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Dengue is prevalent in tropical and subtropical regions. As an arbovirus disease, it

is mainly transmitted by Aedes aegypti and Aedes albopictus. According to the

previous studies, temperature is closely related to the survival of Aedes

mosquitoes, the proliferation of dengue virus (DENV) and the vector

competence of Aedes to transmit DENV. This review describes the correlations

between temperature and dengue epidemics, and explores the potential reasons

including the distribution and development of Aedes mosquitoes, the structure

of DENV, and the vector competence of Aedes mosquitoes. In addition, the

immune and metabolic mechanism are discussed on how temperature affects

the vector competence of Aedes mosquitoes to transmit DENV.
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Introduction

Dengue is an acute infectious disease caused by dengue virus (DENV), which is

transmitted by Aedes aegypti (Ae.aegypti) and Aedes albopictus (Ae.albopictus) (Bifani et al.,

2022). Dengue is characterized by rapid transmission, high morbidity, universal

susceptibility and high fatality rate. The majority of the infected are asymptomatic or

only experience mild symptoms including high fever, headache, skin rash, and systemic

muscle and joint aches. A few cases may develop severe bleeding and other clinical

complications, such as skin purpura and ecchymosis, nosebleed, digestive and urogenital

tracts bleeding, hemorrhagic shock, which may even lead to death (Gulati and Maheshwari,

2007; Wilder-Smith et al., 2019). The severe dengue is more common among infants, old

people, pregnant individuals, people experiencing a second dengue infection, and people

with certain underlying conditions (Hernandez-Romieu et al., 2023).
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Dengue is a growingproblemin its geographical spread (Bradyet al.,

2012) and has established its own status globally in both endemic and

epidemic transmission cycles (Bhatt et al., 2013). It is estimated that 390

million people from over 125 countries are annually infected with

dengue (Gutierrez-Barbosa et al., 2020). Dengue is mainly prevalent in

tropical and subtropical regions, especially in Africa, South America,

South Asia, Southeast Asia, and the Western Pacific region (Wilder-

Smith et al., 2019). In 2016, the largest dengue outbreak occurred in

Cordova, Argentina (Rotela et al., 2017). The number of cases in Latin

America also increased dramatically in recent years, and the major

outbreakwas reported in2019,witha total of 3,140,872cases (Gutierrez-

Barbosa et al., 2020). Colombia experienced its fifth dengue outbreak in

2019 (Cousins, 2019).The sameyear,Honduras reported theworst local

dengue outbreak in the past five decades, with a total of 342,346 cases

(Dosetal., 2019). InAmerica,more than30,000 local-acquiredand7000

travel-associated dengue cases were reported from 2010 to 2021

(Hernandez-Romieu et al., 2023). In Thailand, dengue cases increased

with a yearly average of 91,650 cases between 2009 and 2015, with the

peak year in 2013 of 154,000 total dengue cases and 156 deaths

(Tangsathapornpong and Thisyakorn, 2023). There were 81,653

indigenous dengue cases reported in mainland China from 2005 to

2020, across 345 counties in 14 provinces andmunicipalities (Yue et al.,

2022). ProvincesofChina reportingannualdengue caseshave expanded

from the southeast coast to the southwest, central, northeast, and

northwest regions, with higher incidence in Guangdong, Guangxi,

Yunnan, Fujian, Zhejiang Province (Lin et al., 2020).

The World Health Organization (WHO) acknowledged that

health issues related to climate change are among the most

significant challenges in the 21st century, with dengue ranking at the

top of their concerns (http://www.who.int/globalchange/

health_policy/en/). The transmission of dengue is greatly influenced

by temperature. By effectively mitigating global warming, a substantial

reduction in the number of dengue cases can be achieved. The Paris

Climate Agreement sets the objective of limiting the global average

temperature increase to within 1.5°C since the pre-industrial period.

Consequently, it is projected that the number of dengue cases will

decrease by 300,000 per year by 2050 and by 500,000 per year by 2100.

Additionally, by curbing global warming the spread of dengue to areas

with lower incidence rates could also be prevented (Friedrich, 2017).

