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The PI3K-Akt pathway is a
multifaceted regulator of the
macrophage response to diverse
group B Streptococcus isolates

Yadira S. De-Leon-Lopez, Michelle E. Thompson,
Jessica J. Kean and Rebecca A. Flaherty*

Department of Biology and Health Science, Aquinas College, Grand Rapids, MI, United States
Group B Streptococcus (GBS), also known as Streptococcus agalactiae, is a

common member of the microbial flora in healthy individuals. However,

problems may arise when GBS-colonized mothers become pregnant. GBS

may be transferred from a colonized mother to her newborn or developing

fetus, which may result in complications such as miscarriage, pre-term birth,

meningitis, pneumonia, or sepsis. Macrophages play an especially important role

in the fetal and newborn response to GBS due to the limited development of the

adaptive immune system early in life. The goal of this study was to expand what is

currently known about how GBS manipulates macrophage cell signaling to

evade the immune system and cause disease. To this end, we investigated

whether the PI3K-Akt pathway was involved in several key aspects of the

macrophage response to GBS. We explored whether certain GBS strains, such

as sequence type (ST)-17 strains, rely on this pathway for the more rapid

macrophage uptake they induce compared to other GBS strains. Our findings

suggest that this pathway is, indeed, important for macrophage uptake of GBS.

Consistent with these findings, we used immunofluorescence microscopy to

demonstrate that more virulent strains of GBS induce more actin projections in

macrophages than less virulent strains. Additionally, we explored whether PI3K-

Akt signaling impacted the ability of GBS to survive within macrophages after

phagocytosis and whether this pathway influenced the survival rate of

macrophages themselves following GBS infection. The PI3K-Akt pathway was

found to promote the survival of both macrophages and intracellular GBS

following infection. We also observed that inhibition of the PI3K-Akt pathway

significantly reduced GBS-mediated activation of NFkB, which is a key regulator

of cell survival and inflammatory responses. Overall, these insights into strain-

dependent GBS-mediated manipulation of the PI3K-Akt pathway and its

downstream targets in infected macrophages may provide new insights for the

development of diagnostic and therapeutic tools to combat severe GBS disease.
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Introduction

Group B Streptococcus (GBS), also known as Streptococcus

agalactiae, is an opportunistic bacterial pathogen that is

frequently part of a healthy individual’s microbial flora (Doran

and Nizet, 2004; Horvath et al., 2014; Korir et al., 2017b). However,

while severe infections in healthy adults are uncommon, GBS is a

leading cause of neonatal infections and a key causative agent of

pregnancy complications related to microbial infection (Doran and

Nizet, 2004; Manning et al., 2008; Manning et al., 2009; Horvath

et al., 2014; Korir et al., 2017b). Epidemiological data indicates that

not all GBS strains are equally virulent; there are certain sequence

types (ST) of GBS that are more closely associated with causing

serious pregnancy and post-delivery complications for GBS-

colonized women and their babies (Manning et al., 2008;

Manning et al., 2009). Though any sequence type of GBS could

potentially cause a serious infection, infections with more virulent

STs, such as ST-17 and ST-19 strains, more frequently lead to

preterm birth, stillbirth, neonatal sepsis, pneumonia, lung injury,

and neonatal meningitis (Doran and Nizet, 2004; Manning et al.,

2008; Manning et al., 2009; Horvath et al., 2014; Nan et al., 2015;

Wortham et al., 2016; Korir et al., 2017b).

Because of their underdeveloped adaptive immune systems,

developing fetuses and newborns rely heavily upon their innate

immune systems, of which macrophages are a major component

(Basha et al., 2014; Kumar and Bhat, 2016; Korir et al., 2017b). An

understanding of the interaction of GBS and macrophages is,

therefore, an important research area to explore. Prior studies from

our group and our collaborators have shown that particularly virulent

GBS strains, such as ST-17 strains, are engulfed by macrophages at a

higher rate and survive in macrophages longer than other sequence

types (Korir et al., 2017a; Flaherty et al., 2021). ST-17 strains also

induce a greater degree of macrophage cell death following GBS

uptake than other STs (Flaherty et al., 2021). These differences in the

host response to genetically distinct GBS strains may help to at least

partially explain the differences in virulence that have been

observed epidemiologically.

Previously, we and our collaborators performed an antibody

array in which we identified numerous signaling pathways that

were altered in macrophages in response to GBS infection (Flaherty

et al., 2021). In that study, we identified changes in many members of

the PI3K-Akt pathway in response to a diverse set of GBS isolates, but

the physiological implications of these changes were not explored at

that time (Flaherty et al., 2021). The PI3K-Akt pathway is known to

be involved with several key responses in macrophages, such as

cytoskeletal rearrangements, regulation of phagocytosis, regulation of

cell survival and cell death, and induction of inflammatory responses

(Song et al., 2005; Vergadi et al., 2017). With this information in

mind, we hypothesized that there was a connection between GBS-

mediated regulation of the PI3K-Akt pathway and key aspects of

pathogenesis such as phagocytic uptake, viability of GBS within

macrophages, viability of macrophages post-infection, and

initiation of the inflammatory response.

To address this hypothesis, we first used fifteen previously

described GBS strains obtained from either GBS-colonized

mothers or from infants who were infected with GBS to confirm
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that PI3K-Akt signaling is activated in response to at least some

GBS stains (Manning et al., 2008; Manning et al., 2009; Flaherty

et al., 2019a; Flaherty et al., 2021). The strains selected represent

four distinct sequence types (ST-17, ST-19, ST-12, and ST-1) and

three distinct capsule types (CPS III, CPS-II, and CPS-V) (Manning

et al., 2008; Manning et al., 2009). Our follow-up experiments to

assess the physiological implications of PI3K-Akt activation in

response to GBS focused primarily on four of these representative

strains, which had all been isolated from colonized mothers:

GB00112 (GB112, ST-17, CPS III), GB00590 (GB590, ST- 19,

CPS III), GB00653 (GB653, ST-12, CPS II), and GB00020 (GB20,

ST-1, CPS V) (Manning et al., 2008).

