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The inappropriate use of antibiotics has led to the emergence of multidrug-

resistant strains. Bacteriophages (phages) have gained renewed attention as

promising alternatives or supplements to antibiotics. In this study, a lytic avian

pathogenic Escherichia coli (APEC) phage designated as PEC9 was isolated and

purified from chicken farm feces samples. The morphology, genomic

information, optimal multiplicity of infection (MOI), one-step growth curve,

thermal stability, pH stability, in vitro antibacterial ability and biofilm formation

inhibition ability of the phage were determined. Subsequently, the therapeutic

effects of the phages were investigated in the mice model. The results showed

that PEC9 was a member of the siphovirus-like by electron microscopy

observation. Biological characterization revealed that it could lyse two

serotypes of E. coli, including O1 (9/20) and O2 (6/20). The optimal multiplicity

of infection (MOI) of phage PEC9 was 0.1. Phage PEC9 had a latent period of 20

min and a burst period of 40 min, with an average burst size of 68 plaque-

forming units (PFUs)/cell. It maintained good lytic activity at pH 3-11 and 4-50°C

and could efficiently inhibit the bacterial planktonic cell growth and biofilm

formation, and reduce bacterial counts within the biofilm, when the MOI was

0.01, 0.1, and 1, respectively. Whole-genome sequencing showed that PEC9 was

a dsDNA virus with a genome of 44379 bp and GC content of 54.39%. The

genome contains 56 putative ORFs and no toxin, virulence, or resistance-related

genes were detected. Phylogenetic tree analysis showed that PEC9 is closely

related to E. coli phages vB_EcoS_Zar3M, vB_EcoS_PTXU06, SECphi18, ZCEC10,

and ZCEC11, but most of these phages exhibit different gene arrangement. The

phage PEC9 could successfully protect mice against APEC infection, including

improved survival rate, reduced bacterial loads, and organ lesions. To conclude,

our results suggest that phage PEC9 may be a promising candidate that can be

used as an alternative to antibiotics in the control of APEC infection.
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Introduction

Avian pathogenic Escherichia coli (APEC) can cause

colibacillosis in poultry, resulting in systemic infection and

characteristic fibrous lesions such as perihepatitis, pericarditis,

and airsacculitis (Guabiraba and Schouler, 2015), which have

brought detrimental economic losses in the poultry industry

worldwide. It has been reported that APEC is a reservoir of drug-

resistance genes and virulence genes of human extraintestinal

pathogenic E. coli (ExPEC), posing a major threat to human

health and public health (Tivendale et al., 2010; Mellata, 2013).

Among the various serotypes of APEC O1, O2, and O78

are the most prevalent serogroups (Wang et al., 2014; Kathayat

et al., 2021). Historically, antibiotics have been the primary

approach for preventing and control of APEC infection.

However, the long-term unreasonable use of antibiotics has led

to the emergence of a large number of multi-drug-resistant

bacteria, including APEC (Frieri et al., 2017; Qiao et al.,

2018; Roth et al., 2019). APEC can form biofilms on biotic or

abiotic surfaces to protect bacterial cells against harm. It was

indicated that biofilm enhance bacterial resistance to antibiotics

(Venkatesan et al., 2015). Consequently, there is an urgent need

to develop alternative approaches to prevent and control

bacterial infections.

Phages, which are the most abundant living entities on

earth, are viruses that exclusively infect bacteria (Clokie et al.,

2011). They have been used to treat bacterial infections since

their discovery more than a century ago (Bach-Rojecky and

Lacković, 2021). In comparison with antibiotics, phages

show many advantages in dealing with bacterial infections such as

host specificity, fast proliferation, high safety, and low cost.

Particularly, the increasing emergence of antibiotic-resistant

bacteria has led to a resurgence of interest in phage therapy

(Kutateladze and Adamia, 2010; Sharma et al., 2017). Phage

therapy has been widely used to prevent and control pathogenic

bacteria in various fields such as medicine, animal husbandry and

veterinary medicine, and food hygiene (Sarhan and Azzazy, 2015;

Caflisch et al., 2019).