This review intends to discuss the impact of temperature on the

transmission of the dengue virus byAedesmosquitoes. Based onmodel

predictions and analyses, the correlation between temperature and the

prevalence and distribution of dengue cases will be elucidated.

Furthermore, three key aspects will be explored to investigate potential

causes and mechanisms. (i) the impact of temperature on the survival

and distribution of Aedes mosquitoes; (ii) how temperature alters the

structure of DENV; (iii) the effect of temperature on the vector

competence of Aedes mosquitoes in transmitting DENV. This review

will serveasavaluable resource for thepreventionandcontrolofdengue.
Temperature affects the prevalence
of dengue

Abundant studies indicated that temperature was positively

correlated with dengue cases (Fan et al., 2014). The most suitable
Frontiers in Cellular and Infection Microbiology 02
minimum temperature for the transmission of DENV is 14.8°C

(Feldstein et al., 2015), while the optimal maximum temperature

ranges from 32°C to 33°C (Stephenson et al., 2022). Generalized

additive models (GAMs) were employed to study the factors

influencing the spread of dengue. The equation of this model is

defined as g(E(Y)) = a +o
k

i=1
S(X, d) , where Y represents the number

of dengue cases, a is a constant term, S denotes a non-linear

smoothing function form, X represents a climatic factor and d

represents the degree of freedom of the smoothing function for the

independent variable. Climatic factors indirectly impact dengue

transmission by influencing the biological functions of the

mosquito vector, resulting in a lag effect (Ramachandran

et al., 2016).

Melinda K. Butterworth et al. utilized predicted climate conditions

derived from a global climate model (GCM), and constructed a

dynamic mosquito simulation model (DyMSiM) based on climate

data from at 23 sites in the southeastern United States. The findings

revealed the potential spread of dengue in various locations within the

region. The highest risk for dengue transmission occurred during

summer months (July-September), while no cases were reported in

winter. However in Florida and Texas, dengue transmission was also

possible in spring and autumn. It was hypothesized that the

prolongation of the extrinsic incubation period (EIP) at lower

temperature inhibited the spread of dengue (Butterworth et al.,

2017). It should be noted that the imported cases were not taken

into consideration in the above researches. Nonetheless, another

research conducted in Florida demonstrated that temperature also

influenced the number of imported dengue cases (Stephenson

et al., 2022).

Dengue cases over a 19-year period (January 1997 to December

2015) were collected monthly in East Delhi, India. Correlation

analyses were conducted to examine the relationship between

dengue cases and climatic conditions including rainfall,

temperature and humidity. Four prediction models were developed

using a negative binomial generalized linear model. Among them,

rainfall, temperature and humidity served as independent variables,

while dengue cases serve as the dependent variable. The prediction

models were constructed for the same month as well as lags of one,

two and three months as climatic factors. The result showed that the

model with a two-month lag provided the best prediction of dengue

epidemics. Additionally, the EIP of dengue virus was shortened at 30°

C, which may facilitate the spread of dengue (Ramachandran et al.,

2016). Analysis of seasonal patterns of average maximum and

minimum temperatures for dengue cases revealed that reported

cases peaked between August and October during 2015 to 2018,

which corresponded to the months following the highest and lowest

temperatures recorded. The temperature at peak of dengue was

between 25°C and 27°C (Singh and Chaturvedi, 2022).

Data on cases of dengue hemorrhagic fever (DHF) were

collected alongside the temperature and humidity measurements

in Menado, Indonesia. The correlation between temperature or

humidity and DHF incidence was analyzed using the Spearman’s

rank correlation test. The results showed that the highest

temperature occurred in August at 28.7°C, while the lowest cases

of DHF were observed in September. Conversely, the lowest

temperature occurred in February at 25.9°C, while the highest
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cases of DHF were reported in January. These findings indicate a

significant correlation between dengue prevalence and temperature

(Monintja et al., 2021). Another study conducted in Makassar,

Indonesia employed the generalized estimating equations method

(GEE) to analyze the correlation between dengue cases and climate,

which presented a significant negative correlation (Susilawaty et al.,

2021). Given that Indonesia is located in a tropical region with

high average annual temperatures, the reduced survival rate

and daily activity of mosquitoes could potentially decrease the

dengue transmission.