In the present study, we sought to use these isolates to expand

the current understanding regarding how GBS manipulates

macrophage cell signaling to evade the innate immune response

and cause disease. Specifically, we utilized Western Blotting, colony

counting-based phagocytic uptake and intracellular survival assays,

cytotoxicity assays, and immunofluorescence microscopy to

investigate whether the PI3K-Akt pathway is involved in several

key aspects of the macrophage response to GBS. We successfully

confirmed the activation of this pathway in response to certain GBS

sequence types, and we explored whether particular GBS strains,

such as ST-17 and ST-19 strains, rely on this pathway for the more

rapid macrophage uptake they induce compared to other less

virulent GBS strains. Our findings indicated that GBS uptake by

macrophages involves actin-mediated cytoskeletal rearrangements,

and that PI3K-Akt signaling does play a significant role in

phagocytosis of these GBS strains by macrophages. Additionally,

we evaluated whether PI3K-Akt signaling impacts the ability of GBS

to survive within macrophages after phagocytosis and whether this

pathway influences the survival rate of macrophages themselves

following GBS infection. The PI3K-Akt pathway was found to

promote the survival of both macrophages and GBS following

infection. Furthermore, inhibition of the PI3K-Akt pathway

significantly reduced GBS-mediated activation of NFkB, which is

a key regulator of cell survival and inflammatory responses

(D’Acquisto et al., 2002; Ghosh et al., 2003). Overall, these

insights into GBS-mediated manipulation of the PI3K-Akt

pathway and its downstream targets in infected macrophages may

provide new insights for the development of diagnostic and

therapeutic tools to combat severe GBS disease.
Materials and methods

Bacterial strains

This investigation included a total of 15 GBS strains obtained

from either GBS-colonized mothers or from infants with severe

GBS disease (Manning et al., 2008; Manning et al., 2009). These

strains represent four distinct sequence types (ST-17, ST-19, ST-12,

and ST-1) and three distinct capsule types (CPS III, CPS-II, and

CPS-V) (Manning et al., 2008; Manning et al., 2009). Most

experiments focused primarily on four of these representative

strains, which had all been isolated from colonized mothers:

GB00112 (GB112, ST-17, CPS III), GB00590 (GB590, ST- 19,
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1258275
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


De-Leon-Lopez et al. 10.3389/fcimb.2023.1258275
CPS III), GB00653 (GB653, ST-12, CPS II), and GB00020 (GB20,

ST-1, CPS V) (Manning et al., 2008). The major characteristics of all

15 strains are summarized in Table 1.

Prior to infection, the selected strains were grown in Todd-

Hewitt broth (THB) at 37°C for 16 to 20 hours. Next, a sample of

each overnight culture was subcultured into fresh THB and

incubated for approximately 2 hours at 37°C to obtain log phase

cultures (optical density at 600 nm of approximately 0.4). Lastly, the

bacteria from the log phase cultures were washed with sterile

phosphate-buffered saline (PBS) and resuspended in RPMI 1640

(ATCC) at a concentration of 4x107 CFU/mL.
THP-1 cell culture and infection

THP-1 monocyte-like cells (ATCC TIB-202) were cultured at a

temperature of 37°C with 5% CO2. Cells were suspended in RPMI

1640 media (Gibco) supplemented with 10% fetal bovine serum

(FBS; ATCC), and 1% penicillin/streptomycin (Gibco). Prior to

plating for infection experiments the THP-1 cells were suspended in

RPMI 1640 with 2% FBS, 1% penicillin/streptomycin, and 100nM

phorbol 12-myristate 13 acetate (PMA; Sigma-Aldrich) at a

concentration of 2x106 cells/mL to differentiate the monocytes

into macrophages as described previously (Flaherty et al., 2019a;

Flaherty et al., 2021). The THP-1 cells were plated into 6-well plates

(CytoOne) at a density of 4x106 cells per well (using 2 mL of the

2x106 cells/mL cell suspension) or into 24-well plates (CytoOne) at

a density of 1x106 cells per well (using 0.5 mL of the cell suspension)

and incubated for 24-48 hours.
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PMA differentiation has been reported to generate cells that

have similar properties to peripheral blood mononuclear cell

monocyte-derived macrophages (Starr et al., 2018). When used at

similar concentrations and incubation times as those utilized here,

PMA induces THP-1 cells to become larger, adherent, CD11 and

CD14 positive, and also to have enhanced mRNA expression of

genes relating to cellular communication and cytokine regulation,

such as IL-1 beta and IL-8 (Schwende et al., 1996; Korir et al., 2017a;

Starr et al., 2018; Liu et al., 2023). Though specific macrophage

markers were not assessed here following PMA differentiation,

cytokine profiles of infected and control PMA-differentiated

THP-1 cells are available in our prior work (Flaherty et al.,

2019a). We anticipate these studies represent a simplified model

to assess M1-type macrophage responses to GBS.

Immediately prior to the start of an infection experiment, the

macrophages were washed twice with PBS, given fresh RPMI media

(with no FBS or antibiotic supplements) and incubated for 1-2

hours. In cases where small molecule inhibitors and vehicle controls

were to be used, they were applied at this time. The cells were then

infected with the desired GBS strain at a multiplicity of infection

(MOI) of 10 bacteria per host cell (4x107 CFU per well of a 6 well

plate; 1x107 CFU per well of a 24 well plate). After incubating for 1

hour at 37°C with 5% CO2, the cell culture media was aspirated and

the cells were washed with PBS to remove bacteria that had not been

engulfed. Then RPMI 1640 with 2% FBS containing 100 µg/ml

gentamicin (Gibco) and 5µg/ml penicillin (Sigma) was added to kill

any remaining extracellular bacteria. After an additional incubation

period of 1-48 hours (as indicated for each experiment), the cells

were washed with PBS and prepared for the next stage of analysis.
SDS-PAGE and Western Blotting

For samples to be analyzed by Western Blotting, the cells were

infected as detailed above, washed with PBS, and lysed with lysis

buffer as described previously (Flaherty et al., 2021). To determine the

protein concentration of the lysate samples, a bicinchoninic acid

assay (BCA, Thermo-Fisher Scientific) with bovine serum albumin

(BSA) protein standards was used. The normalized lysate samples

were loaded onto hand cast 10% polyacrylamide gels (BioRad) and

allowed to separate (50mA for approximately 1 hour). The protein

samples were transferred to a polyvinylidene difluoride (PVDF)

membrane (25v for 1-2 hours, followed by 75v for an additional 1-

2 hours), blocked in tris-buffered saline with 1% Tween-20 (TBST)

and 5% BSA for 2 hours at room temperature, and incubated with

primary antibodies (1:1000 dilution in blocking solution; overnight at

4°C or 2 hours at room temperature). The blots were again washed in

TBST and then incubated with secondary antibodies (1:2500-1:5000

dilution in blocking solution; 1-2 hours at room temperature). The

blots received a final series of washes in TBST prior to detection of the

proteins with either a colorimetric TMB substrate reagent (1 STEP

Ultra TMB Botting Solution, Thermo-Fisher Scientific) or

SuperSignal West Pico PLUS Chemiluminescent Substrate

(Thermo-Fisher Scientific), according to the manufacturer’s

instructions. The chemiluminescent blots were imaged with a

digital Amersham ImageQuant800 imager. Differences in protein
TABLE 1 GBS Strain Information.

