a potent relationship

between particular components of the integrated microbiota-metabolites

network and lung cancer, with implications for screening and diagnosis in

clinical settings.
KEYWORDS

lung cancer, lower respiratory tract microbiome, metagenomic sequencing, short chain
fatty acids, machine learning
Introduction

A growing body of evidence implies that perturbations of the

compositions within the human microbiome exert great influence

on a broad array of human diseases, including a set of cancer types

(Cullin et al., 2021; Sepich-Poore et al., 2021; Yang et al., 2023). As a

widely accepted perspective, gut microbiota, due to vast microbial

coverage and quantity within the digestive tract, is confirmed to

shed bidirectional light on lung cancer by crosstalk between

microbiota and host cells (Liu et al., 2019; Dong et al., 2021;

Dohlman et al., 2022). Compared with remote modulation by gut

microbiome-released metabolites, microbiota in local pulmonary

microecological environments, which were previously considered to

be sterile, is gradually receiving widespread attention in

oncogenesis, development, and drug resistance of lung cancer

(Routy et al., 2018; Tsay et al., 2018; Patnaik et al., 2021; Zitvogel

and Kroemer, 2021). Importantly, colonization of microbes in the

lungs, especially those in the lower respiratory tract, features much

lower bacterial biomass but higher relative diversity, which may be

reversed with elevated bioburden and descending bacterial diversity

followed by several taxa in a significant proportion in suppurative

and infectious diseases (Lanaspa et al., 2017; Man et al., 2017; Singh

et al., 2017). However, only limited research focused on the

potential role of the lower respiratory tract microbiome in the

initiation and development of lung cancer and further studies are

still needed for a detailed exploration of this.

Analysis of the lower respiratory tract microbiome is still

intractable, partially due to the complexity of sample detection
ll Lung Cancer; BALF,
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and the low biomass planted in the local respiratory tract, impeding

the accuracy and sensitivity of bacterial community processing and

sequencing (Drengenes et al., 2019). Different from conventional

16S rRNA gene sequencing, metagenomics seems more effective in

eliminating latent hosted and operational contamination, making it

an alternative to further uncover the microbial composition of the

lower respiratory tract microbiome (Kurian et al., 2020; Fromentin

et al., 2021; Lamoureux et al., 2022). Of note, although characterized

with significantly lower bacterial communities than those detected

by oropharyngeal swabs or washes, sputum samples, and bronchial

aspirates from the upper airway, bronchoalveolar lavage fluids

(BALFs) are usually given preference to sequence lower

respiratory tract microbiome and their metabolites (Glendinning

et al., 2017; Tsang et al., 2021).

Short-chain fatty acids (SCFAs), which are chemically

composed of a carboxylic acid moiety and a small hydrocarbon

chain under six including acetic, propionic, and butyric acids, are a

subset of intermediate fatty acid metabolites mainly produced by

anaerobic bacteria in the intestinal tract during the fermentation of

fibers and dietary carbohydrates. SCFAs perform a beneficial

function in the maintenance of health and in guarding against

cancers (Sivaprakasam et al., 2016; Mirzaei et al., 2021; Van Der Hee

and Wells, 2021). Mechanically, SCFAs are known to modify

extensive cellular processes by direct activation of G protein-

coupled receptors (GPCRs) (Kim et al., 2013), inhibition of

histone deacetylases (HDACs) (Shen et al., 2017), and

stabilization of the hypoxia-inducible factor (HIF) signaling

pathway (Shen et al., 2017) in a ligand-receptor interaction by

regulating epithelial homeostasis and stimulating anti-tumor

immune activity (Trompette et al., 2014; Kim et al., 2016; Zou

et al., 2018; Matsushita et al., 2021). Intriguingly, with the further

exploration of the microbiome in a liquid layer on the surface of the

respiratory tract and alveoli, it has been observed that lower

respiratory tract-derived SCFAs might also be involved in the
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modulation of the host metabolism and immunity homeostasis. The

inhibitory function of SCFAs on lung cancer deserves

additional attention.

In order to address the correlation of lower respiratory tract

microbiome and SCFAs, as well as their potential interaction with

lung cancer, we investigated the microbial communities and SCFAs

of the lower respiratory tract by metagenomic and targeted

metabolome sequencing in BALF from tumor-burden lung

segments and ipsilateral non-tumor sites of the same lung cancer

patients. Employing an in-depth multiomics combined analysis, we

aimed to validate the predictive role of SCFAs and specific

microbiota in tumorigenesis and their predictive effects in the

diagnosis and prevention of lung cancer in clinical practice.
Materials and methods