In China, daily dengue cases were collected in Guangdong

Province from 2005 to 2015. Temperature and precipitation data

were obtained from the China Meteorological Data Sharing Service.

A zero-inflated generalized additive model (ZIGAM) was

constructed on the basis of the GAM to analyze the trend of

dengue incidence in relation to mosquito densities. Results

indicated a positive effect of temperature on the incidence of

dengue (Xu et al., 2017). Another study revealed that the effect of

mean(28°C), minimum(23°C) and maximum(32°C) temperatures

on dengue was non-linear (Wu et al., 2018).
Temperature changes the distribution
of Aedes mosquitoes

Effects of temperature on the biological
characteristics of Aedes mosquitoes

Temperature plays a vital role in the development and survival

of Aedes mosquitoes. The optimal temperature range for their

development is 25°C-30°C. When the temperature exceeds 40°C,

adult mosquitoes die, and eggs and larvae fail to develop (Reiskind

and Zarrabi, 2012). Additionally, both Ae.albopictus and Ae.aegypti

larvae are unable to development at 10°C (Reiskind and Zarrabi,

2012; Marinho et al., 2016). Ae.albopictus adults do not feed on

blood, while the eggs and larvae need a minimum temperature of

15°C for development (Reiskind and Zarrabi, 2012).

At moderate temperature (20°C-30°C), temperature does no

significantly affect the survival of Aedes mosquitoes (Alto and

Bettinardi, 2013).Regardless of the rearing temperature of the

larvae, the survival rate of adult mosquitoes is significantly higher

at 20°C compared to other temperatures (Alto and Bettinardi,

2013). Generally, an increasing temperature is accompanied by an

increased activities in Aedes mosquitoes, but excessively high

temperatures can shorten their lifespan and reduce their

population size (Myer et al., 2020). Females Ae.albopictus tend to

survive longer than males at different temperatures. As the

temperature rises, the life cycle of Ae. albopictus shortens, and the

population growth rate increases (Reiskind and Zarrabi, 2012).

Ae.aegypti exhibits a greater tolerate to temperature variations

than Ae. albopictus, which provides a competitive advantage

(Myer et al., 2020). Ae.aegypti struggles to survive at extremely

high or low temperatures, such as below 11°C or above 36°C

(Iwamura et al., 2020). Ae.aegypti is less mobile and unable to

feed on blood below 14°C-15°C, leading to its mortality. It also
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cannot survive for more than 2-3 days without a blood meal at

tropical temperature (Alto and Bettinardi, 2013).

Temperature affects characteristics of adult Aedes mosquitoes.

During the developmental stage, changes in rearing temperature

affect the external traits, such as the wing length and the adult size.

Higher temperatures(24°C-29°C) and sufficient food are beneficial

to mosquito’s ingestion, resulting in shorter wings and heavier

weight in Aedes mosquitoes. In contrast, lower temperatures(14°C-

19°C) and insufficient food lead to mosquitoes with longer wings

and lower weight (Reiskind and Zarrabi, 2012; Alto and

Bettinardi, 2013).

Temperature also affects the reproduction activity of Aedes

mosquitoes. For example, in areas with an average annual

temperature of 22°C, the weekly production of Aedes mosquito

eggs is high when the Daily Mean Temperature Range(DTR)ranges

from 12°C to 18°C, but it decreases when the temperature exceeds

18°C (Betanzos-Reyes et al., 2018). Extreme temperature like more

than 36°C could greatly reduce the number of eggs production

(Marinho et al., 2016).
Effects of temperature on
Ae.albopictus distribution

Ae.albopictus is native to Southeast Asia and has recently

expanded its range to Africa, where it was first reported in 1990

in South Africa (Cornel and Hunt, 1991). Over the past decade,

Ae.albopictus had spread to several Central African countries

(Paupy et al., 2009). It rapidly pullulated in Nigeria in 1991

(Savage et al., 1992) and appeared in Central Africa in 2000

(Kamgang et al., 2010).

