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Primary architecture and energy
requirements of Type III and
Type IV secretion systems
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Departamento de Biologı́a Molecular and Instituto de Biomedicina y Biotecnologı́a de Cantabria
(IBBTEC), Universidad de Cantabria- CSIC, Santander, Spain
Many pathogens use Type III and Type IV protein secretion systems to secrete

virulence factors from the bacterial cytosol into host cells. These systems

operate through a one-step mechanism. The secreted substrates (protein or

nucleo-protein complexes in the case of Type IV conjugative systems) are guided

to the base of the secretion channel, where they are directly delivered into the

host cell in an ATP-dependent unfolded state. Despite the numerous disparities

between these secretion systems, here we have focused on the structural and

functional similarities between both systems. In particular, on the structural

similarity shared by one of the main ATPases (EscN and VirD4 in Type III and

Type IV secretion systems, respectively). Interestingly, these ATPases also exhibit

a structural resemblance to F1-ATPases, which suggests a common mechanism

for substrate secretion. The correlation between structure and function of

essential components in both systems can provide significant insights into the

molecular mechanisms involved. This approach is of great interest in the pursuit

of identifying inhibitors that can effectively target these systems.
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Introduction

Many Gram-negative pathogens encode virulence-associated Type III and Type IV

secretion systems (T3SS and T4SS, respectively), which they use to translocate effector

molecules. These systems are highly optimized multi-protein machineries that translocate

effectors from the bacteria directly into the host cell cytoplasm, enabling effective

manipulation of host processes (Galán and Waksman, 2018; Viana et al., 2021). T3SSs

can be easily found in pathogenic bacteria such as Escherichia coli, Yersinia, Salmonella,

Chlamydia or Pseudomonas (Cornelis, 2006; Coburn et al., 2007; Cornelis, 2010). T4SSs are

associated to pathogens like Helicobacter, Legionella, Neisseria or Coxiella, among others

(Cascales and Christie, 2003). Plant pathogens, such as Pseudomonas or Agrobacterium can

also have T3- and T4SSs, respectively.
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Apart from being involved in virulence, these secretion systems

have other associated functions. For instance, flagellar systems,

which have dynamic flagella to drive cellular motility, are related

to T3SSs. In this case, the substrates translocated across the cell

membranes are the components of the flagellum during biogenesis.

The origin, specialization and diversification of these two different

T3SS remain elusive, but they both share a high degree of homology,

suggesting a common evolution from machines involved in motility

(Gophna et al., 2003; Saier, 2004; Pallen et al., 2005; Abby and

Rocha, 2012; Hu et al., 2017). As it happens in T3SSs, T4SSs are also

versatile nanomachines, which are not only involved in virulence

but also in DNA and nucleo-protein substrates delivery into

bacterial or eukaryotic target cells, via a contact-dependent

mechanism (Christie et al., 2014; Cabezón et al., 2015). They are

ancestrally related to DNA conjugation machines involved in

horizontal gene transfer and virulence (Guglielmini et al., 2013).

In both cases, the architecture of these secretion systems is relatively

well preserved regardless of its biological function.

T3 and T4SSs have several important features in common. They

both span the inner membrane (IM), periplasm, and outer bacterial

membrane (OM). Thus, the mechanism of transport involves just

one step, which means that substrates are directly delivered into the

host cell without the assistance of the Sec or Tat machineries (hence

known as Sec- or Tat-independent protein secretion) (Christie,

2019). The internal diameter of the channel is similar in both

secretion systems, less than 30 Å, which means that substrates must

be unfolded to be secreted. Accordingly, both systems have

specialized ATPases at the base of the secretion channel, which

provide energy for substrate unfolding (T3SS) or pilus biogenesis

and substrate transport (T4SS). Yet, many of the underlying

molecular mechanisms that power secretion remain unclear.

The aim of this review is to provide a general overview of the

two systems. Analyzing the structure-function relationship and

comparing key elements shared by both systems can be extremely

valuable in understanding the molecular mechanism and, more

importantly, in the search of inhibitors that could target

these systems.
Overview of a prototypical
T3SS architecture

In recent years, cryo-electron microscopy advances have allowed

the determination of the architecture of these two secretion systems

revealing large, megadalton-sized macromolecular assemblies (Hu

et al., 2018; Lunelli et al., 2020; Macé et al., 2022).