In this study, a lytic APEC phage PEC9 was isolated, and its

biological characteristics and genome sequence were analyzed. The

potential use of PEC9 phage in the biocontrol of colibacillosis

was investigated.
Materials and methods

Bacterial strains and growth conditions

The bacterial strains, containing 10 Salmonella strains, 58 E. coli

strains, and 10 Staphylococcus aureus strains, were isolated from

chicken farms in eastern China through selective medium culture

and PCR confirmation in our previous studies (Wang et al., 2019;

Tao et al., 2021; Afayibo et al., 2022). These bacteria were used for

phage isolation and lytic spectrum determination. All bacteria were

grown in Luria-Bertani (LB) broth at 37°C.
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Isolation and purification of bacteriophage

A total of 50 chicken fecal samples were collected from chicken

farms in Shanghai, China. Isolation and purification of phages were

performed as previously described (Manohar et al., 2018; Kazibwe

et al., 2020) with some modifications. Briefly, particulate matter in

the samples was removed by centrifugation at 1000 × g. The

enriched culture was centrifuged at 7000 × g for 10 min at 4°C,

and the supernatant was filtered using a 0.22-mm filter membrane

(Millipore, USA) to remove bacteria. The filtrate was mixed with the

host APEC AH50 (OD600 = 0.6 ~0.8) and incubated at 37°C 120

rpm to enrich phages. The enriched culture was then filtered. Equal

volumes of the filtrate and the host AH50 were mixed with melted

semisolid medium (0.7% agarose), spread onto LB plates according

to the double-agar overlay method, and incubated overnight at

37°C. Purified phages were obtained by performing the plaque assay

six times and stored at 4°C for further studies.
Phage morphology

Phage morphology was analyzed through transmission electron

microscopy (TEM). The filtered high-titer phage particles were

dropped on a copper grid and negatively stained with 2%

phosphotungstic acid. Excess liquid was blotted off and then the

grids were observed under a FEI T12 transmission electron

microscope (FEI, Ltd, Hillsboro, OR, USA).
Determination of phage lytic spectrum

The lytic spectrum of phage PEC9 was determined by the spot

test and double-agar overlay method according to the previous

study (Sasikala and Srinivasan, 2016).
MOI assay of phage

The optimal MOI of phage PEC9 was determined as previously

described (Lu et al., 2003) with some modifications. The host strain

AH50 was mixed with diluted phage (1 × 105 - 1 × 1010 PFUs/mL) at

the MOI as 0.001, 0.01, 0.1, 1, 10, and 100. Mixtures were cultured at

37°C 120 rpm for 4 h and then filtered through a 0.22-µm filter. The

phage titers were determined using the double-agar overlay method.

The experiments were performed independently three times.
Phage adsorption rate assay

The adsorption ability of phage PEC9 was determined as

previously described (Al-Zubidi et al., 2019)with some modifications.

Briefly, phage PEC9 was mixed with host strain AH50 at anMOI of 0.1

and incubated at 37°C 120 rpm. Samples were taken every 2 min for

12 min and centrifuged to remove the absorbed phages. Finally, the

titers of unabsorbed phages in the supernatant were determined after
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serial dilution. The percentages of phage adsorption at different time

points were calculated as follows: [(initial phage titer-free phage titer in

supernatant)/initial phage titer] ×100.
One-step growth curve assay

A one-step growth curve assay was performed as previously

described with some modifications (Li et al., 2021). Phage PEC9 was

mixed with AH50 at an MOI of 0.1 and incubated at 37°C 120 rpm

for 10 min to maximize phage adsorption. Subsequently, the

mixture was centrifuged to remove unabsorbed phage. The

sediment was washed three times in PBS and resuspended with

10 mL of pre-warmed LB broth, then incubated for 130 min. During

this period, the samples were taken every 10 min. The phage titers

were determined by the double-agar overlay method. The

experiments were performed independently three times.
Thermal and pH stability

For thermal stability testing, the phage suspension was

incubated at 4, 37, 50, 60, 70, and 80°C for 1 hour, respectively.