Temperature exerts an influence on the distribution of

Ae.albopictus. It became active when the temperature rises above

13°C, and its population gradually increases following the risen

temperature. When the temperature exceeds 36°C, the population

began to decline. Ae. albopictus is present in most Asian cities and

large parts of the America (Kraemer et al., 2015). For example, in

Brownsville, Texas, Ae. albopictus populations generally increases

before March and after August, reaching its peak in winter and

decreasing in spring and summer (Brady et al., 2014). Ae. albopictus

is well adapted to northern South America, where diurnal

temperature fluctuates significantly (Brady et al., 2014). In

Portugal, Ae.albopictus becomes active in May, with an average

minimum temperature of over 13°C and an average maximum

temperature of 26.2°C. The peak abundance of Ae. albopictus

populations occurs between September and November (average

temperatures around 23°C) (Osorio et al., 2020). In China,

Ae.albopictus can be found in the southern, eastern, and central

regions, and even in some parts of northeastern China. Compared

to Ae.aegypti, Ae.albopictus is more adaptable to diurnal and

seasonal temperature differences. As temperature increases in the

future, Ae.albopictus populations will increase in the central and

northern regions, where diurnal temperature differences are more

remarkable. Additionally, the warmer south will continue to

provide a suitable habitat for Ae.albopictus (Liu B et al., 2019).
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Effects of temperature on
Ae.aegypti distribution

Ae.aegypti was originally believed to have originate from Africa

(Brown et al., 2014). In 2000, indigenous mosquito species

Ae.aegypti were found in Central Africa (Kamgang et al., 2010).

Moreover, a study noted that Ae. aegypti can survive in cold winter

and will probably spread to colder areas driven by climate change

(Kramer et al., 2021).

The distribution of Ae.aegypti is strongly influenced by

temperature (Dickens et al., 2018).There is a positive correlation

between Ae.aegypti populations and minimum temperatures (Li

et al., 2019). Areas with higher minimum temperature (>8°C) are

more favorable for the survival of Ae.aegypti (Dickens et al., 2018).

When the minimum temperature ranges between 16°C and 20°C,

mosquito populations are larger than the average. However, when

the minimum temperature exceeds 20°C, Ae.aegypti populations are

not affected by further temperature changes. Adults Ae.aegypti

populations display a seasonal pattern, with low densities in

winter and high densities in summer (Li et al., 2019). Due to

their temperature dependence tropical and subtropical areas are

their main distribution areas. The temperature differences between

day and night are low in Portugal, Spain, southern France, and

coastal Italy, which are favorable for the survival of Ae. Aegypti

(Dickens et al., 2018). In China, the habitat of Ae. aegypti is confined

to specific regions with an annual mean temperature above 20°C,

such as Hainan Province, southern Guangdong Province, southern

Yunnan Province, et al. When temperatures rise above 35°C, the

habitat of Ae. aegypti is adversely affected (Liu B et al., 2019). The

abundance of Ae. aegypti gradually increased in all regions from

July to October, with a peak in August (Liu B et al., 2019).
Temperature alters the structure of
dengue virus

DENV belongs to Flaviviridae family of flavivirus. Based on

antigenicity difference DENV can be divided into four serotypes

(DENV-1, DENV-2, DENV-3, DENV-4) (Sharma et al., 2019).

Cross-antigenicity exists among different types of DENV. The

structure of DENV-2 is similar to DENV-1 and DENV-3, but

exhibits lower similarity with DENV-4 (Lok et al., 2008). DENV

is single positive-stranded RNA virus, which encodes three

structural proteins and seven nonstructural proteins. The

structural proteins include the capsid (C), membrane (M) and

envelope (E) protein. The E protein which forms ninety dimers

on the surface of mature DENV, plays a significant role in the

process of pathogenicity and immunity (Lim et al., 2017a; Boigard

et al., 2018; Sharma et al., 2019). The E protein consists of three

domains, E-DI [residues 1-52; 132-193; 280-296], E-DII [residues

53-131; 194-279] and E-DIII [residues 297-394]. D-III

demonstrates variability of different serotypes as the site of initial

interaction with cellular receptors (Slon et al., 2017; Sharma et al.,

2019). The seven nonstructural proteins involve NS1\NS2a\NS2b

\NS3\NS4a\NS4b\NS5, are involved in viral replication, protein
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processing, and the assembly and release of viral particles (Boigard

et al., 2018).