GB# ST CPS Clinical Type*

GB112 17 III colonizing

GB411 17 III invasive

GB97 17 III colonizing

GB418 17 III invasive

GB590 19 III colonizing

GB571 19 III colonizing

GB36 19 III invasive

GB79 19 III invasive

GB653 12 II colonizing

GB285 12 II colonizing

GB910 12 II invasive

GB1455 12 II invasive

GB37 1 V invasive

GB20 1 V colonizing

GB310 1 V invasive
* Strains were isolated from colonized mothers during prenatal screening (Manning et al.,
2008) or from symptomatic neonates with invasive disease (Manning et al., 2009). Strains
collected during routine prenatal screening may still be capable of causing invasive infection.
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abundance and activity were determined by densitometry using

ImageJ. Beta-actin and beta-tubulin were used as loading controls.
Immunofluorescence microscopy staining
and imaging

THP-1 cells were seeded onto glass coverslips which had been

placed in 6 well plates, and they were differentiated using the PMA

differentiation protocol described above. The macrophages were

then infected with GBS as described above. Following infection,

they were fixed with 4% paraformaldehyde (PFA) in PBS (10

minutes at room temperature, followed by overnight incubation

at 4°C). The fixed cells were washed with PBS and placed in IFM

blocking solution (PBS with 1% (w/v) normal goat serum, 2% (v/v)

Triton, and 0.5% (v/v) Tween 20) for 2 hours at room temperature.

After the blocking solution was removed, the cells were incubated

with primary antibodies for 16 to 20 hours (1:400 in blocking

solution). Then, the cells were washed with PBS and incubated with

secondary antibodies (1:200 in blocking solution) for 2 hours at

room temperature. Lastly, after washing again with PBS, the cells

were stained with DAPI (1:500 in blocking solution) and mounted

on glass slides with Fluoromount G (Thermo-Fisher Scientific).

Images were captured utilizing fluorescence microscopy (Leica

DMIL LED fluorescence microscope with Ocular software (version

2); 20x, 40x, or 60x objectives were used, depending on the specific

experiment). Each experimental condition was tested in biological

triplicate (3 independent wells), at minimum, in 6-well plates.

At least three fields per well were captured for a minimum of

5,500 cells counted per condition for the NF kappa B visualization

and at least 1,500 cells counted per condition for the actin

visualization experiments.
Antibodies and stains

Primary antibodies used for immunofluorescence microscopy

and Western Blotting were obtained from Cell Signaling

Technology and included: Beta-actin (#3700 and #4970),

phospho-p70s6k T389 (#9234), NF kappa B p65 (#8242S), beta-

tubulin (#2128S), Caspase-3 (#14220), Caspase-1 (#3866),

Phospho-MLKL (#91689). Secondary antibodies used to detect

the primary antibodies for Western Blotting were obtained from

Thermo Fisher Scientific, and included goat anti-rabbit and goat

anti-mouse IgG-HRP (#31460 and #31430). Secondary antibodies

used for immunofluorescence microscopy were obtained from

Molecular Probes (Life Technologies), and included goat anti-

rabbit IgG AlexaFluor488 and goat anti-mouse IgG AlexaFluor594.
Vehicle controls and chemical inhibitors

For the infection experiments in which the PI3K-Akt pathway

or cell death proteins were inhibited, dimethyl sulfoxide (DMSO;

from ATCC) was used as a vehicle control at a final concentration of
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0.5% in cell culture media. LY294002 (LY; #9901 from Cell

Signaling Technology) was used to inhibit the PI3K-Akt pathway

at a final concentration of 50 µM, and it was added to the cells 1-2

hours before the infection. LY294002 has been demonstrated

previously to function as a highly selective inhibitor of PI3K.

When it is used at a concentration of 50 mM with a pre-treatment

period of at least 1 hour (as it was in our studies), it is able to

specifically abolish PI3K activity (IC50 = 0.43 mg/ml; 1.40 mM)

(Vlahos et al., 1994). Of note, it does not inhibit other similar lipid

and protein kinases, including PI4K, c-Src, MAPK, and PKC

(Vlahos et al., 1994). Z-VAD-fmk (ApexBio) was used as a pan

caspase inhibitor at a final concentration of 50 µM, and it was also

added to cells 1-2 hours before the infection.
Ethidium homodimer cell death assay

To measure the survival rate of macrophages 24 or 48 hours

after the initial infection period, an ethidium homodimer-1

(Thermo Fisher Scientific) membrane permeabilization assay was

used. After the macrophages were infected with GBS (MOI 10 for 1

hour) as before, they were washed and treated with 100µg/mL

gentamicin and 5µg/mL penicillin G for 24-48 hours, as indicated

for each experiment. They were then incubated with ethidium

homodimer-1 (4 µM) in PBS, which is a fluorescent dye that

enters dead cells by crossing their damaged membranes and then

binding tightly to DNA. Macrophages were visualized by

fluorescence microscopy (Leica DMIL LED fluorescence

microscope with Ocular software (version 2); 20x or 40x

objective, as indicated) to distinguish dead macrophages (bright

red) from living macrophages (unstained). Images were captured

from at least 6 biological replicates per condition, with at least 3

fields captured per well. At least 9,000 cells were counted

per condition.
GBS uptake and survival assays
in macrophages

THP-1 cells were infected with GBS at an MOI of 10 for 1 hour

as described above following an initial treatment with either DMSO

or LY294002. Throughout the experiment, the cells were incubated

at 37°C with 5% CO2. A final GBS inoculum sample was collected

from each biological replicate at the end of the 1 hour infection

period. These collected bacteria were serially diluted and

subsequently plated in triplicate on Todd-Hewitt agar. The plates

were incubated overnight at 37°C to quantify the CFUs from

each well.

After collecting the final inoculum samples, the THP-1 cells

were washed with PBS and incubated with antibiotics (100µg/mL

gentamicin and 5µg/mL penicillin G). Then, 1 hour post-antibiotics,

the cells were again washed and then lysed with 0.1% Triton X-100

in PBS (Sigma). The samples were collected and vortexed to

thoroughly break up host cell membranes and release intracellular

GBS into solution. The samples were then serially diluted and plated

in triplicate on Todd-Hewitt agar; they were incubated overnight at
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37°C to quantify the intracellular bacteria. The same procedure was

utilized to quantify viable intracellular bacteria at 24 hours post-

antibiotics as a means of assessing long-term survival of GBS

in macrophages.
Statistical analysis

GraphPad Prism 9 and Microsoft Excel were used to perform

statistical analyses of all the experiments described. When

comparing data sets with three or more groups, ANOVA was

used to initially identify data sets for which significant differences

were present, with p-values of less than 0.05 being considered

statistically significant. Following ANOVA, data sets with

significant differences were compared via Dunnett’s test (in which

means from GBS infection conditions were compared to the mock

infection mean) or Tukey’s test (in which the means of all

experimental conditions were compared to each other). In cases

where only two groups were being compared (such as DMSO vs.