The samples were taken after 20, 40, and 60 min and the phage titers

were determined. In addition, the phage suspension was stored at

room temperature (25°C) for 4 weeks and the phage titers were

determined every week.

For pH stability testing, the phage suspension was added to PBS

buffer at pH ranging from 2 to 13 (adjusted with HCl or NaOH for

acidic or alkaline, respectively) and incubated at 37°C for 1 h. The

viable phages in each pH environment were detected by the double-

agar overlay method.
Inhibition of planktonic bacterial cells by
phages in vitro

The bacterial challenge test of the phage was performed as

previously described with some modifications (Tao et al., 2021).

The host strain AH50 grew to an OD600nm of 0.2 and was infected

with phage PEC9 at the MOI as 0.01, 0.1, and 1 respectively,

followed by incubation at 37°C 120 rpm for 12 h. AH50 cultured

without phage PEC9 was used as the control group. Bacterial

growth was determined by monitoring the OD600nm at 2 h

intervals. Meanwhile, the number of viable bacterial cells were

determined by LB plate counting. The experiments were

performed independently three times.
Inhibition of bacterial biofilm by phages

The inhibition effect of phage PEC9 on biofilm formation by

APEC AH50 was tested by referring to previous studies (Fong et al.,

2017; Lajhar et al., 2018; Chaudhary et al., 2022). The host AH50

and phage PEC9 were inoculated into 96 well plates at the MOI of

0.01, 0.1, and 1 respectively, and cultured without shaking at 37°C
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for 24 h. Planktonic bacterial cells were removed by rinsing with

PBS buffer. After air-drying, the biofilms in the wells were stained

with crystal violet (0.2%, W/V) for 20 min. The biofilms were

solubilized with 95% absolute ethanol and the absorbance was

measured at 595 nm. The experiments were repeated in duplicate.

The effect of phage PEC9 on the number of bacteria within the

biofilm was tested as described previously (Dickey and Perrot, 2019;

Duc et al., 2020) with some modifications. After 24 h incubation, 96

well plates were washed twice with PBS to remove the planktonic

bacterial cells. The biofilms in the wells were disrupted with pipet

tips and suspended in pre-cooled PBS. The bacteria were

enumerated by plating. The experiments were repeated in duplicate.
Phage genome sequencing and analysis

Phage DNA was extracted using the Phage Genome DNA

Quick Extraction Kit (Zhuangmeng International Biology Gene

Technology Co., Ltd). DNA concentration was determined using a

spectrophotometer (Nanodrop Technologies, USA). The PEC9

genomic DNA was sequenced using an Illumina NovaSeq PE150

sequencer and reads were assembled into a whole genome using

SOAPdenovov 2.04 software and GapCloserv1.12. High-quality

paired-end reads were assembled using A5-MiSeq v20160825

(https://arxiv.org/abs/1401.5130) and SPAdes v3.12.0 (http://

cab.spbu.ru/files/release3.12.0/manual.html), and the genome

sequence was proofread using software MUMmer v3.1 (http://

mummer.sourceforge.net/) (Kurtz et al., 2004) and Pilon v1.18

(https://github.com/broadinstitute/pilon) (Walker et al., 2014).

Potential open reading frames (ORFs) were predicted using

GeneMarkS v4.32 (Besemer et al., 2001). Genome annotation was

analyzed using diamond vO.8.36 (http://github.com/bbuchfink/

diamond), HHpre (https://toolkit.tuebingen.mpg.de/#/tools/

hhpred), BLAST and Conserved Domain Identify of NCBI. The

Virulence Factor Database (http://www.mgc.ac.cn/VFs/main.htm)

and Comprehensive Antibiotic Resistance Database (https://

card.mcmaster.ca/) were queried to retrieve the toxic genes,

virulence genes, and antibiotic resistance genes in the phage

genome. tRNAscan-SE search program (https://lowelab.ucsc.edu/

tRNAscan-SE/) was used to identify putative tRNAs (Lowe and

Chan, 2016). A circular representation of the genome of phage

PEC9 was generated using BRIG software. Comparisons and

phylogenetic analysis of the genome of phage PEC9 with other

phages were conducted with the NCBI BLASTN algorithm

(http://blast.ncbi.nlm.nih.gov).
Efficacy of phage therapy for APEC
infection in mouse model

