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Gut microbiota causally affects
cholelithiasis: a two-sample
Mendelian randomization study

Xin Liu, Xingsi Qi, Rongshuang Han, Tao Mao and Zibin Tian*

Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
Background: The gut microbiota is closely linked to cholesterol metabolism-

related diseases such as obesity and cardiovascular diseases. However, whether

gut microbiota plays a causal role in cholelithiasis remains unclear.

Aims: This study explored the causal relationship between gut microbiota and

cholelithiasis. We hypothesize that the gut microbiota influences cholelithiasis

development.

Methods: A two-sample Mendelian randomization method was combined with

STRING analysis to test this hypothesis. Summary data on gut microbiota and

cholelithiasis were obtained from the MiBioGen (n=13,266) and FinnGen R8

consortia (n=334,367), respectively.

Results: Clostridium senegalense, Coprococcus3, and Lentisphaerae increased

the risk of cholelithiasis and expressed more bile salt hydrolases. In contrast,

Holdemania, Lachnospiraceae UCG010, and Ruminococcaceae NK4A214

weakly expressed bile salt hydrolases and were implied to have a protective

effect against cholelithiasis by Mendelian randomization analysis.

Conclusion: Gut microbiota causally influences cholelithiasis and may be related

to bile salt hydrolases. This work improves our understanding of cholelithiasis

causality to facilitate the development of treatment strategies.

KEYWORDS

gal l s tones , causal re lat ionship , b i le sa l t hydrolase , gut microbiota ,
Mendelian randomization
Introduction

Cholelithiasis (also known as gallstones) is defined as a solid clot in the gallbladder or

biliary system (Lammert et al., 2016). Approximately 90% of cholelithiasis occurrences are

cholesterol gallstones, while the incidence of other stone types (including black and brown

pigment stones) is below 10% (Sun et al., 2022). Approximately 10–20% of the global

population has gallstones, and over 20% of cases develop gallstone diseases, such as acute
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cholecystitis, acute cholangitis, and obstructive jaundice (Cortés

et al., 2020). Gallstone disease is one of the most expensive

gastrointestinal conditions from a societal perspective (Grigor’eva

and Romanova, 2020). Epidemiological studies identified numerous

risk factors for cholesterol stones, which include type 2 diabetes,

physical inactivity, and over-nutrition (Di Ciaula et al., 2019). This

finding can be attributed to the risk factors that lead to excess

cholesterol or disruption of cholesterol homeostasis (Rudling

et al., 2019).

The gut microbiota has a non-negligible impact on metabolic

disorders, including insulin resistance (Gomes et al., 2018), obesity

(Abenavoli et al., 2019), and hyperlipidemia (Michels et al., 2022).

These disorders are known risk factors for increased hepatic

cholesterol synthesis, gallstone formation, and symptomatic

gallstones (Di Ciaula et al., 2019). However, the role of intestinal

microbiota in gallstone development remains unclear. Elevated

levels of cholesterol and bilirubin in the bile and decreased levels

of bile salts cause cholesterol gallstones (Sun et al., 2022). Decreased

bile salt levels are observed in liver disease and in conditions such as

Crohn’s disease or in individuals that have undergone colectomy or

intestinal resection, where the enterohepatic circulation of bile salts

is impaired (Molina-Molina et al., 2018). These findings led us to

hypothesize that the gut microbiota and intestine may play key roles

in influencing gallstone formation in the host. The diversity and

taxonomy of gut microbiota are associated with bile acid levels in

gallstone disease, and increased concentrations of taurodeoxycholic

acid and taurocholic acid are associated with the presence of

conditionally pathogenic bacteria (Petrov et al., 2020). However,

intestinal flora is often influenced by confounding factors, including

age, sex, environment, alcohol consumption, diet, and lifestyle

(Zmora et al., 2019). Eliminating these confounders in

observational studies can be challenging, thereby limiting research

on the causal role of gut microbiota in gallstones. Fortunately,

Mendelian randomization (MR) analysis can be employed to

explore the causal role of intestinal microbiota in the etiology of

human diseases independent of confounding factors (O’Donnell

et al., 2023).