T3SSs, also known as injectiosomes for their syringe-shape, are

large multiprotein complexes that span the inner and outer

membrane of bacteria (Figure 1). Much of the structural

knowledge about this secretion system is available from

Salmonella and, therefore, we will use its nomenclature in this

review accompanied of the unified nomenclature in parenthesis. A

complex formed by eight membrane proteins spans the bacterial

inner membrane (IM), periplasm and outer membrane (OM). The
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outer membrane protein InvG (SctC) belongs to the secretin family

of b–barrel pores and it forms a ring with a 15-fold symmetry (Hu

et al., 2018). In contrast, the IM ring, formed by SpaPQRS

(SctRSTU) and PrgHK (SctDJ) proteins presents a 24-fold

stoichiometry. Recent cryo-EM structure of the complex shed

light on this symmetry mismatch puzzle between the OM and IM

rings, revealing that the InvG ring incorporates an additional InvG

monomer at the periplasmic site (Hu et al., 2019). This local

variation in stoichiometry facilitates the interaction with the

IM components.

Associated to this macromolecular complex is InvA (StcV), a

transmembrane protein with a large globular domain located in the

cytosol. The crystal structure of this globular domain (MxiA in

Shigella fastidiosa) (Abrusci et al., 2013), as well as more recent

tomography (Hu et al., 2017) and cryo-EM studies (Majewski et al.,

2019; Kuhlen et al., 2021) confirm that this protein assembles as a

nonameric complex. This InvA(SctV) protein, together with other

small proteins such as OrgA(SctK), OrgB(SctL), SpaO(SctQ), InvI

(SctO) and the ATPase InvC(SctN) form the sorting platform. The

role of this platform, linked to the export apparatus, is to select

effector proteins and target them for secretion. The hexameric

ATPase, InvC (SctN) is involved in the unfolding of the effector

proteins prior secretion (Akeda and Galán, 2005; Bergeron and

Marlovits, 2022). The export apparatus SpaPQRS forms a right-

handed pseudo-helical assembly, which works as a platform for

PrgIJ (SctFI) needle polymerization. PrgJ (SctI) contacts with SpaPR

and secretin InvG are required for needle assembly, thus providing

the platform for a further polymerization of the PrgI (SctF)

needle (Figure 1).
Overview of a prototypical
T4SS architecture

T4SSs are also a heterogeneous group of nanomachines and can be

classified in two main groups: conjugation systems and effector

translocation systems (Sheedlo et al., 2022). Most simple T4SS

consist of 12 proteins (named VirB1-VirB11 and VirD4 in the

Agrobacterium tumefaciens unified nomenclature), also known as

“minimized T4SSs” (Sheedlo et al., 2022) (Figure 2). Most recent

T4SS structural data comes from the conjugative plasmid R388

(Macé et al., 2022), so this nomenclature will be used in this review,

accompanied from the unified nomenclature in parenthesis. As it

occurs in T3SSs, here it is also evident the existence of symmetry

mismatches in the core complex. Whereas in T3SSs the OM ring is

formed only by the secretin protein, three proteins are involved in the

OM complex in T4SSs: TrwH (VirB7), TrwF (VirB9) and TrwE

(VirB10), forming a ring with a barrel-shape architecture and a 14-

fold symmetry. TrwH is completely embedded in the OM, but the N-

terminal domains of TrwE and TrwF proteins also expand into the

periplasmic space forming what is called the “I-layer”, differentiated

from the embedded part in the OM, called “O-layer”. Intriguingly, the

periplasmic N-terminal domains of these two proteins (the I-layer)

form a 16-fold complex, which means that the C-terminal domains of
frontiersin.org
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these two heterodimers are not inserted in the O-layer. Similar

symmetry mismatches have also been reported in protein

translocating T4SSs, such as the C17:C14 mismatch found in H.

pylori (Chung et al., 2019; Sheedlo et al., 2020) or a C18:C13

mismatch in L. pneumophila (Durie et al., 2020).