The care and maintenance of all animals were performed

following the guidelines of the Institutional Animal Care and Use

Committee of Shanghai Veterinary Research Institute, Chinese

Academy of Agricultural Sciences (CAAS). The Ethics Committee

of CAAS approved the use of mice for this study. The permit was

documented under the number SHVRI-SV-20220812-G01.
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To study the therapeutic effect of phage on APEC infection in

mice. Twenty-four 6-week-old specific-pathogen-free (SPF) BALB/

c mice were divided randomly into four groups (infection group,

treatment group 1, treatment group 2, control group), with six mice

in each group for the experiment (n=6). The mice were housed in

SPF mice isolator and had free access to food and water during the

study period. All mice in four groups were infected with AH50 of

0.2 mL by intraperitoneal administration. The treatment group 1

was administered with 0.2 mL (1.0 × 108 PFUs) (MOI=1) of phage

PEC9 intraperitoneally at the 6 h post-infection. Treatment group 2

was injected intraperitoneally with 0.2 mL (1.0 × 108 PFUs) of

phage PEC9 at 12 h post-infection. The control group was

challenged with PBS buffer. The mice were monitored daily for 14

days to calculate the survival rate.

To evaluate the therapeutic efficacy of phage PEC9 in vivo,

twenty 6-week-old SPF BALB/c mice were divided randomly into

four groups (infection group, treatment group 1, treatment group 2,

control group) with five mice in each group for the experiment

(n=5). All mice in four groups were infected with AH50 of 0.2 mL

by intraperitoneal administration. The treatment group 1 was

administered 0.2 mL (1.0 × 107 PFUs) of phage PEC9

intraperitoneally at the 6 h post-infection. Treatment group 2 was

injected intraperitoneally with 0.2 mL (1.0 × 107 PFUs) of phage

PEC9 at 12 h post-infection. The control group was challenged with

PBS. The live mice were euthanized at 24 h post-infection. Spleens

were taken aseptically, weighed, homogenized in sterile PBS, and

inoculated on LB agar plates to determine the bacteria counts. The

livers and spleens were removed under sterile conditions and were

fixed in 4% paraformaldehyde fix solution for pathological studies.

The specimen was embedded and sliced, and then stained with

hematoxylin and eosin (H&E).
Statistical analyses

Statistical analyses were conducted using the GraphPad Prism

software (version 6.0) package. Multivariate comparisons were

analyzed by using one-way or two-way analysis of variance

(ANOVA). A value of P < 0.05 was considered statistically significant.
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Results

Isolation, purification, and morphology
of phage

Phage PEC9 was isolated and purified from chicken feces using

APEC strain AH50 of serotype O1 as the host. It formed

transparent round plaques on the double-layer agar plate with a

diameter of 3.5-4 mm and clear boundaries (Figure 1A).

TEM showed that phage PEC9 was composed of an icosahedral

symmetry head with a diameter of 54.2 ± 0.8 nm and a non-

contractile long tail of 128.4 ± 1.6 nm (Figure 1B). The morphology

of the phage indicated that it belonged to the class Caudoviricetes

and T-5 like according to the guidelines of the International

Committee on Taxonomy of Viruses (Zhu et al., 2022).
Lytic spectrum determination of
phage PEC9

The lytic spectrum of phage PEC9 was determined by the spot

test and double-agar overlay method. PEC9 showed lytic activity

against two serotypes of E. coli, including O1 (9/20) and O2 (6/20)

(Table 1). The phage had no infective activity against S. Pullorum, S.