Study design and participant recruitment

The study cohort consisted of a subset of hospitalized subjects

enrolled in our Clinical Humoral Biological Sample Library. We

collected 128 cases that, according to their CT scanning

characteristics, were suspected lung cancer (LC) cases, and

excluded the inappropriate patients in light of our clinical

research design (#2021LC2115). Details of inclusion and

exclusion criteria and workflow are displayed in Table 1; Figure
Frontiers in Cellular and Infection Microbiology 03
S1. A final diagnosis of LC depended on pathological characteristics

of tissue samples from electronic bronchoscopy-mediated needle

aspiration biopsy after BALF collection. At enrollment, we included

patients with lung cancer who had not been treated with

pharmacological interventions for the previous 3 months, such as

anti-tumor regimes, antibiotics, probiotics intake, and other

potential preparations that might affect local and extensive

microbial compositions. Exclusion criteria included patients with

concomitant infectious or inflammatory respiratory diseases,

tumor-associated obstructive pneumonia, and patients using

glucocorticoid drugs in the preceding 6 months. All patients fully

understood the objectives and were volunteers for potential

inspection risks. Each subject signed an informed consent

approved by the Ethics Committee of the First Affiliated Hospital

of the Air Force Medical University; the Academic Integrity

Supervision Committee of Air Force Military Medical University

carried out supervision of the whole course within the study.
Sample collection and preservation

Samples processed for microbiota analysis were collected from

patients consulting for medical assistance in our center who needed

electronic bronchoscopy-mediated needle aspiration biopsy to reach

a definite diagnosis. Before that, bronchial and alveolar lavage fluid

was obtained from normal lung segment (NLS) and tumor-burden

lung segments (TBLS) successively within the same lung lobe. Each

lavage was treated with preheated sterile physiological saline for 50-

60ml, maintaining a stable recovery rate of >60%. All samples

intended for microbial analysis were under centrifugation at 4°C

12000rpm for 40 min. Centrifugal sedimentation and supernatant

were segregated and restored at -80°C for microbial and targeted

metabolomics analysis concurrently until processing. All processes

strictly abided by sterile operating standards.
DNA isolation and shotgun
metagenomics sequencing

BALF precipitation samples (1-3mg) were weighed in 2 ml

microcentrifuge tubes and placed on ice. Total DNA from the lower

respiratory tract microbiotas was extracted using the QIAamp Fast

DNA Stool Mini Kit (QIAGEN, Germany) per the manufacturer’s

instructions (see the QIAamp Fast DNA Stool Mini Kit Handbook,

www.qiagen.com/handbooks). The degradation degree and

potential contamination of the DNA were analyzed using 1%

agarose gels. The DNA purity was determined using the

NanoPhotometer® spectrophotometer (IMPLEN, CA, USA).

DNA samples were further diluted with sterile water to an OD

value between 1.8 and 2.0, measuring with the Qubit® dsDNA

Assay Kit in Qubit® 2.0 Fluorometer (Life Technologies, CA, USA).

One microgram of qualified DNA was used to construct the library

via NEBNext® Ultra DNA Library Prep Kit for Illumina (NEB,

USA). DNA samples were fragmented to 350 bp by sonication, and

then the DNA fragments were end-polished, A-tailed, and ligated

with the full-length adaptor for Illumina sequencing with further

PCR amplification. Libraries were analyzed for size distribution
TABLE 1 Demographic and clinical characteristics of the cohort.

Variable Number (Mean ± SD or %)

Age (yrs) 63.59 ± 8.95

Sex (male,%) 20 (74.07)

BMI (kg/m2) 23.12 ± 2.35

Smoking status (Yes,%) 15 (55.56)

Pathological types (%)

Adenocarcinoma 12 (44.44)

Squamouscarcinoma 9 (33.33)

Small cell lung cancer 5 (18.52)

Others 1 (3.70)

Mutations (%)

EGFR 7 (25.93)

Others 2 (7.40)

None 18 (66.67)

Clinical stages (%)

I 0 (0)

II 2 (7.41)

III 2 (7.41)

IV 16 (59.25)

Unknown 7 (25.93)
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using the Agilent2100 Bioanalyzer (Agilent, USA) and quantified

via real-time PCR to keep size distribution of DNA fragments

>3nM. The libraries were then sequenced on an Illumina PE150

HiSeq platform.
Preprocessing of sequencing results and
metagenomic assembly

Raw data obtained from the Illumina PE150 sequencing

platform were preprocessed by Readfq (V8, https://github.com/

cjfields/readfq) to obtain clean data for subsequent analysis. The

clean data were utilized for assembly analysis with MEGAHIT

software (v1.0.4-beta in a –presets meta-large (–end-to-end, –

sensitive, -I 200, -X 400) parameter settings, and the Scaftigs were

obtained by breaking the resulted scaffolds from the N junction. All

the sample details on the quality of their assemblies are present in

Table S1.
Gene prediction and abundance analysis

The Scaftigs (≥ 500 bp) were submitted to predict the open

reading frame (ORF) using MetaGeneMark (V2.10; http://

topaz.gatech.edu/GeneMark/) to filter out the excessive

information with a length less than 100nt, and CD-HIT software

(V4.5.8; http://www.bioinformatics.org/cd-hit/) to eliminate

redundancy. Clean data of each sample was aligned to the initial

gene catalog by using Bowtie2 (V2.2.4; https://bowtie-

bio.sourceforge.net/bowtie2/) to calculate the number of reads of

the genes on each sample alignment, with parameter settings: –end-

to-end, –sensitive, -I 200, -x 400. Genes with reads ≤2 in each

sample were filtered out to finally determine the gene catalog

(Unigenes) for subsequent analysis (Tables S2, S3). Based on the

number of reads aligned and the length of the gene, the abundance

of each gene in each sample was calculated by the following

formula:

Gk −
rk
Lk

� 1

on
i=1

ri
Li

in which r is the number of gene reads on alignment, and L is

the length of the gene (Qin et al., 2010). Based on the abundance of

each gene in the gene catalog in each sample, basic information

statistics, core-pan gene analysis, correlation analysis between

samples, and Venn diagram analysis of gene number

were performed.
Species annotation

The obtained unigenes were used to blast the sequences for the

bacteria, fungi, archaea, and viruses, which were extracted from the

NR database (V20180102; https://www.ncbi.nlm.nih.gov/) of NCBI
Frontiers in Cellular and Infection Microbiology 04
using DIAMOND software (V0.9.9.110; https://github.com/

bbuchfink/diamond/). We used the lowest common ancestor

(LCA) algorithm to obtain the number of genes and abundance

information for each sample in each taxonomic hierarchy

(kingdom, phylum, class, order, family, genus, and species).

DIAMOND software was also used to blast unigenes to

functional databases, including the KEGG (V20180101; http://

www.kegg.jp/kegg/) databases, for the blast results, and the best

blast hit was used for subsequent analysis.
Advanced analysis of metagenomic data

According to the alignment results, the relative abundance at

different functional levels was calculated (the relative abundance at

each functional level was equal to the sum of the relative abundance

of genes annotated at that functional level). The gene number table

of each sample at each taxonomy level was derived from the result

of functional annotation and gene abundance table. The number of

genes with a certain function in a sample was equal to the number of

genes whose abundance was non-zero among the genes annotated

with this function. Based on the abundance table at each taxonomy

level, annotated genes statistics, relative abundance overview, and

abundance clustering heat map were carried out, combined with

PCA and NMDS analysis of dimension reduction, ANOSIM

analysis of inter-/intra-group differences based on functional

abundance, metabolic pathway comparative analysis, as

well as Metastat and LEfSe analysis on the inter-group

functional difference.
Quantification of BALF metabolites

SCFA contents in BALF supernatant were detected by Metware

Biotechnology Co., Ltd. (Wuhan, China) with gas chromatography-

tandem mass spectrometry analysis. Briefly, BALF samples were

thawed and vortexed for 1 min prior to analysis. A total of 50mL of

samples were mixed with 100mL of phosphoric acid (0.5% v/v)

solution, vertexing for 3 min and ultrasonicating for 5 min. After

that, the mixture was centrifuged at 12000 rpm for 10 min at a

temperature of 4°C. The supernatant was collected and used for GC-

MS/MS analysis. Agilent 7890B gas chromatograph coupled to a

7000D mass spectrometer with a DB-5MS column (30m length ×

0.25mm inner diameter × 0.25mm film thickness; J&W Scientific,

Folsom, CA) was used. Helium was used as the carrier gas, at a flow

rate of 1.2mL/min. Injections were made in the spitless mode, and the

injection volume was 2mL. The oven temperature was held at 90°C for

1 min, raised to 100°C at a rate of 25°C/min, raised to 150°C at a rate

of 20°C/min, and held at 150°C for 0.6 min. Then, the temperature

was further raised to 200°C at a rate of 25°C/min and held at 200°C

for 0.5 min. After running for 3 min, all samples were analyzed in

multiple reaction monitoring mode. The temperature of the injector

inlet and transfer line were held at 200°C and 230°C, respectively.
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Random forest and machine learning
prediction models

The random forest algorithm was applied to elucidate the

influence of candidates on lung cancer prediction by repeated

cross-validation. Further analyses were carried out in R software

(v3.5.2). The LASSO logistic regression model was performed to

select the most useful prognostic risk factors for SCFA candidates in

BALFs collected from lower respiratory tracts. All samples were

identified using dummy variables. We used R software version 3.6.1

and the “glmnet” package (R Foundation for Statistical Computing,

Vienna, Austria) to perform the LASSO logistic regression analysis.
Statistical analysis

The significance of the differences between groups was analyzed

using the Wilcoxon rank-sum test and ANOSIM with P value< 0.05

(5% level of probability) with VEGAN of R package being

considered to be significant and denoted as follows: *P<0.05,
**P<0.01, and***P<0.001. The statistical significance was adjusted
for multiple testing using FDR correction with the cutoff adjusted p-

value< 0.05 unless otherwise stated. The receiver operating

characteristic curve (ROC) analysis was performed using the R

project, and the discriminative power of the predictor was assessed

by calculating the area under the receiver operating characteristic

curves (AUC). A variable with an AUC above 0.7 was considered

useful. Significant differences between corresponding subgroups

were determined via an unpaired t-test and a false discovery rate

approach using the two-stage linear step-up procedure with a false

discovery rate (Q) of 1%. Testing conditions were analyzed

individually, without assuming a consistent SD. Statistical

analysis was performed with GraphPad Prism (V9.0.0 for

Windows; www.graphpad.com).
Frontiers in Cellular and Infection Microbiology 05
Results

Study group enrollment
and clinical characteristics

From May 2022 to December 2022, we collected 128 patients

with highly suspected lung cancer based on computed tomography

scanning (CT) with typical malignant imaging features, including

solitary or multifocal mass nodular shadow, unsmooth edges with a

burr, and microvascular insertion, in light of independent judgment

from our Pulmonary Nodule Diagnosis and Treatment Center.

