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Tuberculosis (TB) is a widespread infectious disease caused by Mycobacterium

tuberculosis (M. tb), which has been a significant burden for a long time. Post-

translational modifications (PTMs) are essential for protein function in both

eukaryotic and prokaryotic cells. This review focuses on the contribution of

protein acetylation to the function of M. tb and its infected macrophages. The

acetylation of M. tb proteins plays a critical role in virulence, drug resistance,

regulation of metabolism, and host anti-TB immune response. Similarly, the

PTMs of host proteins induced by M. tb are crucial for the development,

treatment, and prevention of diseases. Host protein acetylation induced by M.

tb is significant in regulating host immunity against TB, which substantially affects

the disease’s development. The review summarizes the functions and

mechanisms of M. tb acetyltransferase in virulence and drug resistance. It also

discusses the role and mechanism of M. tb in regulating host protein acetylation

and immune response regulation. Furthermore, the current scenario of isoniazid

usage in M. tb therapy treatment is examined. Overall, this review provides

valuable information that can serve as a preliminary basis for studying pathogenic

research, developing new drugs, exploring in-depth drug resistance

mechanisms, and providing precise treatment for TB.

KEYWORDS

Mycobacterium tuberculosis, TB, post-translational modification, acetylation,
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1 Introduction

In 2021, an estimated 10.6 million people (95% UI: 9.9–11 million) worldwide contracted

tuberculosis (TB), marking an increase of 4.5% from 10.1 million (95% UI: 9.5–10.7 million) in

2020. During the same period, the TB incidence rate (new cases per 100,000 population per

year) increased by 3.6% (WHO, 2022). TB is one of the most fatal infectious diseases, and its

connection with HIV/AIDS is especially tragic (Riou and Althaus, 2020). HIV suppresses the

immune system, making individuals more susceptible to Mycobacterium tuberculosis (M. tb)

infections, hastening the progression to active TB, and increasing latent TB reactivation by 20-
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fold (Pawlowski et al., 2012; Wang Y., et al, 2022). It is concerning that

HIV-infected individuals are more likely to develop drugresistant TB in

Oceania and Eastern Europe. Additionally, HIVXDR-TB has become

increasingly common among elderly people (Zhou et al., 2023).

Protein post-translational modifications (PTMs) are reversible

mechanisms of cellular adaptation to changing environmental

conditions. PTMs such as phosphorylation, acetylation,

ubiquitination, and pupylation play a crucial role in mycobacterial

virulence, pathogenesis, and metabolism. Approximately one third of

the annotated M. tb proteome is modified post-translationally, and

many of these proteins are essential for mycobacterial survival.

Understanding the signaling pathways and PTMs may assist clinical

strategies and drug development for M. tb (Budzik et al., 2020; Arora

et al., 2021). Among PTMs, protein acetylation plays a crucial role in

mycobacterial virulence, pathogenesis, and metabolism. In eukaryotes,

protein acetylation is involved in almost all biological processes,

including transcriptional regulation, protein translation, central

metabolism, protein stability, signal transduction, and pathogen

virulence (Carabetta and Cristea, 2017; Nakayasu et al., 2017;

Christensen et al., 2019; Shvedunova and Akhtar, 2022). Recently,

protein acylation has received increased attention due to its

involvement in several mitochondrial, nuclear, and cytosolic

processes (Glozak et al., 2005; Finkel et al., 2009; Norris et al., 2009;

Kim and Yang, 2011). Protein acetylation is a dynamic equilibrium

process in which the acetyl group of acetyl-coA is transferred to the N-

a-amino group of protein or N-lysine protein group under the action of

acetyltransferase or deacetylated transferase. Initially, it was believed to

be an epigenetic modification of chromatin-related proteins, such as

histones (Bernal et al., 2014). However, it is now suggested that

acetylation modification plays important roles in biological processes.

With the progress of mass spectrometry technology, the role of protein

acetylationmodification in the occurrence and development of diseases

has become an important direction and focus of current research.

Acetylation modification is a conserved post-translational modification

discovered on histones in 1964 and is closely related to biological
Frontiers in Cellular and Infection Microbiology 02
processes such as gene transcription regulation and protein function

(Allfrey et al., 1964). In recent years, more andmore studies have found

that protein acetylation plays an indispensable role in the occurrence,

development, and outcome of TB. Understanding the role and

mechanism of new protein acetylation modification in the regulation

of host anti-TB immunity is a current research focus on the epigenetic

mechanism of TB. This may provide new targets for TB prevention,

diagnosis, and host-directed therapy (HDT) for TB (Kilinç et al., 2021).