In T3SSs, this local variation in stoichiometry is thought to

facilitate the interaction with the IM components. However, in

T4SSs, the OMC complex does not contact directly with the IM
Frontiers in Cellular and Infection Microbiology 03
complex. Instead, a structure called “stalk” bridges the core of the

OM and the IM complexes. This central, cone-shaped structure is

composed of a pentamer of VirB6 (TrwI) inserted into the inner

membrane, and a pentamer of VirB5 (TrwJ) mounted onto the

VirB6 stalk base (Macé et al., 2022). The location of VirB5(TrwJ)

has also been described to be at the T-pilus tip in the A. tumefaciens

T4SS (Aly and Baron, 2007), which suggests that VirB5, also known

as adhesin, changes position depending on the stage of the
FIGURE 1

Architecture of a T3SS. The T3SS of Salmonella sp. is shown. The macromolecular assembly spans the inner (IM) and outer membranes (OM). Two
distinct parts can be differentiated in the system: the needle complex and the sorting platform (Lara-Tejero and Galán, 2019; Soto et al., 2022). At
the base of the needle complex there is a multi-ring structure that spans the inner membrane, formed by PrgH and PrgK subunits (SctD and SctJ
subunits in the unified nomenclature). The IM base is connected to the outer membrane by an inner rod protein (PrgJ/SctI). At the outer membrane
there is the secretin ring formed by InvG (SctC), where the needle filament protein (PgrI/SctF) is attached. The length of the ring is regulated by InvJ
(SctP). The export apparatus (no shown) is formed by a number of small proteins (SpaP/SpaQ/SpaR in Salmonella; SctR/SctS/SctT in the unified
nomenclature) connected to the C-ring (SpaO/SctQ) at the base of the channel by an export apparatus switch protein (SpaS/SctU). The export
apparatus sorting complex is formed by a nonameric protein ring (InvA/SctV). The unfolding of the substrates is powered by a hexameric ATPase
(InvC/SctN). In the lumen of this ATPase sits a stalk protein (InvI/SctO). (The figure has been created by using the PDB codes: 7ah9.pdb (Miletic et al.,
2021), 7awa.pdb (Matthews-Palmer et al., 2021), 7k08.pdb (Majewski et al., 2019), 6uid.pdb and 6uie.pdb (Muthuramalingam et al., 2020).
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conjugation process. It is important to note that in the T4SS

structure solved by cryo-EM (Macé et al., 2022) the pilus is

absent. The pilus structure shown in Figure 2 corresponds to that

of F plasmid (Costa et al., 2016), solved independently of the

secretion system. In addition, it is also worth noting that in some

T4SS, such as the Dot/IcM system from Legionella, an extended

pilus has never been observed. Last findings suggest that, in this

system, effector translocation occurs by close membrane contact

(Böck et al., 2021).

In the cryo-EM structure, the stalk is surrounded by a ring

complex, known as the arches, which is composed of hexamers of

homotrimeric units of the periplasmic domain of VirB8 (TrwG).

VirB8 protein contacts one of the main components of the IM

complex: the VirB4 ATPase (TrwK). VirB4 forms a hexamer of
Frontiers in Cellular and Infection Microbiology 04
dimers. One of the subunits of each dimer is involved in the

formation of a central hexamer, attached to the inner membrane

through VirB3 (TrwM). The second subunit of the dimers

protrudes out, and it makes contacts with the tails of three VirB8

subunits. This oligomeric arrangement has only been found in

VirB4 ATPases and it is still a controversial issue, since a previous

work by electron microscopy showed this protein organized into 2

side-by-side hexameric barrels (Low et al., 2014).

It is worth noting that the described structure corresponds to a

simple “minimized T4SS” (Costa et al., 2021). Examples of

“expanded T4SSs” include the H. pylori Cag T4SS (Cover et al.,

2020), the L. pneumophila Dot/Icm (Chetrit et al., 2018; Park et al.,

2020) T4SS, and the F plasmid-encoded T4SS (Liu et al., 2022).