Gallinarum, S. Enteritidis, and Staphylococcus aureus.
Optimal MOI of phage PEC9

The host bacteria APEC AH50 was infected with phage PEC9 at

various ratios, and the phage titer was tested to determine the

optimal MOI. When the MOI was 0.1, PEC9 obtained the highest

titer, indicating that the optimal MOI was 0.1 (Table 2).
One-step growth curve

The results showed that phage PEC9 had an adsorption rate of

33.8% within 2 min, 52.7% within 6 min, 79.6% within 8 min, 84.1%
BA

FIGURE 1

Morphology of phage PEC9. (A) Plaque morphology of phage PEC9. (B) Transmission electron micrographs of phage PEC9. Scale bar, 50 nm or 100
nm, respectively.
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within 10 min, and 81.9% within 12 min, indicating that adsorption

reached saturation after about 10 min (Figure 2A). This result

indicated the high and rapid adsorption rate of phage PEC9.

According to the one-step growth curve (Figure 2B), phage

PEC9 had a latent period of about 20 min and a burst period of

40 min, with an average burst size of 68 PFUs/cell. The phage

reached the stationary phase after 60 min.
Thermal and pH stability of phage PEC9

The stability of phage PEC9 was tested under varied conditions.

Thermal stability tests indicated that PEC9 could survive stably in a

wide temperature range of 4-50°C (Figure 3A). However, the phage

titer was gradually decreased when the incubation temperature was

above 50°C and the phage was completely inactivated when the

temperature was raised to 70°C for 20 min. In addition, Phage PEC9

could maintain stable activity for 4 weeks at room temperature

(Figure 3B), indicating its ability to tolerate normal temperature

environments and its therapeutic potential in practical application.

Phage PEC9 was found to be stable in the pH range of 3~11

(Figure 3C), suggesting its ability to tolerate extreme environments.

The titer was dramatically decreased at pH 12 and no phages

survived at pH 2 or pH 13.
Inhibition of APEC planktonic cells by
phage PEC9 in vitro

To evaluate the antibacterial effect of phage PEC9 in vitro, the

host AH50 was infected with PEC9 at 3 different MOIs. As shown in
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Figure 4A, phage PEC9 could constantly inhibit the growth of the

host at MOI of 0.01, 0.1, and 1 in 12 h. Meanwhile, the number of

viable cells of three groups (MOI=0.01, 0.1, and 1) treated with

phages was decreased to 0.12 log10 CFU/mL, 0.11 log10 CFU/mL,

and 0.14 log10 CFU/mL, respectively, at 12 h compared with the

control group (Figure 4B).
Control of biofilm formation by
phage PEC9

The effect of phage PEC9 on inhibiting biofilm formation was

determined by crystal violet staining in 96-well plates. Compared

with the control group, the biofilm formation of APEC AH50 was

significantly inhibited by phage PEC9 when MOI=0.01, 0.1, and 1

(Figure 5A) (P < 0.001). And the bacterial viable counts within the

biofilm were significantly reduced by phage PEC9 at different MOI

(Figure 5B) (P < 0.001).
Genome analysis of phage PEC9

Whole-genome sequencing revealed that the double-stranded

DNA (dsDNA) of phage PEC9 consisted of 44379 bp with a GC

content of 54.39% (Figure 6A). The genome annotation analysis

indicated that PEC9 had 56 ORFs, of which 31 were located on the

plus strand and the other 25 were located on theminus strand. Among

the 56 ORFs, only 24 ORFs (42.9%) had annotated functions, and the

other 32 ORFs (57.1%) were annotated as hypothetical proteins. The
TABLE 1 The lytic spectrum of phage PEC9.

Bacteria Serotype No. of total strain No. of lysed by phage PEC9

Escherichia coli O1 20 9

Escherichia coli O2 20 6

Escherichia coli O18 2 0

Escherichia coli O78 8 0

Escherichia coli O8 3 0

Escherichia coli O9 5 0

Salmonella S. Pullorum, S. Gallinarum, S. Enteritidis 10 0

Staphylococcus aureus 10 0
TABLE 2 Optimal MOI of phage PEC9.