Typical CT scanning and corresponding 3D view of the targeted

lesion within a representative patient among this cohort was

displayed as follows (Figures 1A, B). All subjects were evaluated

to undergo lung malignant lesion biopsy after bronchoalveolar

lavage in adjacent normal segments of the ipsilateral lobe and

tumor-burden lung segment via electronic bronchoscope

(Figure 1C). After the exclusion of benign lesions and other

interference factors of sample acquisition, only those patients

with pathological diagnoses of malignancy were successfully

enrolled, with follow-up sequencing and analysis being carried

out (Figure 1D). The demographics of the participants are shown

in Table 1 and specific inclusion criteria and other exclusion criteria

are displayed as a flowchart in Figure S1. Since the samples were

also taken as the self-control of the same patient, we did not set up a

blank control group in this study.
Lower respiratory tract
microbiome diversity decreased
in tumor-burden segments

To determine compositional diversity between tumor-burden

lung segment (TBLS) and ipsilateral normal lung segment (NLS),
A B D

C

FIGURE 1

Study group enrollment and clinical characteristics. (A) Chest CT scan images in lung and mediastinal windows of a representative patient in the
same slice. Red arrow, suspected malignant lesion. R, right; L, left. (B) 3D reconstruction of lung lesions within the vulnerable segment. Indicated
annotations are listed on the right. (C) Sample collection scheme and corresponding processes. (D) Representative images of HE staining in the
patient mentioned above. Scale bar, 200mm (10×) and 50mm (40×, inset).
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we drafted those precipitations of BALF samples collected from

corresponding pulmonary segments or subsegments profiling with

shotgun metagenomics sequencing, generating 1.3Gbp of

sequencing data on average, and further analyzed their alpha

diversity indices for the subset of final enrolled samples.

Consequently, multidimensional scaling (MDS), an ordination

plot based on Bray-Curtis dissimilarities, revealed distinct lower

respiratory tract microbial compositions among both groups at the

species level (Stress=0.1311; ADONIS P**=0.001; ANOSIM

P**<0.001), with the majority of TBLS samples overlapping with

the NLS subjects (Figure 2A). Additionally, the alpha-diversity

comparison of indicated groups also demonstrated low taxonomic

abundance in the TBLS-BALF subgroup by Simpson index

(**P<0.001, Wilcoxon rank sum test), which had no significance
Frontiers in Cellular and Infection Microbiology 06
in the Shannon index (Figure 2B). Across the board, however, the

lower respiratory tract microbiome at both the phylum and genus

levels rarely fluctuated no matter which samples we sequenced

(Figures S2A, B, 2E, F). Other beta diversity analyses seemed to

reach the same conclusion as mentioned above (Figures S2C, D).

These results suggested a perspective that despite restricted loaded

biomass, minor alterations in the lower respiratory tract microbiota,

especially several key species, facilitated a microbiota prone to

oncogenesis and tumor development.

To further explore the differences among species that presented

spatially in NLS and TBLS at the time of microscopic examination,

we identified 18 differentially abundant microbial species in the

comparison between both groups (FDR P<0.05, Wilcoxon rank-

sum test) (Figure 2C). Meanwhile, linear discriminant analysis
A B

D E

C

FIGURE 2

Relative abundances in lower respiratory tract microbiome and comparison of diversity analysis. (A) MDS plot of normal and tumor-burden lung
segments in the same lung cancer patients based on the lower respiratory tract microbial compositions using Bray-Curtis dissimilarities
(Stress=0.1311; ADONIS P=0.001; ANOSIM P<0.001). Intra-patient samples are linked to each other. (B) Alpha-diversity comparison of indicated
groups by the Shannon index (No significance, Wilcoxon rank sum test) and Simpson index (**P<0.001, Wilcoxon rank sum test). (C) Heatmap of
differentially abundant species detected in the comparison of two groups within each sample. (D) Distribution diagram of the LDA score in both
groups and results of the LEfSe analysis based on the LDA score to screen the candidate biomarkers. (E) Cladogram based on different candidates
from (D). The red and blue nodes represent the microorganisms that mattered most in each group. MDS, multidimensional scaling. Normal, normal
lung segments; Tumor, tumor-burden lung segments. NS, no significance.
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effect size (LefSe) was performed to uncover the potential the

tumor-related species biomarkers. We compared the microbiota

compositions of the above candidates by the LDA score of the

species (log10) to enlighten the distribution diagram of species

differences (Figure 2D), finding that the relatively abundant

microbial species were differentiated in TBLS and NLS (Figure

S3A). CIRCOS plot of taxonomic abundance within each sample

also verified the outcomes mentioned above (Figure S2G). A species

co-abundance network among this differential genus between both

lung segments further suggested that the high abundance of C.

jejuni in TBLS might promote the dominance of Firmicutes and

impede Bacillota by their intra-phylum positive associations along

with the negative associations with Bacillota species (Figure S3B).