LY294002 for the same strain), t-tests were used to identify

significant differences.
Results

Strain-dependent activation of the PI3K-
Akt pathway in GBS-infected macrophages

Prior studies from our group and our collaborators using

antibody microarrays demonstrated that diverse GBS strains

modulate many proteins associated with the PI3K-Akt pathway

during macrophage infection (Flaherty et al., 2021). As this pathway

can participate in the regulation of a variety of cellular responses

(Song et al., 2005; Vergadi et al., 2017), our initial analyses were not

sufficient to link pathway manipulation to specific pathogenic

outcomes during GBS infection of macrophages. However, we

hypothesized that manipulation of this pathway by GBS would

most likely impact macrophage responses related to phagocytic

uptake of the bacteria as well as regulation of cell death and survival

signaling within the infected macrophages (Song et al., 2005;

Williams et al., 2006; Shanware et al., 2013; Vergadi et al., 2017;

Lv et al., 2019).

We began by first selecting a well-characterized downstream

target of the PI3K-Akt pathway, phospho-p70s6k (T389), to verify

pathway activation at our infection conditions of interest and to

ensure that the pathway would respond appropriately to

manipulation by the small molecule inhibitor we planned to use

in our subsequent studies (LY294002). Phospho-p70s6k had been

identified by the antibody array screen as having an altered response

in macrophages following GBS infection with at least some of the

GBS strains tested (Flaherty et al., 2021). We assessed 15 diverse

GBS strains representing four STs and three CPS types at the same

infection conditions used in the array (1 hour infection at MOI=10

followed by antibiotic treatment for 1 hour prior to collecting

lysates) and found that seven out of eight strains in the ST-17

and ST-19 groups (both of which are CPSIII), induced a significant
Frontiers in Cellular and Infection Microbiology 05
increase in phospho-p70s6k compared to mock infection

(Figures 1A, B). None of the ST-12 or ST-1 strains were found to

induce p70s6k signaling changes that were statistically different

from the mock infection, though all GBS strains analyzed trended

toward increased activity levels of this protein (Figures 1A, B).

When the phospho-p70s6k densitometry values induced by the

individual strains were grouped by ST, the ST-17 and ST-19 groups

again induced significant increases in phospho-p70s6k compared to

mock infection, with the ST-17 group inducing the greatest

increases in the activity of this protein on average (Figure 1C).

When pooled together in this way, strains in the ST-12 group also

induced significantly greater levels of phospho-p70s6k compared to

mock infection, though the difference was not as great as the two

CPSIII STs. The ST-1 group was not significantly different from the

mock infection, and this group was also found to induce

significantly less phospho-p70s6k than both the ST-17 and ST-

19 groups.

We then assessed whether activity of p70s6k was impacted by

inhibition of the PI3K-Akt pathway during GBS infection using a

well characterized inhibitor, LY294002 (LY) (Vlahos et al., 1994).

For this analysis, we selected four GBS strains from our 15

strain panel, one from each ST represented. Our results indicated

that the addition of LY did significantly reduce phospho-p70s6k

levels in macrophages in response to all four GBS strains tested

(Figure 2). These results indicated that LY would be an effective

inhibitor for evaluating the role of the PI3K-Akt pathway in our

infection system.
Diverse GBS strains differentially impact
actin cytoskeleton rearrangements
in macrophages

Having confirmed that a key target of the PI3K-Akt pathway

was upregulated in response to certain GBS strains and that its

levels could be readily manipulated with a PI3K-Akt pathway

inhibitor, we next sought to link changes in the PI3K-Akt

signaling pathway to specific outcomes in GBS-infected

macrophages. As this pathway has been associated with

phagocytic uptake of various microbes by macrophages (Maisey

et al., 2008; Lovewell et al., 2014; Lv et al., 2019; Chang et al., 2020;

Mu et al., 2020), we first assessed whether changes in the PI3K-Akt

pathway were linked with rearrangements of the actin cytoskeleton

and subsequent GBS uptake. We began with an initial visual

analysis using immunofluorescence microscopy to determine

whether four different strains of GBS from different STs induced

the formation of actin projections in macrophages. The

differentiated THP-1 cells were exposed to one of each of the four

GBS isolates for 1 hour, washed, and incubated for an additional

hour prior to fixation. Differences in the production of actin

projections were visualized using antibodies specific for beta-actin

(Figure 3), and DAPI was used to visualize THP-1 nuclei. Cell-

associated GBS were also visible with DAPI staining

(Supplementary Figure 1). Interestingly, both GB112 and GB590

(ST-17 and ST-19 isolates, respectively), which had induced the

highest levels of phospho-p70s6k (Figure 2), induced a significantly
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greater number of actin projections in infected macrophages

compared to mock infection (Figure 3). This result is consistent

with previous findings from our group and our collaborators,

indicating that strains from these STs induce greater levels of

phagocytic uptake by macrophages than other STs (Korir et al.,

2017a; Flaherty et al., 2021). When the THP-1 cells were incubated

with LY294002 (LY) prior to infection, there was a significant

decrease in the formation of actin projections compared to the

corresponding vehicle control (DMSO) for each condition

(Figure 3). Though the actin appeared to be present at similar

levels to the corresponding DMSO conditions, it was more

dispersed throughout the cytosol in the presence of LY (Figure 3).
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This supports the link between activation of the PI3K-Akt pathway

and regulation of the actin cytoskeleton in our experimental system.
The PI3K-Akt pathway regulates
phagocytosis and GBS survival
in macrophages

To determine whether the PI3K-Akt pathway could be directly

linked with these changes in the actin cytoskeleton and subsequent

GBS uptake by macrophages, we next assessed phagocytic uptake

following GBS infection in the presence of LY294002 (LY)
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FIGURE 1