MOI Bacterial concentration (CFU/mL) Phage titer (PFU/mL) Phage titer after incubation (PFU/mL)

0.001 1×108 1×105 4.183×108

0.01 1×108 1×106 1.216×109

0.1 1×108 1×107 3.500×109

1 1×108 1×108 1.107×109

10 1×108 1×109 3.583×108

100 1×108 1×1010 5.517×108
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functional proteins were categorized into three groups, including

DNA replication/metabolism-related proteins, structure/packaging

proteins, and host lysis proteins. No tRNA genes were found in the

phage genome, indicating that PEC9 is completely dependent on the

host for protein synthesis. The integrase gene was not identified,

suggesting that phage PEC9 should be a virulent phage. In addition,

no toxin genes, virulence genes, and resistance genes were detected in

the genome of phage using the Virulence Factor Database (http://

www.mgc.ac.cn/VFs/main.htm) and Comprehensive Antibiotic

Resistance Database (https://card.mcmaster.ca/), implying the safety

of phage PEC9 in clinical application. The genome sequence of phage
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PEC9 has been deposited in the GenBank database under accession

number ON548431.1.
Comparative genomics and phylogenetic
analysis of phage PEC9

Based on the result of BLAST analyses, the genome sequence of

PEC9 displays significant similarity to many phages isolated from

different regions around the world, suggesting that complex

evolutionary relationships exist among these phages. The phylogenetic
BA

FIGURE 2

Adsorption rate and one-step growth curve of phage PEC9. (A) Adsorption rate. Adsorption of phage PEC9 to APEC AH50 was expressed as a
percentage of the total phages added. (B) One-step growth curve of phage PEC9 on APEC AH50.
B C

A

FIGURE 3

Stability of phage PEC9 under different temperature and pH. (A) Thermal stability test. (B) Room temperature storage test. (C) pH stability test.
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tree of these phages has two main branches (Figure 6B). Phylogenetic

tree analysis showed that PEC9 is closely related to E. coli phages

vB_EcoS_Zar3M (coverage 92%, identity 88%), vB_EcoS_PTXU06

(coverage 92%, identity 90%), SECphi18 (coverage 92%, identity

91%), ZCEC10 (coverage 94%, identity 91%) and ZCEC11 (coverage

94%, identity 91%). Comparisons of phage genomes were visualized

using the Easyfig 2.2.5 tool. As shown in Figure 6C, multiple alignments

of the PEC9 and relative phages showed that most of the regions are

highly homologous at protein levels, but they exhibit different gene

arrangements with each other. Compared with PEC9, some

homologous genes of phages B2, vB_EcoS_Zar3M, and SECphi8

rearranged. According to the phylogenetic analysis of the large

terminase subunit, PEC9 was clustered with the terminase of Shigella

phage vB_SboD_StarDew, Shigella phage EP23, E. coli phage SSL-2009a,

and E. coli phage vB_EcoS_011D5 (Figure 6D).
The therapeutic effect of phage PEC9

The protective effect of phage PEC9 against APEC infection was

tested in a mouse model. The mice were administered

intraperitoneally with phage PEC9 at 6 or 12 h post APEC
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infection. The survival rate of the infection group was 16.7%,

however, the survival rates of mice treated with phage PEC9 at 6

or 12 h post-infection were 66.7% or 83.3%, respectively

(Figure 7A). This result showed that phage PEC9 could improve

the survival rate of mice infected with APEC.

To evaluate the therapeutic efficacy of phage PEC9 in vivo, we

counted the viable bacteria in the mice spleens. As shown in

Figure 7B, the number of viable bacteria in the spleens of the

phage treatment groups were significantly lower than that of the

control group, and the effect of the 12 h treatment showed better

effects. In addition, we observed the pathological changes in the

liver and spleen tissues of phage-treated, control, and healthy mice

(Figure 7C). There was diffuse moderate watery degeneration of

hepatocytes in the liver tissues of infection control mice. Small

necrotic foci were occasionally seen in the lobules, the nuclei of

hepatocytes were fragmented and the cytoplasm was disintegrated.