MR borrows economically inspired statistical techniques to

enable researchers to examine the causal factors affecting human

diseases (Birney, 2022). Numerous risk factors related to diseases

have not established causation owing to the limitations of

observational studies that cannot avoid the influence of

confounders. Thus, MR has become one of the most effective

methods for addressing issues in human biology and

epidemiology, including the relationship between intestinal

microbiota and disease (Georgakis and Gill, 2021). The

correlation between genetic variation and outcome is independent

of confounders in MR analysis (Bowden and Holmes, 2019). For

instance, MR analysis has revealed that Bifidobacterium is causally

linked to preeclampsia-eclampsia (Li et al., 2022), and the fecal

abundance of Oscillibacter and Alistipes is causally associated with

decreased triglyceride levels (Liu et al., 2022).

This study used summary-level statistics of the genome-wide

association study (GWAS) from the MiBioGen and FinnGen

consortia to perform a two-sample MR analysis to investigate the

causal relationship between intestinal microbiota and cholelithiasis.
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Materials and methods

The two-sample MR study relied on three assumptions to draw

conclusions regarding causation. Genetic variants strongly predict

microbiome exposure independent of confounding factors and

outcomes. Genetic variants influence outcomes through exposure

(Emdin et al., 2017).
Data sources

Single nucleotide polymorphisms (SNPs) related to intestinal

microbiota were obtained from the GWAS dataset of the

International Consortium MiBioGen and were used as

instrumental variables (IVs). This study included 34,024 individuals

from 18 cohorts predominantly of European ancestry (including

those from the United States, Canada, Israel, South Korea, Germany,

Denmark, The Netherlands, Belgium, Sweden, Finland, and the

United Kingdom). The dataset provided genotyping data that

coordinated 16S ribosomal RNA gene sequencing to examine the

relationship between genetic variants and intestinal microbiota by

profiling taxonomic classification. A total of 211 taxa were included

in the analysis. We selected SNPs that showed significant correlations

with genus at a suggestive of genome-wide significance thresholds

(P < 1× 10−5, F >10) as potential IVs fromMiBioGen (Li et al., 2022).
Data outcome

GWAS summary statistics for cholelithiasis were acquired from

the FinnGen Consortium R8 release data. The phenotype

“cholelithiasis” was adopted in our research. The GWAS

consisted of 32,894 cases and 301,383 controls. The mean age of

the patients was 52.11 years old (female: 48.62, male: 59.36). The

principal components (sex and age), and the genotyping batch were

corrected during the analysis. SNPs were identified with genome-

wide significant correlations with cholelithiasis (P < 5 × 10−8).
Instrumental variable filtering

First, SNPs showing significant correlations with the genus were

selected at suggestive genome-wide significance thresholds from the

MiBioGen as potential IVs (P < 1× 10−5, F >10). A chain imbalance

threshold (R2 < 0.001) and linkage disequilibrium threshold of

10,000 kbp was then applied to ensure independence among the

selected SNPs. Single nucleotide polymorphisms that were unclear,

duplicated, or palindromic were removed to ensure consistent SNP

orientation in the exposure and results. Next, SNPs should have

P >1×10-5 to ensure that SNPs are independent of the outcome.

Finally, the PhenoScanner online tool was used to check whether

the SNPs affected the outcome, followed by their manual exclusion.

The MR-Egger intercept analysis was employed to test for

horizontal pleiotropy (P> 0.05) and leave-one-out analysis was

conducted to assess whether each IV affected the overall estimates

of the remaining IVs.
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MR analysis

The most frequently used MRmethods were used to analyze the

causal relationship between intestinal microbiota and cholelithiasis.

They were inverse variance weighted (IVW), MR-Egger, weighted

median, weighted mode, and simple mode.
Reverse MR analysis

MR inverse analysis was performed to explore whether

cholelithiasis had a causal effect on the identified microbiomes.

During this analysis, cholelithiasis and bacteria was considered as

an exposure and an outcome, respectively, SNPs with notably

correlated with cholelithiasis were taken as IVs.

All data analysis was used R software (version 4.2.1) to conduct.