Temperature mainly affects the structure of the E protein,

thereby impacting the overall structure of DENV (Lim et al.,

2017b). DENV-2 displays a smooth surface at 28°C, and 96% of

them became bumpy at 37°C. The temperature-induced structural

alterations usually occurred between 31°C and 35°C and are

irreversible, as no structural change are observed when the

temperature is lowered from 37°C to 4°C (Zhang et al., 2013).

The soluble recombinant E (sRecE) protein is similar to the

conformation of E dimers displacing on the virion surface. The

sRecE protein of DENV-2, DENV-3 and DENV-4 was in

equilibrium between dimer and monomer. At 23°C, sRecE of

DENV-2 exists as a dimer, while that of DENV-3 and DENV-4

exists as monomers. At 37°C, sRecE of DENV-2, DENV-3, and

DENV-4 mainly exists as monomer (Kudlacek et al., 2018). Another

study also demonstrated that the structure of E protein of DENV-2

is irreversible from 40°C to 25°C., with a 50-fold decrease in the

ability to form E-dimers at 40°C comparing to 25°C (Sharma et al.,

2019). Therefore, the weakened ability of E protein to form dimers

may be responsible for the irreversible structural alteration of

DENV-2. On the contrary, the structural changes of E protein in

DENV-1 are reversible (Sharma et al., 2019).

Virulence of DENV is independent of structural transition but

is correlated with intrinsic dynamics. When BHK21 cells were

infected with DENV-2, the number of plaque declined by 3-fold

at 40°C compared to 25°C and 37°C. Such decrease was caused by

the flexibility loss in E-DIII of DENV-2 rather than the structural

changes. The flexibility loss in E-DIII of DENV-2 may inhibit the

interaction between E-DIII and host cells, thereby further reducing

viral infectivity (Sharma et al., 2019). In C6/36 cells infected with

DENV-2, the titer of viral particles at 37°C was higher than that at

28°C (Pandey et al., 1998). In AG129 mice infected with DENV-2

incubated at different temperatures has many differences. The mice

infected DENV-2 incubated at 39°C died more rapidly than

incubated at 28°C.The former have more serious organ injures

(Modak et al., 2023).
Temperature affects the vector
competence of Aedes mosquitoes

Vector competence of mosquitoes

Vector competence is the ability of mosquitoes to become

infected with pathogens and then transmit them to new hosts

(Souza-Neto et al., 2019). Various biological and environmental

factors could affect vector competence in mosquitoes. Biological

factors include mosquito species and strains of virus, while

environmental factors include climate, water sources and

insecticides (Lounibos and Kramer, 2016; Michael, 2018; Ruckert

and Ebel, 2018; Ingham et al., 2021).

The interaction between viruses and mosquitoes is a multi-

factorial phenomena, which is determined by both virus strains and

mosquito genotypes. MOYO-S and MOYO-R were two groups of
frontiersin.org
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Ae.aegypti. MOYO-R was difficult to treat dengue infection, while

MOYO-S was susceptible. A large number of genes were

differentially expressed between MOYO-S (susceptible) and

MOYO-R (refractory) strains of Ae.aegypti infected with DENV-

2. The results suggested that susceptibility to DENV-2 is associated

with structural/evolutionary features of the responsive genes in

MOYO-S/MOYO-R strains (Behura and Severson, 2012). The

vector competence of Aedes mosquitoes may vary depending on

the virus strain. For instance, the Southeast Asian genotype (SEA

strain) of DENV-2 could spread faster than the American genotype

(AM strain) (Anderson and Rico-Hesse, 2006). Additionally, the

vector competence of Aedesmosquitoes is related to the viral titer in

blood meal, with a higher titer facilitating virus transmission (Van

den Eynde et al., 2022).