Specific GBS strains induce p70s6k activation. THP-1 macrophages were infected with one of 15 different strains of GBS at an MOI of 10 for one
hour, washed, and treated with antibiotics for an additional hour prior to lysate collection. Lysates were assessed for phosphorylated (active) p70s6k
(A, B), and densitometry was used to compare differences between infection conditions. Representative Western blots from one biological replicate
with its corresponding loading control (beta-actin) are shown (A). Equal amounts of the same protein lysate preparations were loaded onto the gels
for each protein. Densitometry values represent pooled results from at least three independent biological replicates, and error bars represent
standard deviations of the mean (B). For the full 15 strain panel (tested in two groups as shown), significance was determined by ANOVA with post-
hoc Dunnett’s testing to compare each infection condition to the mock infection (*, p=0.01-0.05; **, p=0.001-0.01; ***, p=0.0001-0.001; ****,
p<0.0001). Densitometry results from these strains were then grouped by ST to compare differences in protein activation among the groups (C).
When grouped by STs, significance was determined by ANOVA (p-value: <0.0001) with post-hoc Tukey’s testing to compare the mean of each
infection condition to the mean of each of the other conditions (*, p=0.01-0.05; **, p=0.001-0.01; ***, p=0.0001-0.001; ****, p<0.0001).
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compared to a vehicle control (DMSO). Macrophages were pre-

treated with DMSO or LY for 1 hour, and then they were infected

with GBS for 1 hour. At this point, a final inoculum was collected to

compare bacterial levels across conditions (Figure 4A). Of note,

there was not a statistical difference between DMSO vs. LY for any

of the strains, indicating that the inhibitor did not impact bacterial

viability directly for the conditions tested. The macrophages were

then washed to remove extracellular bacteria and treated with

antibiotics for an additional hour prior to collecting intracellular

bacteria and quantifying them via colony counting assays

(Figure 4B). Our results demonstrated that LY significantly

reduced GBS uptake by macrophages for all four strains assessed,

providing support for our hypothesis that GBS induction of PI3K-

Akt signaling promotes phagocytic uptake (Figure 4B). In order to

determine whether inhibition of the PI3K-Akt pathway also

impacted the long-term survival of GBS within macrophages, we

performed the same experiment to quantify intracellular GBS 24

hours after the initial infection period. Our results demonstrated

that PI3K-Akt signaling promotes the intracellular survival of GBS,
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as the inhibitor (LY) significantly reduced the levels of

viable intracellular GBS at this time point when compared to

the vehicle control condition (DMSO) for the corresponding

strain (Figure 4C).
The PI3K-Akt pathway impacts
macrophage survival following
GBS infection

PI3K-Akt signaling has also been shown to have an important

impact in eukaryotic cell survival in many contexts (Busca et al.,

2014; Follo et al., 2015; Yu and Cui, 2016; Vergadi et al., 2017).

Therefore, we next wanted to determine whether GBS manipulation

of this pathway had any impact on the survival of the macrophages

themselves. To determine whether there was a connection between

PI3K-Akt pathway activation and macrophage survival,

macrophages were pre-treated with DMSO or LY for 1 hour,

infected with GBS for 1 hour, washed to remove extracellular
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GBS induces p70s6k activation via the PI3K-Akt pathway. THP-1 macrophages were treated with DMSO or LY294002 (LY, 50µM) for one hour prior
to infection. They were then infected with one of four different strains of GBS at an MOI of 10 for one hour, washed, and treated with antibiotics for
an additional hour prior to lysate collection. Lysates were assessed for phosphorylated (active) p70s6k (A, B), and densitometry was used to compare
differences between infection conditions. Representative Western blots from one biological replicate with its corresponding loading control (beta
actin) are shown (A). Equal amounts of the same protein lysate preparations were loaded onto the gels for each protein. Densitometry values
represent pooled results from at least three independent biological replicates, and error bars represent standard deviations of the mean (B).
Significant differences between DMSO and LY treatments for each condition were determined by t-test (*, p=0.01-0.05; **, p=0.001-0.01).
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bacteria, and then incubated in the presence of antibiotics for an

additional 24 hours. An ethidium homodimer membrane

permeabilization assay was then utilized to determine differences

in macrophage cell death at 24 hours after the initial infection

period. When the PI3K-Akt pathway was inhibited with LY, we

observed a significant increase in macrophage cell death in response

to three of the four strains analyzed, with a similar trend observed

for the fourth strain (Figure 5). This indicates that the PI3K-Akt

pathway aids in macrophage viability when macrophages are

infected with GBS. Because activity of PI3K-Akt signaling appears

to both promote macrophage survival as well as survival of

intracellular GBS, we speculate that GBS may promote PI3K-Akt

signaling in order to form an intracellular niche for continued

persistence within the infected host.

As the type of cell death occurring within the infected

macrophages could have important implications relating to the
Frontiers in Cellular and Infection Microbiology 08
fate of the intracellular GBS and on the immune response to the

infection, we next sought to determine the type of cell death being

induced by GBS in the infected macrophages (Supplementary

Figures 2-6). We selected caspase-1 as a marker of pyroptosis

(Figure S2), caspase-3 as a marker of classic apoptosis (Figure S3),

and phospho-MLKL as a marker of necroptosis (Figure S4), as these

different forms of programmed cell death have been associated with

many types of microbial infection (Ashida et al., 2011). We

evaluated all three of these proteins by Western Blotting at both

24 and 48 hours post-infection. When we evaluated our infected cell

lysates for the presence of full length and cleaved (activated)

caspase-3 (Figure S3), we did not observe any significant changes

in either full length or cleaved caspase-3 in response to infection

with any of the strains analyzed at either 24 or 48 hours post-

infection. This led us to conclude that classic apoptosis is unlikely to

be the major form of cell death induced under these conditions.
A

B

FIGURE 3

GBS induces the formation of actin projections in macrophages. THP-1 macrophages were treated with DMSO or LY294002 (LY, 50µM) for one
hour prior to infection. They were then infected with one of four different strains of GBS at an MOI of 10 for one hour. Antibiotics were then applied
for 1 hour to kill extracellular bacteria, and cells were washed, fixed, and prepared for immunofluorescence microscopy. b-actin (red) was visualized
with Alexafluor594, and nuclei were stained with DAPI (blue) (A). The percentage of cells with actin projections was determined for each condition
(B). At least three biological replicates were performed for each condition containing DMSO, and at least two biological replicates were performed
for conditions containing LY, with at least three fields captured per replicate. At least 2,500 cells were counted per DMSO condition and at least
1,500 cells were counted per LY condition. Significance was determined by ANOVA (p=0.0005) and post-hoc Tukey’s tests to compare the DMSO
conditions to each other (black asterisks), and error bars represent standard deviation of the mean. T-tests were performed to compare DMSO
conditions to their corresponding LY conditions (gray asterisks). For both Tukey’s tests and t-tests, p<0.05 was considered statistically significant
(*, p=0.01-0.05; ***, p=0.0001-0.001).
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When we assessed caspase-1, we observed increased production

of full length caspase-1 as well as a potentially active high molecular

weight form of caspase-1 (which we refer to in our figures as

aggregated caspase-1) at 24 hours post-infection (Figure S2). We

did not observe a detectable change in the usual activated form of

caspase-1 at either time point in our cell lysates; cleaved caspase-1 is

generally seen at a molecular weight of 10-20kDa (Figure S2). Of

note, Shamaa et al. have reported that caspase-1 may be produced

by macrophages in an active high molecular weight form (>200kDa)