We applied the IVW, weighted median, and MR-Egger regression

methods using the R packages of “TwoSampleMR” (version 0.5.6).

And “MRPRESSO” package was used to perform the MR-

PRESSO analysis.
SRTING analysis

The STRING database collects and integrates protein-protein

interaction (PPI), performs enrichment analysis and highlights

proteins in the PPI network (Szklarczyk et al., 2023). We tried to

use the STRING to predict the function of BSH in the bacteria

(https://string-db.org), and conduct ontology (GO)and KEGG

enrichment analysis. Statistical significance was defined as p<0.05.
Results

Single nucleotide polymorphism selection

A total of 2557 SNPs related to 211 taxa were identified as IVs of

the gut microbiota. A series of quality control steps was performed

resulting in the selection of 72 SNPs associated with six genera and

one phylum (based on the IVW P-value < 0.05). Analysis of these 72

SNPs using PhenoScanner showed that no SNPs were related to

confounding factors. Heterogeneity between the two samples was

tested using Cochran’s Q statistics and no evidence of heterogeneity

(p > 0.05) or horizontal pleiotropy of the IVs was observed

(MRPRESSO-global, p > 0.05; MR-Egger intercept, p > 0.05)

(Table S1). The MR analysis results are shown in Figure 1.
Detailed MR results

Five genera (Clostridiumsenegalense, Coprococcus3, Holdemania,

Lachnospiraceae UCG010, and Ruminococcaceae NK4A214) and one

phylum (Lentisphaerae) of the microbiome were suggested to have

causal relationships with cholelithiasis. IVW analysis suggested that

Clostridiumsenegalense (OR=1.244, 95% CI:1.091–1.419),

Coprococcus3 (OR=1.236, 95% CI: 1.047–1.458), and the
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Lentisphaerae phylum (OR=1.081, 95% CI: 1.004–1.164) increased

the risk of cholelithiasis. Meanwhile, Holdemania (OR=0.911, 95%

CI: 0.841–0.987), Lachnospiraceae UCG010 (OR=0.835, 95%

CI:0.740–0.942), and Ruminococcaceae NK4A214 (OR=0.860, 95%

CI:0.768–0.963) had a protective effect on cholelithiasis (Table 1).
Sensitivity analysis

Sensitivity analysis is necessary to assess the effectiveness of

IVWs. The MR-Egger method was used to assess horizontal multi-

effectiveness. The MR-Egger intercept and MR-PRESSO global tests

indicated a low likelihood of horizontal multiplicity (Table S1, p >

0.05). All I2 values in the heterogeneity tests were <50%, and all p-

values were >0.05. This finding indicated that our findings were

probably not influenced by heterogeneity bias. The MR-Egger

intercept and the MR-PRESSO global test showed no significant

horizontal pleiotropy. This result indicated that the outliers did not

significantly affect the results. Simultaneously, the consistency of the

robust IVW (adjusted for the effect of outliers) and MR-PRESSO

(adjusted for the effect of horizontal multiplicity) supported the lack

of significant outlier effects on the results (Table S1). A leave-one-

out analysis was also conducted to assess whether each IV affects the

overall estimates of the remaining IVs. These results suggested that

none of the single IV treatments affected the results (Figure 2).
The causal effects of gut microbiota and
cholelithiasis via inverse MR analysis

The reverse causal effects were examined using cholelithiasis as

the exposure and intestinal microbiota as the outcome. Forty-three

SNPs associated with cholelithiasis were selected as IVs (P < 5 × 10-8).

Cholelithiasis was causally associated with Actinobacteria,

Lachnospiraceae, Clostridium innocuum, Eggerthella, Eubacterium

brachy, Intestinimonas, Paraprevotella, and Mollicutes RF9

(Table 2). None of the bacteria exhibited a bidirectional causal

relationship with cholelithiasis and gut bacteria.
Microbiota causally linked to cholelithiasis
may be associated with bile salt hydrolase