Temperature plays a significant impact on the vector

competence of Aedes mosquitoes. Optimal temperatures for

DENV transmission are typically between 20°C and 26°C (Ciota

et al., 2018). Temperature affects various aspects of mosquito

biology, including egg hatching rates, larval developmental time,

and adult survival rates, which, in turn, influence vector

competence. When survival rate increased from 0.80 to 0.95, the

number of potential transmissions increased fivefold. An increase in

temperature of 10°C led to a halving of the bite interval and

increased transmission by at least 2.4-fold (Barbazan et al., 2010).

The rearing environment of mosquito larvae also affects vector

competence, as the presence of diverse microorganisms in the

breeding water could affect the ability of Ae.aegypti to transmit

virus (Louie and Coffey, 2021). Adult female Aedes mosquitoes

acquire nutrients from nectar and carbohydrates in the blood,

which mainly derived from sugars, including sucrose, fructose

and glucose (Elina and Matthew, 2020). The sugar diet of Aedes

mosquitoes may reduce their vector competence. Sugar intake could

increase the expression of antiviral genes in the digestive tract of

female mosquitoes, thereby blocking the initial infection and

dissemination of viruses (Almire et al., 2021). In addition, vector

control is the most effective and economical method to prevent and

control mosquito-borne diseases by reducing the vector

competence of mosquitoes through direct killing (Ingham

et al., 2021).

Vector competence of mosquitoes is closely associated with

immune pathways and tissue barriers (Gloria-Soria et al., 2017).

The immune pathways in mosquitoes primarily include RNA

interference (RNAi), Toll, immune deficiency(IMD), and Janus

kinase/signal transducer and activator of transcription (JAK/

STAT) (Liu et al., 2018; Lan et al., 2022). Additionally,

Phenoloxidase (PO) plays a crucial role in insect immunity as a

key enzyme for melaninization, which is responsible for

mosquitoes’ defense against pathogens (Liu et al., 2018; Ji et al.,

2022). Arboviruses must overcome several barriers in mosquitoes,

including the midgut infection barrier (MIB), midgut escape barrier

(MEB), salivary gland infection barrier (SGIB), and salivary gland

escape barrier (SGEB) (Franz et al., 2015). The midgut acts as the

initial barrier to prevent virus transmission, and the mosquito’s

immune system begins to suppress the virus in this region (Liu

et al., 2018).
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Effects of temperature on the vector
competence of Ae. albopictus

The vector competence of Ae. Albopictus is generally lower than

that of Ae. aegypti. However, Ae.albopictus become a main vector

for the transmission of DENV in certain regions due to its

widespread distribution. When the temperature falls below 18°C,

Ae.albopictus does not transmit DENV but can transmit

chikungunya virus (Wimalasiri-Yapa et al., 2019). The ability of

Ae.albopictus to transmit DENV increased as the temperature risen

between 18°C and 32°C. However, when the temperature exceeded

32°C, the mortality rate of Ae.albopictus increased, potentially

reducing its vector competence (Liu et al., 2017).

The mechanism by which temperature affects the vector

competence of Ae. albopictus had not been fully clarified. Studies

suggest that higher temperatures shorten the gonotrophic cycle and

led to frequent blood feedings, thereby increasing mosquito’s vector

competence (Martens et al., 1995). Temperature also affects the

virus to across the midgut barrier. DENV-2 was localized to the

midgut of Ae.albopictus and slowly proliferated at 18°C. However,

DENV-2 broke through the midgut barrier and invaded the salivary

glands of Ae.albopictus between 23°C and 32°C (Liu et al., 2017).