Particularly, a Cladogram based on differential candidates also

revealed that specific taxa related to lung cancer differed from

those in normal lung segments, characterized by genus enrichment

of Campylobacter, Enterobacter, Debaryomyces, and Fusobacterium

in tumor-burden lung segments, which were replaced by Bacillus,

Klebsiella, and Acinetobacter in normal lung segments (Figure 2E

and Table S4), indicating the consistency of pathogenic microbial

genus from biological evolutional perspectives. Collectively, these

results further illustrated that compositional variations existed in

cancer-loaded segments, some of which were quite distinct from

those in healthy lower respiratory tract. Given the transient and

significantly variable nature of normal lung microbiota in a

relatively open environment (Dickson et al., 2015), the presence

of a specific community could signal an ongoing pathological

process providing bacteria with nutrients, a process that also

deserves additional attention.
Conjoint predictive value of
multicomponent SCFAs in
tumoral associations

Except for the direct cytotoxic effects of the majority of viruses

and quite limited bacteria species, metabolites accounted for the

interaction between microorganisms and hosts (Bhatt et al., 2017;

Sepich-Poore et al., 2021). Short-chain fatty acids derived from the

intestine are important protective lipid metabolites released by

anaerobic or facultative anaerobic microbiomes to regulate distant

primary tumors (Kim et al., 2016). Despite the extensive literature

on the inhibitory function of gut microbiome-derived SCFAs,

several lower respiratory tract microbiota at the distal end of the

tumor lesion could utilize SCFAs to regulate the local ecological

environment (Jin et al., 2018; Yue et al., 2020). Correspondingly, to

examine the dominant SCFAs in lung cancer blockade, except for

the influences from the gut microbiome, we further detected SCFAs

in BALF samples mentioned above to screen out the predictive

components of SCFAs in lung cancer initiation or those associated

with clinical diagnosis. To our surprise, SCFAs were generally

expressed at a low level in the lower respiratory tract and were

slightly increased in the TBLS group but with no significance

(Figure 3A). This outcome seemed difficult to confront in light of

the probiotic effects of SCFAs in preventing tumor process, and
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inevitable bias or other unknown correlated noise could have

contributed to the outcome. If anything, the release of SCFAs-

oriented from the lower respiratory tract within different lung

segments of the same lung cancer patient was prone to be

identical, regardless of the differentiated microbial composition,

which was in line with previous studies.

From a practical perspective, however, exploring the predictive

value of a single metabolite under sophisticated circumstances in

lower airways seemed unacceptable, due to the potent interactional

multiplicities between the microbiome and the host. Thus, we

reconstructed a machine learning-based multivariate prediction

model to clarify the predictive function of SCFAs. LASSO

regression coefficient profiles of the seven SCFA candidates

showed that priorities for prediction were given to combined

metabolites of three SCFAs, namely, CA, VA, and IBA

(Figures 3B, S4A), which was also confirmed by the Random

forest prediction model and ROC curve based on repeated cross-

validation from SCFA candidates (Figures 3C–E, S4B). Despite

restricted accuracy of under 50%, the predictive value of this

combined model should be highlighted, probably because it

presented a new lung cancer diagnostic approach based on

metabolic exhalation detection, deserving further validation in

clinical settings.
Metagenomic and targeted metabolomic
analysis with clinical characteristics

The production of SCFAs bears a tight correlation with

anaerobic or facultative anaerobic microbiome in guts, supported

by sufficient findings that the fluctuation of microbial metabolites

may be attributed to microbiome compositional diversity (Asnicar

et al., 2021). Next, we implemented an integrated analysis of the

candidate microbial species and SCFAs, in order to screen out

dominant SCFA-associated microbes in tumor-burden lower

respiratory tract. As a consequence, CCA profiling showed that

the potential correlation between SCFAs and differential microbes

mattered in tumor-burden segments with merely low efficiency

(Figure 4A), partially due to restricted abundance and sample

capacity. Heatmap of microbial species and SCFAs might present

explicit correlations of differential microbes and SCFAs (Figure 4B),

indicating a positive SCFA correlation with Brachyspira

hydysenteriae and a negative connection with Pseudomonas at the

genus level. These results further illustrated that the microbial-

metabolic prediction model facilitated cancer screening and

diagnosis by bronchoscopy-dependent BALF examination, which

still deserves detailed evaluation in a large-scale population.