A small amount of granulocyte infiltration and central venous

congestion were also observed. In contrast, in the livers of mice in

the 6 h treatment group, occasional venous congestion and mild

watery degeneration of hepatocytes were seen. The liver

pathological changes of mice in the 12 h treatment group were

slightly alleviated, close to those of healthy mice.
BA

FIGURE 5

The effect of phage PEC9 on biofilm formation by host AH50 was tested. (A) The bacterial biofilm formation was significantly inhibited when treated
with different MOIs of phage PEC9. (B) The bacterial counts within the biofilm were significantly inhibited by different MOIs of phage PEC9. Statistical
significance was assessed using one-way ANOVA (*** P < 0.001).
BA

FIGURE 4

Inhibition of the host planktonic cells by phage PEC9 in vitro. The host AH50 was incubated with or without phage PEC9. The growth (A) and
bacterial counts (B) of AH50 were inhibited by phage PEC9. Statistical significance was assessed using one-way ANOVA (***P < 0.001).
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For spleen lesions, we observed that the capsule structure of

spleen tissues in the control mice was not clear, with cell lysis,

degeneration, and necrosis, as well as a decrease in lymphocytes, an

increase in multinucleated giant cells, and moderate congestion of

the red pulp. Compared with the AH50-control group, the capsule

structure of spleen tissues in the treatment group was clear and

normal, accompanied by an increase in multinucleated giant cells.

These results indicated that phage PEC9 can effectively alleviate the

liver and spleen lesions caused by APEC infection.
Discussion

Avian colibacillosis caused by APEC results in huge economic

losses to the poultry industry worldwide. APEC infections have

traditionally been controlled by antibiotics. However, the

unreasonable use of antibiotics leads to bacterial multi-drug

resistance. Against this backdrop, phages as alternatives to

antibiotics, have received extensive attention from scholars both

domestically and internationally. The therapeutic effect of phage in

mice infected with APEC has been evaluated (Wang et al., 2006).

In this study, a lytic APEC phage PEC9 was isolated and purified

from chicken feces. It is necessary to conduct biological characteristics

and whole-genome analysis before determining whether a phage can be

a potential antimicrobial agent. Phage PEC9 can specifically lyse E. coli
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of O1 and O2 serotypes, with a cleaving rate of 33.3% and 13.3%

respectively, showing stronger lysis ability compared to the E. coli

phage isolated by Xu et al. (Xu et al., 2018). Electron microscopy

observation and genome sequencing showed that PEC9 was a member

of the class Caudoviricetes. Caudoviricetes (isometric head and non-

contractile tail) is the most common phage group discovered to date.

The optimal MOI of PEC9 was 0.1, suggesting that fewer phages can

produce large numbers of phage progeny. The adsorption of phage

particles to bacterial cells is the initial and key step in phage infection.

About 84.1% of phage PEC9 adsorbed on the host within 10 min,

indicating its high and rapid adsorption rate. The latent period, burst

size, and stability of phage in different environments are key factors for

the therapeutic applications of phages. Phages with larger burst sizes

are beneficial for eliminating the targeted bacteria. PEC9 had a latent

period of 20 min and an average burst size of 68 PFU/cell, which was

different from phage JS09 with a latent period of 30 min and a burst

size of 79 PFU/cell (Zhou et al., 2015). Phage PEC9 had a wide range of

adaptability to temperatures ranging from 4 to 50°C and can retain

stability at room temperature for four weeks. In addition, PEC9 was

stable in the pH range of 3-11, showing its tolerance ability to extreme

environments. These results suggested its suitability for

practical applications.