similar to what we observed in these studies, and that this form of

active caspase-1 effectively activates IL-1b and tends to be

significantly more stable than the 20kDa active form (Shamaa

et al., 2015). Increases in high molecular weight caspase-1 were

significant for the GB590, GB653, and GB20 strains at 24 hours, but

not at 48 hours post-infection. Increases in full length caspase-1

were significant at 24 hours post-infection for the GB590 and GB20

infection conditions, but no significant differences were observed at

48 hours (Figure S2). Consistent with the possibility that caspase-1

plays a role in GBS-induced macrophage death in our experimental

system, we also observed that cell death could be significantly

reduced at the 48 hour time point, albeit modestly, by treating the

THP-1 cells with the pan-caspase inhibitor Z-VAD-fmk prior to

infection with GBS (Figure S6). Curiously, this effect was not yet

apparent at the 24 hour time point. Furthermore, we have

previously observed significant production of IL-1b from GBS-

infected macrophages 24 hours post-infection, which would also be

consistent with induction of pyroptosis (Flaherty et al., 2019a).

Finally, we assessed the cells for the presence of phospho-MLKL

as a marker of necroptosis (Figure S4). Here, we observed a trend

toward increased phospho-MLKL in response to several of the

strains at both 24 hours and 48 hours post-infection. This increase

was significant for the GB112 and GB590 strains at 24 hours post-

infection and for the GB20 strain at 48 hours post-infection (Figure

S4). Despite the increase in this key necroptosis marker, we did not

observe a decrease in cell death when the cells were treated with the

necroptosis inhibitor Necrostatin-1 at the 24 or 48 hour time points

for any of the strains except the GB112 (ST-17) condition (data not

shown). For this reason, we speculate that pyroptosis may be the

primary form of cell death occurring in the infected cells, though it

is possible that multiple forms of cell death are being induced,

particularly by strains with enhanced virulence properties, like the

GB112 strain. Both pyroptosis and necroptosis fall under the

umbrella of programmed necrosis, which would also be consistent

with our visual observations that the infected THP-1 cells exhibit a

swollen and somewhat translucent appearance compared to

uninfected cells when viewed with simple live cell imaging 24

hours post-infection (Figure S5).
PI3K-Akt signaling promotes activation of
the NF-kappa-B signaling pathway in GBS-
infected macrophages

One common downstream target of PI3K-Akt signaling is the

NF-kappa-B pathway, which is known to be associated both

with the regulation of cell survival as well as the induction of
A

B

C

FIGURE 4

PI3K-Akt signaling promotes phagocytosis and survival of GBS. THP-
1 cells were infected with GBS at an MOI of 10 for 1 hour in the
presence or absence of LY294002 (LY, 50µM), a PI3K pathway
inhibitor. (A) After 1 hour, a sample was collected from each
biological replicate and plated to determine the final inoculum of
GBS. (B, C) Antibiotics were added to kill extracellular bacteria, and
cells were incubated for 1 hour to determine GBS uptake (B), or 24
hours to assess long-term GBS survival within macrophages (C).
Internalized bacteria were collected and plated; CFUs were
normalized to the final inoculum for each strain to determine the
percent internalized CFUs at 1 hour or 24 hours (B, C). At least six
biological replicates were performed per condition. Significant
differences between DMSO and LY for each condition were
determined by t-test. Error bars represent the standard deviation of
the mean; p-values <0.05 were considered significant (*, p=0.01-0.05;
***, p=0.0001-0.001; ****, p<0.0001).
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inflammatory signaling in a variety of contexts (Tsatsanis et al.,

2006; Vandenabeele et al., 2010; Newton and Dixit, 2012; Lappas,

2013; Busca et al., 2014). We have previously demonstrated that this

pathway is activated in response to GBS and that it is linked to the

production of several inflammatory cytokines in response to GBS

infection (Flaherty et al., 2019a; Flaherty et al., 2021). We next

sought to determine whether the PI3K-Akt pathway is an upstream

contributor to the activation of this pathway during infection.

Macrophages were pre-treated with either DMSO or LY as before,

infected with GBS for 1 hour, washed to remove extracellular

bacteria, and treated with antibiotics for an additional hour prior

to fixing cells for microscopy. Inhibition of PI3K-Akt signaling was

shown to reduce NF-kappa-B nuclear localization in response to all

four strains analyzed (Figure 6). This indicates that the PI3K-Akt
Frontiers in Cellular and Infection Microbiology 10
pathway does, indeed, contribute to NF-kappa-B activation in

response to GBS infection in macrophages.
Discussion

Overall, the goal of this study was to explore the role of the PI3K-

Akt pathway in GBS-infected macrophages and to assess the

implications of strain-dependent differences in its activation. This

investigation stemmed from prior work in which we had observed

activation of several PI3K-Akt pathway members during GBS infection

of THP-1 macrophages by antibody array and also separately observed

strain-dependent differences in phagocytic uptake and long-term

survival of GBS within macrophages (Korir et al., 2017a; Flaherty
A

B

FIGURE 5

PI3K-Akt signaling reduces death in GBS-infected macrophages. THP-1 cells were infected with GBS at an MOI of 10 bacteria per host cell for 1 hour
in the presence or absence of LY294002, a PI3K-Akt inhibitor (LY, 50µM). Cells were washed, treated with antibiotics, and incubated for an additional
24 hours. Dead cells were visualized by microscopy using a fluorescent dye, ethidium homodimer-1 (4µM in PBS). At least six biological replicates
were performed per condition, with at least three fields captured per well; at least 9,000 cells were counted per condition. Representative
microscopy images from each condition are shown (A), and results from the 6 replicates were averaged and are graphed here (B). Error bars
represent standard deviations of the mean. Significant differences between DMSO and LY treatments for each condition were determined by t-test
(*, p=0.01-0.05; **, p=0.001-0.01).
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et al., 2021). In these prior studies we detected small intracellular

populations of GBS within the THP-1 macrophages following infection

with all 15 of the GBS strains used in this study (Flaherty et al., 2021).