Bile acids (BAs) are divided into primary and secondary

categories. Primary BAs are excreted into the intestine and

converted into secondary BAs by intestinal microorganisms (Sinha

et al., 2020). The initial step involves hydrolysis of the amino acid

fraction by BSH during secondary BA metabolism (Smirnova et al.,

2022). BSH (also known as choloylglycine hydrolase) is present in the

intestinal microbiome tomaintain BA balance. Imbalances in BAs are

associated with gallstones, gallbladder disease, obesity, and diabetes

(Cai et al., 2022a). BSHs are highly conserved in all major gut

microbial phyla (including Bacteroidetes, Firmicutes, and

Actinobacteria); however, they are bacterially different owing to

their preferential activity toward glycine- or taurine-conjugated

BAs. The Human Microbiome Project reported that 26.03%
frontiersin.org

https://string-db.org
https://doi.org/10.3389/fcimb.2023.1253447
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2023.1253447
bacterial strains encode BSHs (Song et al., 2019). Thus, gut

microbiota-related BSH directly determines the synthesis of

secondary bile acids, which involve in regulating cholesterol

metabolism. We hypothesized that BSH may be a link between

intestinal microbiota and gallstone causation. Thus, we selected

BSHs of the microbiome (that are associated with cholelithiasis by

MR analysis) in the Human Microbiome Project database and

National Center for Biotechnology Information database for

protein–protein interaction (PPI) analysis. Clostridium and

Coprococcus were predicted as a risk factor for cholelithiasis by MR

and they expressed more BSHs than the protective bacteria
Frontiers in Cellular and Infection Microbiology 04
(Holdemania, Lachnospiraceae UCG010, and Ruminococcaceae

NK4A214) (Figures 3A, B, D, E). Similarly, inverse MR analysis

predicted cholelithiasis as a risk factor for Intestinimonas, which

expresses BSH (Figures 3C, F). We also used STRING to predicted

the function of Clostridium, Coprococcus and Intestinimonas.

Enrichment analysis showed that the bile acid catabolic process

and secondary bile acid biosynthesis were enriched in Clostridium

and Coprococcus according to Gene Ontology analysis and Kyoto

Encyclopedia of Genes and Genomes pathway analysis.

Intestinimonas was only enriched for secondary bile acid

biosynthesis (Table S2). No enrichment of secondary bile acid
B

C D

E F

A

FIGURE 1

Scatter plots of Mendelian randomization (MR) analysis. The scatter plot of Clostridiumsenegalense (A), Coprococcus3 (B), Holdemania (C),
Lachnospiraceae UCG010 (D), Ruminococcaceae 617 NK4A214 (E), and Lentisphaerae (F).
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1253447
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2023.1253447
biosynthesis in microbiota was observed that did not contain the BSH

protein. These results suggest that BSH may serve as a link between

gut microbiota and cholelithiasis (Figure 4).
Microbiota linked to serum total
cholesterol may be associated with BSH

Lower total cholesterol levels in serum may be an independent

risk factor for cholelithiasis (Chen et al., 2022). It has been proved
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that one of the effects of BSH on host is cholesterol lowering

(Ertürkmen et al., 2023), and Terrisporobacter was associated with

higher total cholesterol levels (Guo et al., 2023). We detected the

expression of HBS in Terrisporobacter, the red node represented

BSH, and the functional enrichments was predicted by STRING, no

enrichments were found (PPI enrichment P value: 0.457) and the

function was described protein lipoylation and CoA hydrolase

activity rather than bile acid or fatty acid metabolism (Figure 5).

the result indicated that BSH of Terrisporobacter may be little

function in bile acid or fatty acid metabolism.
TABLE 1 The MR analysis of causal effects between gut microbiota and cholelithiasis.