The RNAi pathway, Toll pathway, and IMD pathway of the midgut

in Ae. albopictus were enhanced at 28°C. The key genes regulated by

temperature included heat shock protein 70(HSP70), CCR4-NOT

complex, and Myeloid differentiation primary response protein 88

(MyD88) (Liu et al., 2022). HSP70 was the most critical component

for DENV-4 entering C6/36 cells (Vega-Almeida et al., 2013). The

mRNA expression in the HSP70 was regulated upwards at 37°C and

downwards at 39°C (Sivan et al., 2017). The expression level of

CCR4-NOT complex gene was upregulated in DENV-2 infected

cells, which was conducive to the proliferation of DENV. At 32°C,

the CCR4-NOT complex gene is highly expressed in DENV-2

infected cells, facilitating the proliferation of DENV-2 and its

ability to break through the midgut barrier (Liu J et al., 2019).

However, further functional validation of these key factors is needed

in the future (Figure 1).
Effect of temperature on the vector
competence of Ae. aegypti

Ae.aegypti could transmit DENV between temperatures of 22°C

and 32°C, but it couldn’t survive when the temperatures rose to

about 40°C (Marinho et al., 2016). High mortality rates of

mosquitoes inhibited the spread of DENV, thereby reducing their

vector competence (Chepkorir et al., 2014). Significant temperature

differences between day and night could influence the vector

competence of Ae.aegypti by changing vector vital signs and

shortening lifespan, which in turn reduced the midgut infection

rate and transmission rate for DENV-1 and DENV-2 (Lambrechts

et al., 2011). It is worth noting that the impact of temperature

fluctuations on vector competence differs based on average

temperature levels. At lower average temperatures (<18°C), a

temperature fluctuation of 6.26°C between day and night
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increased the ability of Ae.aegypti to infect and transmit DENV-1.

However, at higher average temperatures (≥18°C), the same

temperature fluctuation between day and night reduced the vector

competence of Ae. Aegypti (Carrington et al., 2013).

The mechanism that how temperature affects the transmission

of DENV by Ae. aegypti has not been fully elucidated. The RNAi

pathway of Ae.aegypti was compromised at low temperatures,

making mosquitoes from warmer regions more susceptible to

virus at cold temperatures compared to those from colder regions

(Gloria-Soria et al., 2017). Moreover, the impairment of the RNAi

pathway in Ae. aegypti increased DENV-2 titers in the midgut,

facilitating the dissemination of viruses to other tissues and

shortening the EIP (Franz et al., 2015). Ae. aegypti infected with

DENV-2 is regulated by the siRNA pathway. It can accelerate

DENV replication and shorten EIP by silencing of Dcr 2 or Ago

2 (Sanchez-Vargas et al., 2009). Additionally, Ae.aegypti activated g-
aminobutyric acid (GABA) associated system through blood

feeding, enhancing the DENV-2 replication by inhibiting the

IMD pathway (Luplertlop et al., 2011). (Figure 2)

We refer to other flaviviruses such as Zika virus (ZIKV) and

chikungunya virus to indirectly reflect the possible mechanism that

how temperature affects the transmission of DENV by Ae.aegypti.

The immune reaction of Ae. aegypti infection with the virus could

be divided into four components: recognition of pathogen,

activation of signal pathway, immune response and immune

regulation (Etebari et al., 2017). The recognition of the pathogen

was depended on pattern recognition receptors (PRRs) (Julián,
Frontiers in Cellular and Infection Microbiology 06
2016), including the clip-domain serine proteases (CLIPs) family

B(Wang and Wang et al., 2021), the leucine-rich repeats protein

(LRR) (Zhao et al., 2019), thioester-containing protein (TEP)

(Weng et al., 2021), and galectins (Xiaohua et al., 2020). The

immune response of Ae. aegypti infected with ZIKV was strongest

at 28°C, as evidenced by upregulated Dicer-2 activity and the

strengthened immune pathways including the Toll pathway, IMD

pathway, and JAK/STAT pathway. However, these immune

response weakened at 32°C (WimalasiriYapa et al., 2021).

Melaninization, which plays a role in the Aedes mosquitoes’

defense against viral infections, is affected by temperature. At 20°

C, phenoloxidase and C-type lectin were upregulated in the midgut

of Ae. aegypti, reducing its vector competence to transmit ZIKV

(Murdock et al., 2012).