Furthermore, as to significant correlations with clinical

characteristics mentioned in other studies (Ubachs et al., 2021),

we found that SCFAs and differential microbes were bound up with

various clinical factors (Figures 4C, D), including sex, smoking

status, TNM stages, and tumor gradings, although these

correlations might be triggered indirectly by other unverified

factors. Owing to the lack of experimental verifications of

indicated candidates correlated with these characteristics,
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additional preferences should be given in clinical studies to further

demonstrate the underlying role of the lower respiratory

tract microbiome.
Microbial metabolite-mediated host cell
signaling activated in TBLS

The Bray-Curtis dissimilarities based on KEGG pathway

abundances illustrated the marginally separate clusters of NLS and

TBLS (ANOSIM, **P<0.01) (Figure 5A). The KEGG pathway

enrichment analysis of the metagenomic data showed that activated

pathways in TBLS overlapped with those in NLS, whereas minor

differences were detected only in environmental information

processing and metabolism-related cascades, including cellular

community-prokaryotes, signaling transduction, membrane

transport, metabolism of cofactors and vitamins, and carbohydrate

metabolism (Figures 5B, S5A, B). It is reasonable to speculate that

microbe-mediated host interactions were achieved by microbial

metabolites, which might induce oncogenesis or other tumor

processing in a complicated microenvironment in lower respiratory

tracts, further validated by a restricted proportion of functional

cascades based on the KEGG pathways (Figures 5C, S5C). These
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results were also in accordance with various previous works that

showed that the utilization of complex metabolites to induce local

chronic inflammatory stimulation may be one of the dominant

factors in microbial-mediated tumor development and progression

(Hosseinkhani et al., 2021).
Discussion

In this study, we aimed to address the compositional

discrepancy between the microbial components detected in BALF

samples obtained from healthy lung segments and tumor-burden

lung segments in the same patient by electronic bronchoscopy

mediated invasive sampling approach, focusing on adults with

untreated lung cancer. Our findings confirmed niche specificity of

microbiota in malignant lesions loaded segments and normal

bronchial surface but indicated that the architecture of the

bacterial communities in two types of different segments slightly

differed with quite limited differential bacterial abundance, which

might contribute to oncogenesis in a dynamic process. Of the

intermediate metabolites of lipid metabolism detection, our

observations collectively supported that the specific original

microbiota related closely with the production and release of
A

B

D

E

C

FIGURE 3

Difference analysis of SCFAs in the lower respiratory tract. (A) Relative detection (mg/ml) of indicated SCFAs in BALF samples collected from
corresponding groups. P values are listed on each histogram. (B) LASSO regression coefficient profiles of the seven variables within SCFAs. Each line
represents a variable. Lambda.min, the vertical dotted line at 3; Lambda.1se, the vertical dotted line at 2. (C) Accuracy of random forest prediction
model based on repeated cross-validation from SCFA candidates. (D) Variable importance ranking in the effective SCFAs random forest prediction
model with Mean Decrease Accuracy and Gini, respectively. LASSO, least absolute shrinkage, and selection operator. (E) ROC curve of SCFA-based
LASSO predictive model, AUC=0.993.
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A

B

C

FIGURE 5

Relative abundance of KEGG pathway in lower respiratory tract microbiome. (A) MDS plot of samples based on KEGG pathway abundances using
Bray-Curtis dissimilarities (Stress=0.0834; ADONIS P=0.02; ANOSIM P<0.001). (B) Relative abundance of candidate pathways at Level 1 and Level 2
in healthy and tumor-burden lung segments, respectively. (C) Distribution of differentially abundant KEGG pathways (FDR, Wilcoxon rank-sum test)
detected in the comparison of corresponding samples. ** means P<0.01.
A B

DC

FIGURE 4

Metagenomic and metabolomic combined analysis and indicated correlation with clinical characteristics. (A) CCA biplot of the candidate microbial
species and SCFAs. Each microbial sample is marked in the plot. (B) Heatmap of the correlation between candidate microbial species and SCFAs.
(C, D) Heatmaps of potent correlation between candidate microbial species, SCFAs, and clinical information of enrolled cohort, respectively.
*P<0.05, **P<0.01, and***P<0.001. CCA, Canonical correspondence analysis.
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SCFAs in this cohort, recognizing that the dominance of a set of

candidate species in tumor-burden lung segments might be the

main genus of bacteria producing SCFAs, supporting that a single

metabolite weakened the predictive value and that a combined

model would be a priority. Additionally, our analyses by multiple

approaches consistently found that microbiota willingly promotes

oncogenesis by activating host cell signaling by microbial

metabolites, including SCFAs. This finding might be opposite to

those of previous studies, suggesting that this deserves experimental

verifications and clinical analysis in detail.

Commensal microbial dysbiosis has been regarded as a primary

carcinogenic factor to carcinogenesis and progression by bilateral

interaction between microbiota and the host, including microbes in

tumor-resident intracellular microbiota (Fu et al., 2022), intra-

tumoral extracellular microbiota (Nejman et al., 2020), gut

microbiome (Sepich-Poore et al., 2021), and those in localized

microenvironment. Technically, the outburst of metagenomic

sequencing dispelled the cloud overhead that the lower

respiratory tract is sterile (Teague et al., 1981), accelerating the

extensive explorations of lower respiratory tract microbiomes in

lung carcinogenesis and malignant biological behaviors. Various

studies have reported the frequent association of Streptococcus,

Staphylococcus, Pseudomonas, and Veillonella in lung cancer (Fu

et al., 2022), which could be altered dynamically by primary lesion

types and progression, metastatic sites formation, and

complications accompanied in clinical settings (Garg et al., 2017).