Expanded systems have a larger size and require more proteins. In
FIGURE 2

Architecture of a T4SS. The T4SS of the conjugative plasmid R388 is shown (Macé et al., 2022) from PDB codes: 7o3.pdb, 7o3j.pdb, 7o3v.pdb,
7q1v.pdb, 7o43.pdb, and 7oiu.pdb. The subunits are named following the Agrobacterium tumefaciens nomenclature. The system is formed by 11
different proteins (named VirB1 to VirB11). The main ATPase of the system is VirB4 (TrwK in R388), which forms a hexamer of dimers at the base of
the channel. This ATPase is thought to power pilus formation but also substrate secretion. Conjugative systems have an additional ATPase, named
coupling protein (Cabezon and de la Cruz, 2006), which is not present in the cryo-EM structure (pdb 1e9r.pdb taken from (Gomis-Rüth et al., 2001).
Most T4SS also have another ATPase named VirB11 (TrwD in R388) suggested to act in the unfolding of the substrate (pdb obtained by molecular
modelling as shown in (Ripoll-Rozada et al., 2013). VirB4 (TrwK) is attached to the inner membrane by VirB3 (TrwM), an integral membrane protein.
The inner membrane platform also contains the N-terminal domain of VirB8 (TrwG), a protein that spans towards the periplasmic space forming an
arched shaped structure. The periplasmic space protein (VirB6) forms a stalk structure that connects the inner membrane complex with the outer
membrane ring formed by VirB7 (TrwH in R388), VirB9 (TrwF) and VirB10 (TrwE). Conjugative systems contain a pilus attached to the outer
membrane formed by an oligomeric helical structure of pilin subunits (VirB2/TrwL). This pilus structure has variable length depending on the system.
It is important to note that the pilus structure shown in red corresponds to that of F plasmid (pdb 5leg.pdb from (Costa et al., 2016), solved
independently of the secretion system. As mentioned in the main text, the solved T4SS structure shown here might correspond to a state involved in
pilus biogenesis (Macé et al., 2022), which would explain why VirB5 appears in the periplasmic space being a specific adhesin protein expected to be
localized at the tip of the pilus (Aly and Baron, 2007).
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addition, none of the T4SS structures solved so far reveals a

continuous central channel. OM and IM complexes are only

connected by the projecting pilus structure and, therefore, the

solved structures might correspond to a state involved in pilus

biogenesis (Macé et al., 2022), but not in DNA-protein transfer; a

state in which VirD4 (TrwB) ATPase would also be required. In

addition, TrwD, a traffic ATPase related to the T2SS EpsE/PilB/PilT

proteins is also missing in this cryo-EM structure.
Energy supply for substrate transport

Translocation of proteins and protein-DNA complexes across

membranes is a process that requires energy. T3SS and T4SS rely on

several associated ATPases and/or the proton motive force (PMF)

to drive translocation (Christie, 2019). Nonetheless, the details of

the secretion mechanism are still unclear.

The limited diameter of the T3SS needle channel (~ 2 nm)

(Lyons et al., 2021) reflects that protein effector unfolding must

occur for substrate translocation, unless the channel opens

dramatically during translocation, which would compromise cell

viability. In this sense, many T3SS effectors interact with

chaperones, which maintain these substrates in an unfolded and

secretion-competent state prior to translocation (Stebbins and

Galán, 2001; Lee and Galán, 2004; Akeda and Galán, 2005). The

T3SS hexameric ATPase InvC (SctN), at the base of the channel,

would mediate T3SS effectors unfolding before secretion (Deng

et al., 2017). It is thought that ATP hydrolysis is required for the

initial step of substrate secretion, but additional force is provided by

the PMF (Minamino et al., 2008) via the proton channel SctV

(Minamino et al., 2011). Therefore, T3SS depends on ATP and PMF

energy sources for efficient secretion (Wilharm et al., 2004; Erhardt

et al., 2014; Halte and Erhardt, 2021). Nevertheless, these issues are

still highly controversial. There is a large distance (over 30 nm)

between the ATPases within the cytosolic side and the cell wall

(Matias et al., 2003) and this primary energy supply would be

inefficient for substrate transfer (Grange et al., 2008). In that sense,

folding of the secreted substrate upon exit from the secretion

channel might also provide energy for pulling protein effectors

through the apparatus (Lee and Rietsch, 2015).

T3SS likewise, the T4SS structure also reveals a central channel

with a narrow internal diameter (~2 nm)(Macé et al., 2022). Thus,

substrates must be unfolded in order to be transported. Three

ATPases power T4SS mediated secretion: VirD4 (TrwB), VirB4

(TrwK) and VirB11 (TrwD). All three are essential for bacterial

conjugation in the reference plasmid R388 (Figure 3). Of these, the

coupling protein VirD4 (TrwB) serves as the receptor to which

both, DNA and protein substrates, bind before entry into the

translocation channel (Cabezon and de la Cruz, 2006; Álvarez-

Rodrıǵuez et al., 2020; Costa et al., 2021). In conjugative systems,

the substrate is a nucleoprotein formed by a protein called relaxase

(TrwC in the case of R388 plasmid) and the conjugative DNA. This

nucleoprotein substrate, together with some assistant proteins, form

a complex known as the relaxosome (De La Cruz et al., 2010). Prior

to translocation, the relaxase protein must be unfolded (Trokter and

Waksman, 2018). The most structurally related protein to T3SS
Frontiers in Cellular and Infection Microbiology 05
unfoldase InvC (SctN) is VirD4 (TrwB) (Figure 4). However, TrwB