The temperature could affect the vector competence of

mosquitoes through altering their metabolism. The biochemical

activity of mosquitoes was impaired at low temperatures, resulting

in the accumulation of fat and reduced energy reserves (Angilletta

et al., 2010). The digestion of blood meal in the Ae.aegypti is slow

under low temperature. Zinc carboxypeptidase involved in blood

meal digestion was significantly downregulated at 20°C to form a

peritrophic membrane (PM), which could protect the midgut

against pathogens (Ferreira et al., 2020). Additionally, the protein

G12 involved in blood meal digestion and nitrile-specific

detoxification was increased at 20°C. b-galactosidase and a-N-
acetylgalactosaminidase are two digestive proteases involved in

glycoside hydrolysis. These highly induced enzymes and proteins
FIGURE 1

Effects of temperature on the vector competence of Ae. albopictus. When the temperature exceeds 32°C, the mortality rate of Ae.albopictus
increases. When the temperature falls below 18°C, Ae.albopictus does not transmit DENV. At 18°C, DENV is localized to the midgut of Ae.albopictus
and proliferate.DENV breaks through the midgut barrier and invades the salivary glands of Ae.albopictus between 23°C and 32°C. At 28°C, the RNAi
pathway, Toll pathway, and IMD pathway of the midgut in Ae. albopictus are enhanced.
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contribute to the formation of the PM, slowing down the spread of

pathogens and reducing the vector competence of mosquitoes

(Santamaria et al., 2015; Ferreira et al., 2020). (Figure 3)
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Future directions

Previous researches have demonstrated that temperature is

closely related to the transmission and epidemic of dengue.

However, the detailed mechanism and specific targets are still

unclear. Although Ae. albopictus and Ae. aegypti share similar

ecological habitats the distribution is different. The growth,

development and survival of Aedes mosquitoes are influenced by

fluctuant temperatures. Whole-genome sequencing results can

provide valuable insights for further research. The genome of

Ae.albopictus comprising 1,967 Mb, is the largest mosquito

genome sequenced to date, and its size results principally from an

abundance of repetitive DNA classes (Chen et al., 2015). Ae. aegypti,

on the other hand, lacks heteromorphic sex chromosomes and its

genome size was estimated to be 813 Mb (Nene et al., 2007). The

difference in genome sequence may contributes to the difference of

traits between these two Aedes species. The structure of DENV

could affected its virulence and targeted in antiviral strategies

(Sharma et al. , 2019). It resulted from the large-scale

conformational changes and intrinsic dynamics of DENV E

proteins influenced by the temperature. The dynamic

conformations of the same virus at different temperatures and

crystal structures of different virus types need to be further

improved. In addition, the mechanisms by which temperature

affects the vector competence of Aedes mosquitoes to transmit

DENV need to explore. The immune pathways and factors of

Aedes mosquitoes have been changed after infection with DENV

under different temperatures, the function of key immune molecule
FIGURE 2

The temperature affects the midgut’s immunity to change the vector competence of Ae.aegypti. The impairment of RNAi pathways increases DENV
titers in midgut at low temperature, making the viruses easily disseminate to other tissues and shorten the EIP. Sucking blood activates GABA
associated system, enhancing DENV replication in the midgut of Ae.aegypti by inhibiting the IMD pathway.
FIGURE 3

The temperature affects the metabolism to change the vector
competence of Ae.aegypti. At 20°C, the protein G12 involved in
blood meal digestion and nitrile-specific detoxification increases,
and the zinc carboxypeptidase involved in blood meal digestion
significantly downregulates, which lead to form a PM. The PM slows
down the spread of pathogens and reduces vector competence.
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should be further clarified. The CRISPR-Cas9 system served as a

genome-engineering tool offers a new perspective on the antiviral

mechanisms of Aedesmosquitoes (Kistler et al., 2015; Adelman and

Tu, 2016). The changes of vector competence of Aedes mosquitoes

might be analyzed by constructing over-expressed plasmids or

using CRISPR-Cas9 system in combination with microinjection

technique. These approaches provide guidance for the prevention

and control of dengue.
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