In accordance with other microbe-mediated oncogenesis, the lower

respiratory tract microbiome is also prone to trigger tumor

initiation by inducing DNA damage, activating oncogenic and

inflammatory pathways, breaking anti-tumor immunity balance,

and most likely, releasing microbe-oriented cytotoxic metabolites

(Sepich-Poore et al., 2021). Segal’s studies illustrated that the

exposure of airway epithelial cells to tumor-associated microbes

upregulated ERK and PI3K pathways by lower airway

transcriptome in patients with cancer, possibly by activating IL-17

inflammatory phenotype (Tsay et al., 2018). In our study, we found

that the abundance of Campylobacter jejuni, also detected by other

groups (Canning et al., 2013; Zheng et al., 2021), shared a close

connection with lung cancer, and several species were also

sequenced in normal segments, which perhaps dressed up as

probiotics in localized microenvironment. Unfortunately, as the

same with other studies, we failed to demonstrate the specific

oncogenic or anti-oncogenic roles of these diverse microbiota in

lung cancer due to the lack of appropriate models in vivo and the

complexity of microbial pathogenesis. Given that the majority of

studies on lower respiratory tract microbiome concentrated on its

potential relevance with lung cancer clinically (Table S5), in-depth

studies are still needed to shed light on mechanical insights, owing

to microbial compositional diversity and differential pathogenicity

of lower respiratory tract microbiome.

SCFAs are mainly generated by non-digestive and fermentable

carbohydrates from the gut microbiome, some of which can also be

produced by host cells during normal cellular processes, performing

as widely recognized protective metabolites in multiple cancer

types. With total intestinal concentration exceeding 100mM,

SCFAs released by the gut microbiome exert beneficial effects on
Frontiers in Cellular and Infection Microbiology 10
gastrointestinal cancer and can also mediate tumoral inhibition of

distant organs by large amounts of SCFA influx into the

bloodstream via several gut axes (Liu et al., 2021). As to lung

cancer, the lower respiratory tract microbiome should also be

viewed as a vital source of SCFAs besides intestinal tracts, even if

with a quite limited concentration, which is in line with the

perspective that elevated SCFAs in the cancer group act as a sign

of abnormal bacterial growth in the damaged lung (Dickson et al.,

2015). Unfortunately, few studies have focused on the

determination of respiratory microbiota-derived SCFAs in

mediating lung cancer, which limits the understanding of their

possible functions in the maintenance of respiratory immunity

homeostasis. Based on the above, our study examined the

concentration of SCFAs from BALF samples in different lung

segments, finding that a slight difference of SCFAs was detected

in tumor-burden lung segments compared to healthy segments,

which was in agreement with previous findings (Yue et al., 2020).

After excluding the detection errors induced by lavage liquids,

machine learning profiles supported that the results that

integrated prediction models of SCFA candidates, including VA,

CA, and IBV, were more important compared to a single agent in

lung cancer screening and diagnosis. It is still well-established that

the lower respiratory tract microbiota is linked to lung cancer either

directly via secreted SCFAs that stop the disease’s progression or by

producing other substances on host cells that start metabolic

reprogramming. However, more research is necessary to fully

understand this association’s powerful mechanical effects.

As to the crucial prerequisite for revealing the compositional

role of the microbiome, accurately measuring the low biomass

microbiota in the lower airways is still challenging in the deep

sequencing era (Huang and Boushey, 2015). Bacterial DNA density

is at least 100 times lower in the lower respiratory tract than in the

upper airways, compromising accuracy due to potential sampling

and processing contamination (Dickson et al., 2017; Schneeberger

et al., 2019). In this study, we standardized protected sampling of

the lower respiratory tract to minimize artificial and systematic

contamination, including homogeneous samples of ipsilateral lung

segments from the same patient to reduce individual differences,

strict aseptic technique processes and materials to restrict man-

made interferences, and precise sequencing data of metagenomic

and metabolic detection to lower confounding bias to a certain

extent. Cohorts from the same center additionally ensured a

uniform approach for operating processes from healthy segments

to tumor-burden ones, as well as for electronic bronchoscope

evaluation. Additionally, the simultaneous processing, storage,

and testing of the two sets of samples reduced unanticipated

growth and metabolic activity. Briefly, except for inevitable noises

from collecting sequence, such as bronchoalveolar lavages in

tumor-burden segments after those in healthy ones and

microbiota compositional diversities in different lung segments in

the same patient, the uniformity of sample collection and

processing greatly reduces systematic errors and further

guarantees the accuracy of a realistic composition of the lower

respiratory tract microbiota and corresponding metabolism in lung

cancer compared with healthy controls. Even though a degree of

cross-contamination was inevitable, the confounding factors have
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been minimized in the design and actual implementation of

this study.