is a DNA-dependent ATPase (Tato et al., 2005) and, although it is

directly involved in protein-DNA secretion (Llosa et al., 2002), an

unfoldase role has never been assigned to this protein. In T4SS,

VirB11 ATPase (TrwD) could participate in the unfolding of

protein substrates (Cabezón et al., 2015). VirB11 belongs to the

family of traffic ATPases (Planet et al., 2001) and shares a structural

similarity to ATPases from other secretion systems, such as PilB or

PilT from T4PS or GspE from T2SS (Peña and Arechaga,

2013).However, the mechanism and the forces that push and

unfold substrates through the channel remain to be characterized.

As in T3SS, an important aspect to be considered in powering the

transport of the nucleoprotein complex is the contribution of the

relaxase unfolding-refolding process. TrwC must be refolded in the

recipient cell in order to re-circularize the ssDNA plasmid strand.

Thus, a fast refolding of TrwCmight also play an important role as a

pulling force to complete the translocation process. Recent

experiments, in which the co-translocational unfolding of a

relaxase-DNA complex has been studied by nanopore technology,

seem to point in that direction (Valenzuela-Gómez et al, 2023).

Work in T3 and T4SSs has uncovered a broad range of effector

functions upon translocation (Pearson et al., 2015; Pinaud et al.,

2018; Cover et al., 2020; Timilsina et al., 2020; Fromm and Dehio,

2021; Nandi et al., 2021). It is clear that in order to perform their

function, effectors need to be active once in the host, meaning that

protein refolding must occur after translocation. Thus, effectors

have evolved folds that are compatible with basic requirements: they

should be able to easily unfold, pass through the narrow secretion

channel, and refold to an active form when on the other side

(Metcalf et al., 2016; Gazi et al., 2021; LeBlanc et al., 2021). This is

specially challenging in T3SS and T4SSs, since substrates are very

large proteins. For instance, the relaxase of the F plasmid (TraI) has

1,756 amino acid residues and that of the R388 plasmid (TrwC),

966. The characterization of the mechanism of substrate transport is

worthwhile due to its biological relevance, but there are still

important open questions about how this process is occurring.
A rotary catalytic mechanism for
substrate secretion

Despite the differences in the structural architecture and in the

type of substrates translocated by T3SS and T4SS, there is a

significant structural homology between the main ATPase that

powers substrate transfer in both secretion machineries. The

cytosolic hexameric T3SS ATPase EscN from E. coli (InvC in

Salmonella or SctN in the unified nomenclature) resembles the

structure of the F1-ATPase (Zarivach et al., 2007; Majewski et al.,

2019). Within the hexameric EscN ring there is a coiled-coil subunit

named EscO (InvI/SpaM) that precludes the lumen of the ring. This

arrangement is similar to that found in the F1-ATPase, where there

is a g subunit sitting in the center of the a/b heterohexamer

(Figure 4). In the case of SctN, the ring is formed by a

homohexamer, which also shares a high degree of structural

similarity with the T4SS coupling protein TrwB (VirD4). The
frontiersin.org
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three proteins share a characteristic Rossmann fold, Walker A and

B motifs and an hexameric stoichiometry (Figure 4). Thus, SctN

and TrwB ATPases might be ancestral precursors to the

heterohexameric rotary F1-ATPases, as previously proposed

(Cabezon et al., 2012; Majewski et al., 2019).

EscN hexamer shows a marked asymmetry. The subunits

present different occupancies in the active site and, subsequently,

different conformational states. Thus, the six subunits would go

through successive cycles of ATP binding, hydrolysis and ADP/

phosphate release and the associated conformational changes at the
Frontiers in Cellular and Infection Microbiology 06
C-terminal domain would be translated into torque on the EscO

stalk (Majewski et al., 2019), in an analogous way to F1-ATPase.