In this review, we will systematically discuss the new progress in

the research of M. tb acetylation modification and related

acetyltransferases. This will provide a theoretical basis and

research ideas for exploring the development of novel anti-TB

drugs targeting M. tb acetyltransferase, new mechanisms of drug

resistance, and precise treatment. Additionally, we will explore how

the metabolism of isoniazid (INH), a commonly used drug in TB

therapy, depends on the N-acetyl transferase 2 (NAT2) enzyme.

In brief, the review will expatiate the following three parts:
1. acetylation modification of proteins & the role of

acetyltransferase in M. tb;

2. acetylation modification of proteins in TB patients;

3. N-acetyltransferase acetylation (NAT) polymorphisms &

TB treatment.
The whole flow diagram of the article is below (Figure 1).
2 Acetylation modification of proteins
in M. tb

2.1 Acetylated proteins and
acetyltransferase in M. tb

Acetylation modification of proteins is a critical mechanism of

cellular adaptation to changing environmental conditions, and is
FIGURE 1

The whole flow diagram of the article.
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also implicated in the virulence, pathogenesis and metabolism of M.

tb. The recent study has identified 1128 acetylation sites on 658 M.

tb proteins, and Gene Ontology (GO) analysis of the acetylome

revealed that acetylated proteins are involved in the regulation of

diverse cellular processes including metabolism and protein

synthesis (Xie et al., 2015). Singh KK. et al. showed that

acetylation of response regulator protein MtrA inhibited

phosphorylation modifications thereby promoting division of M.

tb (Singh et al., 2020). The acetyltransferase of M. tb is involved in

the modification of various small molecular substrates, including

antibiotics, amino acids, and other molecules, thereby regulating

transcription, translation, protein folding, and metabolic pathways.

The bioinformatics analysis revealed the existence of 47 potential

acetyltransferases in M. tb (Table 1), among which three genes,

namely Rv2747, Rv3341, and Rv1653, encode essential

acetyltransferases (Xie et al., 2019). Additionally, M. tb

acetyltransferase can interact with host immune signaling

proteins and modulate the host innate immune response against

TB (Burckhardt and Escalante-Semerena, 2020. Shvedunova and

Akhtar, 2022). The identification of acetylated proteins and

acetyltransferases in M. tb provides a theoretical basis and

research ideas for the development of novel anti-TB drugs

targeting M. tb acetyltransferase, new mechanisms of drug

resistance, and precise treatment.
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2.2 Acetyltransferase associated
with M. tb virulence

The success of M. tb as a pathogen is partly attributed to its

ability to sense and respond to dynamic host microenvironments.

Protein acetylation modification plays a key role in bacterial

virulence and pathogenicity (Ren et al., 2017). Various M. tb

acetyltransferases have been identified and confirmed to act as

virulence factors. The acetyltransferase Pat, encoded by Rv0998, has

been shown to have acetylase activity that is directly regulated by

cAMP binding in vitro (Nambi et al., 2010; Xu et al., 2011). Studies

have demonstrated that the acetylation of a conserved lysine 193

(K193) within the C-terminal DNA-binding domain of the cyclic

AMP (cAMP) receptor protein (CRP) reduces its DNA-binding

ability and inhibits transcriptional activity. The reversible

acetylation status of CRP K193 has been shown to significantly

affect mycobacterial growth phenotype, alter the stress response,

and regulate the expression of biologically relevant genes (Di et al.,

2023). Shi SP. et al. (Shi and Ehrt, 2006) generated a Rv2215/dlaT

knockout strain and tested its ability to grow, resist nitrosative

stress, and cause disease in mice, which demonstrated that Rv2215/

dlaT is required for optimal growth of M. tb. DlaT encodes

dihydrolipoamide acyltransferase, which together with the

pyruvate dehydrogenase E1 component (AceE) and
TABLE 1 47 potential acetyltransferases of M. tb.

Gene Protein Substrate Function Reference

Rv0032
Rv0133
Rv0243
Rv0262c
Rv0408

bioF2
Rv0133
FadA2
Aac
Pta

unknown
unknown
acetyl-CoA
unknown
acetate

involved in biotin biosynthesis (at the first step)
acetylation lipid metabolism, virulence related gene
involved in lipid degradation
confers resistance to aminoglycosides
conversate acetate to acetyl-CoA

Minato et al. (2019)
DeJesus et al. (2017)
Mattow et al. (2003)
DeJesus et al. (2017)
Minato et al. (2019)

Rv0428c
Rv0730

Rv0428c
Rv0730

unknown
unknown

acetylation, regulation of bacterial survival under stress
acetylation

Sharma et al. (2022)
Målen et al. (2010)

Rv0802c Rv0802c unknown succinylation and acetylation of nucleus-associated proteins Anand et al. (2021);
Vetting et al. (2008)