Another issue that deserves additional attention is the causality

between malignant lesion formation and microbial composition

alteration in a spatiotemporal dynamic manner. Due to the

abnormal outward proliferation that breaks through the basement

membrane, the distal end of alien organisms in the airway was

prone to be in a relatively hypoxic state (West, 1978), which may

facilitate the proliferation of anaerobic bacteria and weaken the

aerobic bacterial content accordingly. The dominant presence of

specific bacterial genera, especially anaerobic or facultative

anaerobic organisms, causes ripples throughout the tumor partly

and even entirely via abnormal production of bacterial metabolites.

This restrictive interaction makes tumors settle at a certain stage

and forms a specific tumor microenvironment, which can be

switched by perturbation of microbiota or rapid changes in tumor

cell load. On the other hand, unrelenting nutrient transformation

within the local microecological environment surrounding tumors

inevitably contributes to competition between microorganisms and

host cells, leading to dynamic changes in both species and quantity

of microbial community. Although tumor cell-mediated nutritional

deprivation undermines the energy supply of the microbial

community, the slight variations induced by the imbalance of the

microbiota in the lower respiratory tract still matter in tumor

progression as a non-negligible biological point. According to our

study sampling the microbiome and targeted metabolites at a

restricted time, dynamic monitoring based on different stages of

tumor progression still requires additional attention from large-

scale examinations, which should aim to further uncover in detail

microbial dysbiosis-mediated oncogenesis or vice versa.

Several limitations may shadow the outcomes of this study. First,

restricted participants in a single center probably magnified the

selective bias, leading to a distanced state from genuine microbial

communities and metabolites in the lower respiratory tract with its

densely packed low biomass. Additionally, due to successive sample

collection from different lung segments in the same lung cancer

patient and lack of negative control from healthy subjects and those

with benign respiratory disease, BALFs were prone to be affected by

operational sequence, inducing nuances of microbial composition

and metabolic content. Furthermore, a complex composition of

various microbiota-released metabolites detected from BALF in the

lower respiratory tract was not distinguished in this study, which was

liable to weaken the protective role of SCFAs. Finally, the dynamic

interaction between the host and microbiota via metabolites makes it

challenging to determine the actual source of these microbiota-

oriented metabolites, leading to confounding bias in our data. In

vitro experiments detaching from the whole dimmed the holistic

influence on lung cancer, inspired by complicated microbial and

microbe-host interactions.
Conclusions

In our 28-participant-enrolled cohort, the lower respiratory

tract microbiome and relative SCFAs detected in paired
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bronchoalveolar lavage fluids from normal lung segments and

tumor-burden lung segments of the same patient were

investigated. We found that different regions of the same patients’

lower respiratory tract microbiomes exhibit distinct signals.

Furthermore, neither group’s SCFAs had any value as a single

predictor, but combined analysis may be able to forecast the

connection of SCFAs to oncogenesis. Additionally, by the

production of specific metabolites, such as SCFAs, some

microbial species in lung regions with tumor load were able to

influence oncogenesis or serve as a predictor. Therefore, self-control

studies of extended samples may be advantageous for future studies

intended to clarify the preventative, diagnostic, and therapeutic

significance of lower respiratory tract microbiota contributing to

tumor blocking.
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SUPPLEMENTARY FIGURE 1

Workflow of study cohort enrollment with inclusion and exclusion criteria.

SUPPLEMENTARY FIGURE 2

Microbial composition and diversity comparison within each sample. (A, B)
Relative abundance of the lower respiratory tract microbiota in the indicated

groups at phylum and genus level, respectively. (C, D) 3D PCA and PCoA
analysis plot of lower respiratory tract microbiome in normal and tumor

burden lung segments. PCA, principal component analysis. PCoA, principal

coordinates analysis. (E, F) Relative abundance of the lower respiratory tract
microbiota in each sample at phylum and genus level, respectively. (G)
CIRCOS plot of taxonomic abundance among each samples.

SUPPLEMENTARY FIGURE 3

Differential microbiota comparison and co-occurrence network. (A) Box

plots of relative abundance within indicated significant differential

microbiota among both groups. (B) Microbial co-occurrence network of
different candidates from Figure S3A. Each node represents a species and

edges correspond to significant species-species associations. The size of
each node is proportional to the mean relative abundance at the phylum

level. The 95% credible criteria were used to assess significance, and
estimated correlations were then fi l tered with the correlation

coefficient≥0.4 in a line thickness-dependent format. Color labels are

marked by orange (pos i t ive corre la t ion) and blue (negat ive
correlation), respectively.

SUPPLEMENTARY FIGURE 4

Key parameter supplementation of LASSO and Random Forest. (A) Profiles of
LASSO regression regarding partial likelihood deviance and misclassification
error. The lines indicate the 95% confidence interval of the regression, and the

dotted line represents the optimal number of variables. (B) Representative
OOB error estimate based on random forest among indicated groups. OOB,

out-of-bag.

SUPPLEMENTARY FIGURE 5

Relative abundance of KEGG pathways in both groups. (A, B) Relative
abundance of KEGG levels 1 and 2 within both groups. (C) Distribution

diagram of the KEGG pathways based on LDA score among indicated groups.
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