Since the interaction between the stalk and the export gate has been

reported (Hara et al., 2012; Ibuki et al., 2013), it has been suggested

that EscN might modulate the efficiency with which T3SS uses

PMF. This finding also raises the possibility that elements of the

export gate might function in a manner similar to the F0
components of the F0F1-ATPase, acting as a channel through

which protons are pumped across the inner membrane (Majewski

et al., 2019).
FIGURE 3

The conjugative mechanism. Bacterial conjugation is triggered by a signal (probably the contact with a recipient cell), which induces the binding of
the relaxase protein (TrwC in R388) to the conjugative plasmid. After nicking the DNA, the relaxase remains covalently bound to the DNA, which is
unwinded by the helicase domain within the same protein. DNA processing is helped by the coupling protein (VirD4/TrwB), which presents the
nucleo-protein substrate to the base of the channel. TrwC relaxase is a huge protein of 966 amino acid residues (1,756 in the case of F plasmid) that
has to be unfolded to cross the inner and outer membranes of both, the donor and the recipient cell. This unfolding is thought to be powered by
VirB11 (TrwD), an ATPase related to T2SS proteins PilB/PilT/GspE.
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In the case of the T4SS ATPase homolog TrwB, six protein

monomers associate to form an almost spherical quaternary

structure that is also strikingly similar to F1-ATPase (Figure 4)

(Gomis-Rüth et al., 2001), but with a six-fold symmetry. In F1- and

EscN ATPases, protein structural asymmetry supports the rotary

catalytic mechanism previously explained, but no structural

asymmetry of the ring subunits has been found in TrwB to

support a similar mechanism. However, it is tempting to propose

that the asymmetry caused by the g-subunit in F1-ATPase or the

EscO subunit in EscN ATPase can also be induced in TrwB after

DNA binding (Figure 4) (Cabezon and de la Cruz, 2006). Thus,

such asymmetry would be observed in the active form of the

protein, with a single DNA strand inside the central channel

being translocated in a 5´- 3´direction. DNA might bind to a

subunit in an “open” conformation (without ATP in the active

site) and, following the binding-change mechanism, the subunit

would change to a “closed” conformation. By doing so, the DNA

would be sent into the internal cavity, being also rotated within the

channel towards another catalytic subunit. Thus, a DNA pumping

mechanism would take place iteratively, facilitating DNA transport

through the T4SS. It is also important to note that DNA promotes

TrwB oligomerization and activates its ATPase activity, in the same

way as EscO enhances EscN oligomerization and ATPase activity in
Frontiers in Cellular and Infection Microbiology 07
T3SSs. However, to date no experimental evidence is available to

support this rotary mechanism for TrwB DNA pumping. Structural

determination of TrwB in the presence of DNA could provide

important insights in this regard.
Important aspects in the search of
common inhibitors for both
secretion systems

Based on the structural similarity between T3SS and T4SS, it

should be possible to find inhibitors that target different pathogens

simultaneously. As only pathogenic bacteria express these secretion

systems, non-pathogenic bacteria would not be targeted (Blasey

et al., 2023). Salicylidene acylhydrazides (SAHs), for instance, are a

group of chemical inhibitors active against the T3 and T4SSs of

several pathogens (Mühlen and Dersch, 2020). Interestingly, the

target of some SAH derivatives in T4SS is the inner membrane

protein VirB8, which does not present structural similarity with any

of the inner membrane components of T3SSs (Figures 1, 2).

Other T3SS inhibitors such as thiazolidinone, which inhibits

needle formation, also work on T2SSs. Since in these secretion
B

A

FIGURE 4

Structural similarities between secretion ATPases and F1-ATPase. As the structures of the secretion ATPases were unveiled, a striking similarity with
the F1-ATPase structure (Abrahams et al., 1994) was emerging. The structure of the enteropathogenic E. coli T3SS ATPase EscN (Majewski et al.,
2019), revealed an hexameric ring with a central stalk EscO that resembles the structure of the a/b ring with its central g stalk in F1-ATPase. The
structure of the T4SS coupling protein TrwB (Gomis-Rüth et al., 2001) also resembles F1-ATPase (Cabezon and de la Cruz, 2006). (A) Bottom view.
Each subunit in the ring is shown in a different color. (B) Side view. For more clarity, only two opposite subunits of the ring are shown. The “all-a-
domain” in TrwB is shown in green (residues 184–297). The equivalent domain in F1-ATPase corresponds to residues 364–474, which constitute a
mobile domain that acquires a different conformation in the three catalytic subunits and contains the residues involved in the interaction with the g-
subunit. The equivalent domain in EscN ATPase includes residues 371-446. TrwB lacks a central coiled-coil subunit. Instead, one single DNA strand
might be translocated through the internal cavity. DNA translocation could be driven by the movement of the “all-a-domain” as a consequence of
ATPase activity (by analogy to F1-ATPase). (The figure has been created by using the PDB codes: 1e1q.pdb and 1e1r.pdb (Braig et al., 2000), 6njp.pdb
(Majewski et al., 2019), and 1e9r.pdb (Gomis-Rüth et al., 2001).
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systems the OM ring consists of pore-forming proteins that belong