Bacterial
taxa (exposure)

MR method No. SNP F-statistic OR 95%IC p-value

Genus- Clostridium
senegalense

IVW 8 31.43 1.24 1.09-1.42 0.001

MR Egger 8 1.33 0.93-1.90 0.169

Weighted median 8 1.20 1.00-1.44 0.169

Weighted mode 8 1.19 0.92-1.53 0.225

Simple mode 8 1.40 1.06-1.86 0.051

genus Coprococcus3 IVW 8 27.44 1.24 1.05-1.46 0.012

MR Egger 8 1.39 0.54-3.60 0.525

Weighted median 8 1.22 0.97-1.53 0.088

Weighted mode 8 1.24 0.86-1.79 0.28

Simple mode 8 1.24 0.86-1.78 0.294

genus Holdemania IVW 17 48.51 0.91 0.84-0.99 0.023

MR Egger 17 0.99 0.79-1.25 0.226

Weighted median 17 0.93 0.83-1.04 0.042

Weighted mode 17 1.00 0.82-1.23 0.209

Simple mode 17 1.00 0.80-1.23 0.211

genus Lachnospiraceae UCG010 IVW 12 36.14 0.84 0.74-0.94 0.003

MR Egger 12 0.89 0.61-1.30 0.564

Weighted median 12 0.87 0.73-1.02 0.084

Weighted mode 12 0.89 0.67-1.18 0.434

Simple mode 12 0.87 0.65-1.16 0.360

genus Ruminococcaceae NK4A214 IVW 16 28.49 0.86 0.77-0.96 0.009

MR Egger 16 0.19 0.65-1.28 0.604

Weighted median 16 0.81 0.70-0.94 0.007

Weighted mode 16 0.82 0.66-1.01 0.080

Simple mode 16 0.81 0.63-1.04 0.119

phylum Lentisphaerae IVW 11 88.05 1.08 1.00-1.16 0.038

MR Egger 11 1.02 0.76-1.38 0.882

Weighted median 11 1.06 0.96-1.17 0.261

Weighted mode 11 1.07 0.90-1.27 0.461

Simple mode 11 1.08 0.91-1.27 0.404
fro
OR, odds ratio; CI, confidence interval; IVW, Inverse variance weighted; No., number; SNP, single-nucleotide polymorphism; MR, Mendelian randomization.
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Discussion

This study used the MiBioGen database and cholelithiasis data

from FinnGen to investigate the causal relationship between gut

microbes and cholelithiasis using MR analysis. Clostridium

senegalense, Coprococcus3, and Lentisphaerae increase the risk of

cholelithiasis. In contrast, Holdemania, Lachnospiraceae UCG010,

and Ruminococcaceae NK4A214 showed protective effects. The
Frontiers in Cellular and Infection Microbiology 06
causal relationship identified BSH as a potential link between bile

salt metabolism and the gut microbiota.

The intestinal microbiota is a metabolic organ that produces

numerous metabolites (Connell et al., 2022) (including BAs and

indole derivatives) (Agus et al., 2018) that play crucial roles in

regulating host metabolism (Cai et al., 2022b). Cholesterol oxidized

by liver enzymes results in the production of BAs that are further

metabolized by the intestinal microbiota (Collins et al., 2023). The
FIGURE 2

Leave-one-out sensitivity analysis. Leave-one-out sensitivity analysis of Clostridiumsenegalense (A), Coprococcus3 (B), Holdemania (C),
Lachnospiraceae UCG010 (D), Ruminococcaceae NK4A214 (E), and Lentisphaerae (F).
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1253447
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2023.1253447
gut microbiota regulates key enzymes, such as cholesterol-7a-
hydroxylase (CYP7A1), involved in BA synthesis (Hartmann

et al., 2018; Fukui, 2021), and BA synthesis is tightly controlled

by negative feedback inhibition through the farnesoid X receptor

(FXR) (Jia et al., 2018). Bile acid deconjugation is primarily

mediated by bacteria with BSH activity (Smirnova et al., 2022).

Thus, intestinal microbiota plays a significant role in the key

enzymatic processes involved in cholesterol synthesis in the liver,

secondary BA production, and enterohepatic circulation of BAs.

The balance between cholesterol and bile salts is a critical factor

for gallstones (Ye et al., 2021). Previous studies have revealed direct

associations between taurocholic acid, taurochenodeoxycholic acid,

and alpha diversity of the microbiota, together with positive

associations with the genera Chitinophagaceae, Microbacterium,

Lutibacterium, and Prevotella intermedia (Petrov et al., 2020).