Rv0819 MshD unknown mycothiol biosynthesis, serological diagnostic marker Zeitoun et al. (2017)

Rv0859
Rv0914c

FadA
Rv0914c

acetyl-CoA
unknown

involvement in lipid degradation, inhibiting host fatty acid metabolism and anti-
tuberculosis immune response under hypoxia conditions
involvement in degradative pathways such as fatty acid BETA_OXIDATION

Yang et al. (2021);
Minato et al. (2019)

Rv0919
Rv0995

TacT
RimJ

tRNA
ribosomal protein S5

acetylate tRNA
acetylation

Tomasi et al. (2022)
Griffin et al. (2011)

Rv0998 Rv0998 lysine regulate M.tb metabolism to adapt to anoxic environment Yang et al. (2018)

Rv1018c GlmU UDP-n-acetylglucosamine
pyrophosphorylase

IL-8 binding effector protein, promote M. tb invasion of human neutrophils Dziadek et al. (2016)

Rv1074c
Rv1135A
Rv1323

FadA3
Rv1135A
FadA4

unknown
unknown
unknown

lipid metabolism
involved in lipid degradation
involvement in lipid degradation

Minato et al. (2019)
Minato et al. (2019)
DeJesus et al. (2017)

Rv1347c
Rv1505c
Rv1565c

MbtK
Rv1505c
Rv1565c

lysine
unknown
unknown

regulates acylation of mycobacterin
unknown
unknown

Madigan et al. (2015)
Minato et al. (2019)
Minato et al. (2019)

(Continued)
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dihydrolipoamide dehydrogenase (Lpd) constitutes pyruvate

dehydrogenase (PDH) in M. tb. PDH catalyzes the oxidation of

pyruvate by NAD to acetyl-coenzyme A (acetyl-CoA) and CO2.

Acetyl-CoA then feeds into the tricarboxylic acid (TCA) cycle.

Although the existence of M. tb acetyltransferases as virulence

factors has been discovered, the specific targets of these

acetyltransferases and the exact molecular mechanisms affecting

M. tb virulence remain to be studied and clarified.
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2.3 Acetyltransferase associated with
drug-resistant TB

The continuing spread of drug-resistant TB is one of the most

urgent and difficult challenges facing global TB control. Studies have

found that the activity of most of the existing ten kinds of anti-TB

drugs, such as aminoglycosides, chloramphenicol, streptomycin,

fluoroquinolones and other drugs is regulated by acetylation
TABLE 1 Continued

Gene Protein Substrate Function Reference

Rv1653
Rv1867

ArgJ
Rv1867

ornithine
unknown

catalyze arginine biosynthesis
involvement in lipid degradation

Sankaranarayanan et al.
(2009)
Minato et al. (2019)

Rv2170 Rv2170 aminoglycoside antibiotics acetylation, carbon source and energy metabolism regulation, isoniazid acetylation
modification

Lee et al. (2017); Arun
et al. (2020)

Rv2215 DlaT dihydrothioctylamine virulence factor, metabolism and nitrosation stress regulation Shi and Ehrt (2006)

Rv2335 CysE serine regulate the growth rate of mycobacterium Qiu et al. (2014)

Rv2416c
Rv2669
Rv2704

Eis
Rv2669
Rv2704

aminoglycoside antibiotics
unknown
unknown

regulate host protein acetylation modification and immune response, acetylate
aminoglycosides mediated drug resistance
acetylation
unknown

Tamman et al. (2014);
Logesh et al. (2022)
Minato et al. (2019)
Minato et al. (2019)

Rv2747
Rv2775
Rv2851c

ArgA
Rv2775
Rv2851c

glutamic acid
unknown
unknown

catalyze L-arginine biosynthesis
acetylation
acetylation

Yang et al. (2017); Das
et al. (2019)
Minato et al. (2019)
Minato et al. (2019)

Rv2867c
Rv3027c
Rv3034c

Rv2867c
Rv3027c
Rv3034c

unknown
unknown
unknown

acetylation
acetylation
regulate macrophage oxidative stress response

Betts et al. (2002)
DeJesus et al. (2017)
Ganguli et al. (2020);
Behera et al. (2022)

Rv3216
Rv3225c

Rv3216
Rv3225c

unknown
unknown

acetylation
acetylation, phosphorylation,

Griffin et al. (2011)
Draker et al. (2003)

Rv3338 Rv3338 unknown unknown Minato et al. (2019)

Rv3341 MetA homoserine involved in the biosynthesis of methionine, catalyzes acylation of L-homoserine,
substrate dependent transferase and hydrolase activity

Maurya et al. (2020)