to the family of secretins, it is likely that this protein is the target of

those compounds (Felise et al., 2008). A recent extensive review

(Blasey et al., 2023) covers in depth the effects of many different

inhibitors in both, T3 and T4SSs. Thus, it is not the aim of this work

to focus on such analysis. While it is clear these chemical

compounds inhibit effector secretion, more work is required to

know the specific targets.

In that sense, ATPases are targets of great interest, since they are

essential to power substrate translocation. In silico structure-based

strategies to search for potential inhibitors from available libraries

are a tool with great potential. Thus, it is possible to

computationally screen millions of drug-like compounds and

identify novel and high specific inhibitors. Ideally, inhibitors

should operate through a non-competitive mechanism, in order

to avoid off-target ATPases essential for cell metabolism. Small

aromatic chemical compounds have been found to inhibit T3SS

EscN ATPase and homologs from Shigella and Salmonella (Spa47

and FliI proteins, respectively), with an IC50 value of 25 µM (Case

et al., 2020). A similar approach also allowed to identify two

inhibitors of the homolog ATPase in Chlamidya (SctN), with IC50

values ~50-100 µM (Grishin et al., 2018) and in YscN ATPase from

Yersinia, with IC50 values of ~20 µM (Swietnicki et al., 2011).

In T4SSs, most of the inhibitors against ATPases found so far have

VirB11 ATPases as molecular target. Some examples are CHIR-1

compound (Hilleringmann et al., 2006) and also 8-amino imidazo

[1,2-a]pyrazine derivatives (Sayer et al., 2014; Sayer et al., 2021), which

act as inhibitors of the activity of HP0525 ATPase in Helicobacter

pylori, with IC50 values in the rage 6 - 48 µM. Other examples are fatty

acid derivatives, such as 2-hexadecanoic or 2-bromopalmitic acids,

inhibitors of TrwD ATPase in R388 plasmid (IC50 values of ~20 µM)

(Cabezón et al., 2017; Garcıá-Cazorla et al., 2018).

While micromolar IC50 values are not optimal for the

development and use of these ATPase inhibitors as therapeutics,

the identification of non-competitive inhibitors with low cellular

toxicity is a major breakthrough, as these compounds would not

affect the activity of F-type and other essential ATPases,

compromising cell viability.
Conclusion

The objective of this review is to highlight common aspects

shared by T3 and T4SSs that might help in understanding their

molecular mechanism and, most importantly, in the pursuit of

inhibitors capable of targeting these systems. Certainly, there are

notable distinctions between them. For instance, T4SSs lack a

continuous channel in the periplasm, unlike T3SSs. Additionally,

T3SSs do not support DNA transfer and, more importantly, there is

no reported utilization of PMF as an energy source for substrate

transfer in T4SSs. These are just a few of the numerous differences

between the two systems, with several components exhibiting no
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homology. However, it is worth highlighting the homology

observed in one of the primary ATPases that serves as a power

supply in both systems. In that sense, it is important to note that in

T3SSs, EscN ATPase is capable of energizing secretion even in the

absence of bulk PMF (Terashima et al., 2018). In T3SSs, a rotary

catalytic mechanism for substrate transfer has been proposed, based

on the strong parallelism observed with the F1-ATPase (Majewski

et al., 2019). As proposed here, a similar mechanism might also

work for T4SSs.

Notable progress has been made in identifying inhibitors for

individual secretion systems. However, it would be of great interest

to discover inhibitors that can effectively target both secretion

systems simultaneously. A promising starting point for this

endeavor would be EscN/TrwB ATPases, found in T3 and T4SSs,

respectively. Employing structure-based drug design methods will

play a crucial role in developing more efficient compounds for this

shared protein target, ideally achieving IC50 values in the

nanomolar range to enhance their efficacy.
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