Patients with gallstones exhibit an increased richness of 7a-

dehydroxylating microbiota and decreased levels of Fimicutes and

diversity of gut microbiota (Wang et al., 2020). Additionally, the

abundance of Lactobacillus strains significantly reduced in

lithogenic diet-induced gallstones through the mediation of FXR

signaling (Ye et al., 2022). However, the causal correlation between

the intestinal flora and cholelithiasis remains unclear. Our study

predicted that presence of abundance of Clostridium senegalense

and Coprococcus3 have a causal relationship with cholelithiasis.

Many observational studies report a correlation between

Clostridium and gallstone disease. For instance, patients with

gallstones have elevated levels of Clostridium in the stool

(Grigor’eva and Romanova, 2020), and Clostridium species were

isolated from gallbladder stones (Liu et al., 2000), consistent with

the results of our study. We found a causal association between

Clostridium senegalense and cholelithiasis. Clostridium-encoded

protein analysis revealed that Clostridium had two genes of BSH

consistent with a previous study (Song et al., 2019). The presence of

greater amounts of bacteria with BSH leads to increased bile salt
Frontiers in Cellular and Infection Microbiology 07
deconjugation, resulting in elevated biliary deoxycholate levels,

positive regulation of hepatic cholesterol secretion, and

cholesterol crystallization (Lammert et al., 2016). Furthermore,

increased hydrolysis can lead to steatosis, and increased

secondary bile acid levels are associated with colorectal cancer

(Horáčková et al., 2018). Recent research showing that

theabrownin can reduce hypercholesterolemia by inhibiting the

intestinal microbiota related to BSH activity indirectly supports

our hypothesis. The underlying mechanism may be that low BSH

activity increased the concentration of conjugated BAs, which could

inhibit the FXR-FGF15 signaling pathway, thereby led to decreased

hepatic cholesterol synthesis (Huang et al., 2019). However, the

effect of BSH on the microbiota in cholelithiasis causation requires

verification and further exploration.

Coprococcus was also predicted to be a risk factor for gallstone

disease, and encoded BSH proteins which was similar to the previous

study (Song et al., 2019). Moreover, the relative abundance of BSH in

the microbiota is significantly associated with mortality from diabetes

and cardiovascular disease (Song et al., 2019). This finding further

emphasizes the significance of BSH in cholelithiasis. Further research

is required to understand how BSH in Clostridium and Coprococcus

affect the formation of cholesterol stones. Recent studies show that

Desulfovibrionales are enriched in cholelithiasis patients, increase the

synthesis of secondary BAs and intestinal cholesterol uptake,

stimulate biliary secretion, and affect FXR and CYP7A expression

[15]. Further research is required to determine whether BSHs in

Clostridium and Coprococcus promote cholesterol stone formation by

increasing the secondary BA synthesis.

The present study revealed the protective effects of

Lachnospiraceae UCG010 and Ruminococcaceae NK4A214 against

cholelithiasis. These strains did not express BSH. This result

suggests that BSH deficiency might be a protective factor against

gallstone formation; however, this hypothesis requires verification.

Microbial conversion of cholesterol to coprostanol is another
TABLE 2 Inverse MR analysis the causal effects of gut microbiota and cholelithiasis.

Bacterial
taxa (outcome)

MR method No. SNP OR 95%IC p-value

Class
Actinobacteria

IVW 10 1.160 1.059-1.271 0.001

Family Lachnospiraceae IVW 23 0.96 0.929-0.993 0.001

Genus
Clostridium innocuum

IVW 23 0.930 0.867-0.998 0.043

Genus
Eggerthella

IVW 23 0.917 0.859-0.978 0.008

Genus
Eubacterium brachy

IVW 23 0.928 0.865-0.995 0.036

Genus
Paraprevotella

IVW 23 0.944 0.893-0.999 0.044

Genus
Intestinimonas

IVW 23 1.048 1.006-1.091 0.026

Order
Mollicutes RF9

IVW 23 1.048 1.098-1.000 0.048
fro
OR, odds ratio; CI, confidence interval; IVW, Inverse variance weighted; No., number; SNP, single-nucleotide polymorphism; MR, Mendelian randomization.
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mechanism that reduces cholesterol and decreases the formation of

cholesterol stones (Kenny et al., 2020). Lactobacillus curvatus

KFP419 strain reduce cholesterol levels by increasing the

conversion of cholesterol to coprostanol (Park et al., 2018).