As an initial step to determine whether there was a link between these

two observations, we examined the formation of actin projections in

macrophages that had been exposed to four different strains of GBS

from diverse sequence types. We observed that actin projections were

more prevalent in macrophages when they were infected with ST-17

and ST-19 strains (GB112 and GB590, respectively), both of which are

capsule type III strains, compared to other GBS strains tested. We

interpreted these rearrangements of the actin cytoskeleton to be

indicative of increased phagocytic uptake, which would be consistent
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with the observation that differentiated THP-1 cells engulf greater

numbers of ST-17 and ST-19 strains compared to other STs (Korir

et al., 2017a; Flaherty et al., 2021). The formation of these actin

projections was largely inhibited by treatment with a PI3K-Akt

pathway inhibitor, LY294002, prior to infection. This observation is

consistent with other studies that have shown that the use of PI3K

inhibitors, including LY294002 and wortmannin, can have dramatic

effects on downstream members of the PI3K pathway, actin

polymerization, and phagocytosis in macrophages in response to

other bacterial pathogens, such as Helicobacteri pylorii (Allen et al.,

2005). Similarly, this work supports the results of various reports

demonstrating that GBS can induce PI3K-Akt-dependent actin
A

B

FIGURE 6

PI3K-Akt signaling promotes activation of the NF-kappa-B signaling pathway in GBS-infected macrophages. THP-1 cells were infected with GBS at
an MOI of 10 bacteria per host cell for 1 hour in the presence or absence of LY294002, a PI3K-Akt inhibitor (LY, 50µM). The cells were then washed
and treated with antibiotics for an additional hour prior to fixation, nuclear staining (DAPI), and detection of NF-kB p65 (Alexa Fluor 488) by
immunofluorescence microscopy. (A) One representative field visualizing NF-kB p65 (Alexa Fluor 488) is shown for each condition. The percentage
of NF-kB nuclear localization compares the number of cells with positive nuclear localization (Alexa Fluor 488) to the total cell number in a given
field (DAPI) using ImageJ. (B) Results from three independent biological replicates were obtained for each condition. For each biological replicate of
each condition, at least three separate fields were captured to obtain a minimum of 5,500 cells. The average percent nuclear localization was
graphed for each condition, and error bars represent standard deviation of the mean. Significant differences between DMSO and LY treatments for
each condition were determined by t-test (*, p=0.01-0.05; **, p=0.001-0.01; ****, p<0.0001).
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cytoskeleton rearrangements to enter a variety of cell types, such as

human endometrial cells, epithelial cells, fibroblasts, and human

endothelial cells (Tyrrell et al., 2002; Burnham et al., 2007; Goluszko

et al., 2008; de Oliveira et al., 2018). It would be interesting to evaluate

whether uptake via the PI3K-Akt pathway in these other cell types also

varies based on sequence and capsule types in more detail.

Of note, GBS strains that induced more actin projections in

infected macrophages at the one hour time point also tended to

exhibit higher intracellular GBS viability at the 24 hour time point

as well. Our data demonstrating that treatment with a PI3K-Akt

pathway inhibitor reduces both phagocytic uptake of GBS one hour

post-infection as well as intracellular survival of GBS 24 hours post-

infection support the hypothesis that the PI3K-Akt pathway

contributes to the initial uptake and intracellular survival of GBS

within macrophages, though the precise mechanisms involved

require more exploration. This role seems to be more pronounced

when macrophages are infected with the ST-17 and ST-19 strains

(both CPS III), as these strains tend to activate the PI3K-Akt

pathway to a greater extent than the other strains that were

tested. Thus, while GBS can be included in the ranks of the many

other pathogens that cleverly manipulate the host cytoskeleton to

gain multiple benefits relating to colonization, uptake, and survival,

the extent to which this strategy is employed seems to be somewhat

strain-dependent (Tyrrell et al., 2002; Fettucciari et al., 2011).

In these studies, we did not seek to identify which bacterial

virulence factors were responsible for the strain-dependent

differences in phagocytic uptake and intracellular survival, but our

findings were in line with other studies that have investigated these

mechanisms in more detail. The PI3K-Akt pathway has been shown

to be regulated in response to other intracellular pathogens such as

Mycobacterium tuberculosis, Francisella tularensis, Salmonella, and

Leishmania, resulting in a reduced inflammatory cytokine response,

inhibition of the classic apoptosis pathway through several

mechanisms, and in some cases, inhibition of the phagosome

maturation process, which can allow for prolonged persistence of

these microbes intracellularly (Ruhland et al., 2007; Harding and

Boom, 2010; Medina et al., 2010; Thi et al., 2012). Korir et al.

utilized a multiple stress medium to evaluate the ability of 30

different GBS strains of varying STs to survive phagosomal

stressors such as acidic pH, hydrogen peroxide, nitric oxide,

lysozyme, and cupric chloride, and found that CPSIII strains such

as those in the ST-17 group were best equipped to survive within

macrophages following phagocytosis (Korir et al., 2017a). Though

much is still unknown regarding which virulence genes GBS uses to

survive in macrophages following phagocytosis, genes such as ponA,

cylE, sodA, and the CovR/S 2 component regulatory system have all

been found to enhance the ability of GBS to survive inside

phagosomes and withstand macrophage defenses such as

oxidative stress (Poyart et al., 2001; Liu et al., 2004; Hamilton

et al., 2006; Cumley et al., 2012; Korir et al., 2017a).

In addition to aiding in the regulation of bacterial uptake and

subsequent intracellular survival of bacteria, other studies have

demonstrated that rearrangements of the cytoskeleton by

pathogens can also impact signaling pathways related to the
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viability of the host cell (Liu et al., 2001; Ahmadian et al., 2002;

Fiorentini et al., 2003; Bhavsar et al., 2007; Labbé and Saleh, 2008;

Fettucciari et al., 2011; Owen et al., 2014). Such reports are

consistent with our observation that the PI3K-Akt pathway

promotes macrophage survival during GBS infection, as there was

an increase in macrophage cell death when this pathway was

inhibited with a small molecule inhibitor (LY). As we did not

observe evidence of the classic apoptosis marker caspase-3, but

rather detected enhanced levels of two different proteins involved in

forms of programmed necrosis (caspase-1 and phospho-MLKL), we

believe the infected macrophages are dying primarily from a form of

programmed necrosis. Because cell death could also be reduced with

the use of caspase inhibitors, we hypothesize that pyroptosis,

which relies on caspase-1 activation, is the predominant

mechanism involved.

This finding may have important implications relating to the

generation of an intracellular niche for GBS. It is possible that the

reduction in GBS intracellular survival in the presence of the PI3K-

Akt pathway inhibitor can be explained, at least in part, by the fact

that more of the macrophages are dying when this pathway is

inhibited. Macrophage death would thereby destroy the safe haven

being utilized by this small population of intracellular bacteria that

seem to be able to avoid or delay being killed by the macrophages

following uptake. If this is, indeed, the case, such a relationship

could influence outcomes such as GBS dissemination across tissue

barriers and GBS resistance to treatment with antibiotics.

As cell death signaling and stimulation of inflammatory

cascades are often linked, we also explored the relationship

between the PI3K-Akt pathway and the induction of

inflammatory signaling through the NFkB signaling pathway.