APEC can form biofilms on biotic or abiotic surfaces, which

contributes to antibiotic resistance and prolonged infections, making

treatment more difficult. PEC9 efficiently inhibited the bacterial
B

C D

A

FIGURE 6

Phage PEC9 whole-genome analysis. (A) Circular genome map of phage PEC9. The genomic organization of phage PEC9 was compared to E. coli
phages PC2, SSL-2009a, EC115, B2, YD-2008.s, SECphi18 and vB EcoS Zar3M. The coincident regions of other E. coli phages were displayed, and
the blank was the non-coincident region. The outermost circle represents some important functional proteins of phage PEC9. (B) Neighbor-joining
phylogenetic tree constructed based on the whole genome sequences of E. coli phages. (C) Linear comparison analysis between the whole genome
of E. coli phages PEC9 and B2, SECphi18, and vB EcoS Zar3M. The shade of color in the middle shaded part indicates the degree of homology.
Arrows indicate open reading frames transcribed in either the rightward or leftward direction. (D) A Neighbor-joining tree constructed based on the
amino acid sequence of terminase large subunit.
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planktonic cell growth and biofilm formation, and reduce bacterial

counts within the biofilm, when the MOI was 0.01, 0.1, and 1

respectively. The strong lytic ability of PEC9 suggested its potential

to combat bacterial infections. The analysis of some biological

properties of PEC9 provides a theoretical basis for its future

applications. The bacterial counts within the mouse spleen and the

survival rate of mice showed the protective effect of phage PEC9 on

mice infected with APEC. It was also shown that different vaccination

times affected the treatment efficacy. Pathological examination of

mouse livers and spleens further confirmed the therapeutic effect of

phage PEC9, reflecting the potential of this phage in the treatment

of colibacillosis.

Whole-genome analysis is an effective way to further

understand the characteristics of phage. Phages, as vectors for

horizontal gene transfer, are probably a potential reservoir for

antibiotic-resistant genes, virulence genes acquisition, and

dissemination (Balcazar, 2014; Touchon et al., 2017). No toxin

genes, virulence genes, resistance genes, and integrase genes were

identified in the whole genome of phage PEC9 through some online

databases, indicating its safety in clinical application as a bacterial

control agent. Both whole-genome sequence alignment analysis and

phylogenetic analysis based on the conserved terminate large

subunit show that PEC9 is closely related to other phages. This

suggested a complex evolutionary relationship between these

phages. The results of the comparative genomic analyses extend

our understanding of the evolution and relationship between PEC9

and its bacteriophage relatives.
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In this study, we successfully isolated a novel APEC phage,

PEC9, which could lyse two serotypes of E. coli and showed high

tolerance to temperature and pH. Moreover, phage PEC9 had a

strong lysis ability and significantly inhibited bacterial planktonic

cell growth in vitro, biofilm formation, and bacterial counts within

the biofilm of the host strain. Whole-genome analysis showed the

safety of the phage in clinical applications. PEC9 exerted protective

effects on mice infected with APEC. All these results suggest that

phage PEC9 may be a candidate for the treatment of major

prevalent serotypes of APEC infections.
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FIGURE 7

The therapeutic effect of phage PEC9 against APEC infection in vivo. (A) Survival rates of mice. The mice were administered intraperitoneally with
phage PEC9 at 6 or 12 h post-infection. Mice injected with APEC AH50 or PBS only were used as the control groups. The survival rates of mice were
monitored. (B) Bacteria concentrations in spleens of the phage-administered and control mice. The live mice were sacrificed at 24 h post-infection.
(** P < 0.01). (C) Histopathological examination of mouse livers and spleens in 24 h after infection. From left to right, the pathological section results
of livers and spleens of mice in the healthy group, the infection control group, the 6 h treatment group, and the 12 h treatment group. In the liver
pathological micrographs, the black arrows indicate moderate watery degeneration of diffuse liver cells, swelling of liver cells, loose cytoplasm, and
small vacuoles in the cytoplasm. The yellow arrow indicates necrotic foci in lobules, broken nuclei of hepatocytes, disintegration of cytoplasm,
and minimal granulocyte infiltration. The green arrows indicate central vein congestion. In the spleen pathological micrographs, the black arrows
indicate that the number of lymphocytes is reduced and the red pulp is moderately congested. The yellow arrows indicate that multinucleated giant
cell increase.
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