Lachnospiraceae and Ruminococcaceae are reportedly associated

with high coprostanol levels (Antharam et al., 2016). An elevation

of sterol metabolites coincides with increases in the Lachnospiraceae
Frontiers in Cellular and Infection Microbiology 08
family in vitro, implying that this family promotes sterol

metabolism (Blanco-Morales et al., 2020). These findings suggest

that the protective effects of Lachnospiraceae and Ruminococcaceae

against cholelithiasis may be related to cholesterol conversion;

however, the underlying mechanisms require further exploration.

To the best of our knowledge, this is the first MR investigation

revealing a link between gut microbiota and cholelithiasis. Robust
B

C

D E
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FIGURE 3

The number of bile salt hydrolases (BSHs) in microbiota. (A) The number of BSHs in microbiota genera base on HMP database. (B) The number of
BSHs in microbiota genera based on Mendelian randomization (MR) analysis and reverse MR analysis (C). The number of BSH- related proteins in (D)
Coprococcus, (E) Clostridium, (F) Intestinimonas, red represents BSH, blue and green dots represent BSH-related proteins.
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B

A

FIGURE 5

The analysis of Terrisporobacter othiniensis by protein-protein interaction (PPI). (A) The number of BSHs in Terrisporobacter othiniensis, red
represents BSH. (B) Functional prediction of Terrisporobacter othiniensis by STRING. BSH, bile salt hydrolase; KEGG, Kyoto Encyclopedia of Genes
and Genomes; PPI, protein-protein interaction.
FIGURE 4

The framework of two-sample Mendelian randomization analysis results. Gut microbiota causally influences cholelithiasis, while cholelithiasis
impacts the composition of gut microbiota. GCA, glycocholic acid; TCA, taurocholic acid. GCDCA, Glycochenodeoxycholic acid; TCDCA,
Taurochnodeoxycholic acid; CA, Cholic acid; CDCA, Chenodeoxycholic acid; DCA, Deoxycholic acid; LCA, Lithocholic acid; UDCA, Ursodeoxycholic
acid; BSH, bile salt hydrolase.
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genetic instruments were employed with a test of horizontal

pleiotropy and two-sample heterogeneity to obtain reliable results

from the MR analysis. Additionally, a leave-one-out analysis was

performed to examine potential biases introduced by individual

SNPs. Five sets of genetic instruments were used for MR analysis. In

addition, the concept of BSH was introduced as an innovative

approach to investigate the underlying mechanisms of the causal

association between microbiota and cholelithiasis.

Nevertheless, this study has limitations. First, most patients with

cholelithiasis in the analysis were of European descent, whereas the

gut flora database encompasses other populations. Second, the

potential association between microbiota and cholelithiasis by BSH

was only superficially speculated. Further research is required to

elucidate the underlying mechanisms and causal relationship. Third,

subgroup analyses such as distinguishing between symptomatic and

asymptomatic cholelithiasis was not possible because summary data

for cholelithiasis was used in our analysis. Fourth, our exploration

was limited to the genus level owing to the lowest taxonomic level

available in the gut microbiota dataset, thus impeding a more detailed

investigation at the species level. Additionally, some bacteria were

predicted to be present at the phylum level; we could not analyze their

BSH proteins. Finally, the sample size of the exposure group was

relatively small; therefore, the reverse MR analysis results could not

completely exclude the possibility of reverse causality.
Conclusion

Our investigations demonstrated a causal relationship between

cholelithiasis and Clostridium senegalense and Coprococcus3, whereas

Holdemania, Lachnospiraceae UCG010, and Ruminococcaceae

NK4A214 had a protective effect. The causal relationship between

the gut microbiota and cholelithiasis may be mediated by BSH. In

addition, reverse MR analysis supported a causal relationship

between cholelithiasis and the intestinal microbiota. Moreover,

these findings suggest that cholelithiasis may influence the gut

flora. Further validation and mechanistic studies are required.
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