Treatment with LY significantly reduced NFkB nuclear

localization in infected macrophages, indicating that PI3K-Akt

signaling does contribute to activation of this key inflammatory

mediator in response to GBS infection. Though the PI3K-Akt

pathway can also serve as a negative regulator of NFkB
signaling in response to many stimuli, PI3K-Akt pathway-driven

activation of NFkB (similar to what we observed in these studies)

has been observed in macrophages infected with other

intracellular pathogens such as Mycobacterium bovis and HIV, or

following exposure to purified bacterial components such as

lipopolysaccharide (LPS) (Reddy et al., 1997; Méndez-Samperio

et al., 2009; Liu et al., 2014; Zha et al., 2014; Vergadi et al., 2017).

However, as NFkB is such a central player in the inflammatory

response, we expect that additional upstream mediators also

contribute to its activation in response to GBS infection.

In summary, our observations indicate that the PI3K-Akt

pathway contributes to several important aspects of GBS infection

in macrophages, including phagocytic uptake, intracellular survival of

GBS, survival of GBS-infected macrophages, and the induction of

inflammatory signaling cascades (Figure 7). Strain-dependent

differences in outcomes such as phagocytic uptake and intensity of

inflammatory signaling may be at least partially explained by the fact

that certain STs and CPS types differentially activate this key signaling

pathway. Thus, our findings strengthen the growing body of evidence
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supporting the notion that genetically diverse GBS strains induce key

host signaling cascades to varying extents, which likely contributes to

critical differences in pathology (Fettucciari et al., 2011; Korir et al.,

2014; Korir et al., 2017a; Flaherty et al., 2019a; Flaherty et al., 2019b;

Flaherty et al., 2021). With continued careful exploration, we may be

able to identify ways in which we can inhibit or otherwise manipulate

the PI3K-Akt pathway in order to lessen disease severity during

infection with more virulent GBS strains.
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SUPPLEMENTARY FIGURE 1

GBS are visible associated with THP-1macrophages following infection. THP-

1 cells were infected with GBS at an MOI of 10 bacteria per host cell for 1 hour.
The cells were then washed and treated with antibiotics for an additional hour

prior to fixation, nuclear staining (DAPI), and detection of actin

(AlexaFluor594) by immunofluorescence microscopy. One representative
field per condition from the experiment shown in Figure 3 has been

provided to allow for visualization of GBS at a high enough intensity for the
bacteria to be seen associated with the macrophages.

SUPPLEMENTARY FIGURE 2

GBS influences Caspase-1 production and activity in infected macrophages.
THP-1 macrophages were infected with one of four different strains of GBS at

an MOI of 10 for one hour, washed, and treated with antibiotics for an additional
24-48 hours prior to lysate collection. Soluble lysate fractions were assessed for

full length, cleaved, or highmolecular weight versions (aggregated) of caspase-1,
a key regulator of pyroptosis (A, B); densitometry was used to compare

differences between infection conditions for each of these forms of caspase-1.

Representative Western blots from one biological replicate with its
corresponding loading control (beta-actin or beta-tubulin) are shown (A).
Equal amounts of the same protein lysate preparations were loaded onto the
gels for each protein. Densitometry values represent pooled results from at

least three independent biological replicates, and error bars represent
standard deviations of the mean (B). Significant differences between mock

infection and GBS infection conditions were determined by ANOVA, followed

by post-hocDunnett’s testing (*, p=0.01-0.05; **, p=0.001-0.01; ***, p=0.0001-
0.001; ****, p<0.0001).

SUPPLEMENTARY FIGURE 3

GBS does not impact Caspase-3 production and activity in macrophages
under the experimental conditions analyzed. THP-1 macrophages were

infected with one of four different strains of GBS at an MOI of 10 for one
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hour, washed, and treated with antibiotics for an additional 24-48 hours prior
to lysate collection. Soluble lysate fractions were assessed for full length or

cleaved versions of caspase-3, a key regulator of classic apoptosis (A, B);
densitometry was used to compare differences between infection conditions
for both of these forms of caspase-3. Representative Western blots from one

biological replicate with its corresponding loading control (beta-actin) are
shown (A). Equal amounts of the same protein lysate preparations were

loaded onto the gels for each protein. Densitometry values represent pooled
results from at least three independent biological replicates, and error bars

represent standard deviations of the mean (B). Significant differences

between mock infection and GBS infection conditions were determined by
ANOVA, followed by post-hoc Dunnett’s testing (*, p=0.01-0.05; **,

p=0.001-0.01; ***, p=0.0001-0.001; ****, p<0.0001).

SUPPLEMENTARY FIGURE 4

GBS influences phospho-MLKL activity following infection in macrophages.

THP-1 macrophages were infected with one of four different strains of GBS at
an MOI of 10 for one hour, washed, and treated with antibiotics for an

additional 24-48 hours prior to lysate collection. Soluble lysate fractions were

assessed for phosphorylated MLKL, a key regulator of necroptosis (A, B);
densitometry was used to compare differences in phospho-MLKL between

infection conditions. Representative Western blots from one biological
replicate with its corresponding loading control (beta-actin) are shown (A).
Equal amounts of the same protein lysate preparations were loaded onto the
gels for each protein. Densitometry values represent pooled results from at

least three independent biological replicates, and error bars represent

standard deviations of the mean (B). Significant differences between mock
infection and GBS infection conditions were determined by ANOVA, followed

by post-hoc Dunnett’s testing (*, p=0.01-0.05; **, p=0.001-0.01; ***,
p=0.0001-0.001; ****, p<0.0001).

SUPPLEMENTARY FIGURE 5

GBS infection induces cellular swelling in macrophages. THP-1 macrophages
were infected with one of four different strains of GBS at an MOI of 10 for one

hour, washed, and treated with antibiotics for an additional 24 hours prior to
imaging the live, unstained cells with bright field microscopy. Representative

images of the infected cells were collected using the 60x objective.

SUPPLEMENTARY FIGURE 6

Caspase inhibition reduces death inGBS-infectedmacrophages. THP-1 cells were

infected with GBS at anMOI of 10 bacteria per host cell for 1 hour in the presence
or absence of Z-VAD-fmk, a pan-caspase inhibitor (50µM). Cells were washed,

treated with antibiotics, and incubated for an additional 24-48 hours. Dead cells
were visualized by microscopy using a fluorescent dye, ethidium homodimer-1

(4µM in PBS). At least three biological replicates were performed per condition,

with at least three fields captured per well. Cell counts were averaged and are
graphed here for the 24 hour (A) and 48 hour (B) time points. Error bars represent

standard deviations of the mean. Significant differences between DMSO and
inhibitor treatments for each conditionwere determinedby t-test (*, p=0.01-0.05;

**, p=0.001-0.01; ***, p=0.0001-0.001; ****, p<0.0001).
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