Rv3420c RimI alanine ribosomal protein Acetylates the N-terminal alanine of ribosomal protein S18 Pathak et al. (2016)

Rv3423.1 unknown histidine regulate the K9/K14 acetylation modification of host histone H3, manipulates the
expression of host genes involved in anti-inflammatory responses

Jose et al. (2016)

Rv3523
Rv3525c

Ltp3
Rv3523c

unknown
unknown

probably involved in lipid metabolism
probably involved in lipid metabolism
unknown

Van der Geize et al.
(2007)
Kelkar et al. (2011)

Rv3546

Rv3556c

Rv3566c

FadA5

FadA6

Nat

acetyl-CoA

unknown

arylamine

virulence factor, regulate cholesterol side chain catabolism
involved in lipid degradation

involved in lipid degradation

Could have a role in acetylating, and hence inactivating, the antitubercular drug
isoniazid

Lu et al. (2017); Jaiswal
et al. (2018)
de Souza et al. (2011)
DeJesus et al. (2017)

Kelkar et al. (2011)

Rv3700c EgtE unknown probably involved in cellular metabolism Sassetti et al. (2003);
Saini et al. (2016)
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modification (Schwarz et al., 2004; Reygaert, 2018). For instance, in

addition to mutations in katG, nhA, ahpC, kasA, and ndh genes,

isoniazid (INH) resistance is associated with acetyltransferase

Rv2170, which catalyzes the transfer of acetyl group from acetyl

CoA to INH to form acetylated INH (Silva et al., 2003). The

acetylated INH is then decomposed into isonicotinic acid and

acetylhydrazine, overcoming INH toxicity and producing resistance

(Arun et al., 2020). Furthermore, acetylation modification can also

affect the metabolic rate of INH in vivo, thereby affecting its

therapeutic effect in different individuals (Jing et al., 2020).

The enhanced intracellular survival (Eis) protein encoded by M.

tb is an acetyl transferase that targets aminoglycoside antibiotics.

Zaunbrecher et al. and Houghton et al. have found that EIS-mediated

acetylation modification can inactivate kanamycin, capreomycin and

other drugs (Zaunbrecher et al., 2009; Houghton et al., 2013). Reeves

et al. found that transcription regulator WhiB7 promoted kanamycin

acetylation by enhancing the transcription of Eis genes, and Eis itself

was also regulated by acetylation modification (Reeves et al., 2013).

Moreover, small molecule inhibitors targeting Eis have also been

developed rapidly in recent years. Garzan et al. found that Eis

inhibitors can be effectively applied in kanamycin adjuvant

combination therapy, which provides a new solution for drug

resistance (Garzan et al., 2016; Garzan et al., 2017; Punetha et al.,

2020). However, the effect of Eis acetylation on its own activity and its

mechanism in regulating aminoglycoside drug resistance remains

unclear (Birhanu et al., 2017). Additionally, it has been reported that

Rv0262c encoded aminoglycoside 2’-n-acetyltransferase can also

acetylate all known aminoglycoside antibiotics, including

ribomycin, neomycin B, gentamicin and tobramycin containing 2’

amino, etc. (Hegde et al., 2001). Correspondingly, Rv3225c-encoded

acetyltransferase has a low level of aminoglycoside modification

activity on aminoglycoside antibiotics, which can lead to resistance

of M. tb to aminoglycoside antibiotics through acetylation

modification (Kim et al., 2006). Meanwhile, N-acetyl cysteine can

artificially increase respiration and additional ROS accumulation,

which enhances moxifloxacin lethality in M. tb-infected cultured

macrophages and mice. Addition of ROS stimulators to

fluoroquinolone treatment of TB constitutes a new direction for

suppressing the transition of MDR-TB to XDR-TB (Singh et

al., 2022).

In summary, the regulation of drug acetylation modification by

M. tb through acetyltransferase is an important cause of drug

resistance, according to the studies mentioned above. These

studies suggest that small molecule inhibitors targeting M. tb

acetyltransferase activity can be developed directly as new anti-TB

drugs and can also promote the anti-TB effect of existing drugs by

enhancing their sensitivity or preventing drug tolerance.
2.4 Acetyltransferase associated
with M. tb metabolism

In the metabolic pathway, approximately 90% of metabolic

enzymes in the metabolic pathway, including tricarboxylic acid

cycle, gluconeogenesis, glycolysis, glycogen metabolism, fatty acid

metabolism, and urea cycle, undergo acetylation modification (Zhao
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et al., 2010). Rv2170 has been found to possess lysine acetyltransferase

activity, which can affect the glyoxylic acid metabolism or

tricarboxylic acid cycle by reducing the lysine residues of Isocitrate

lyase or Isocitrate dehydrogenase through acetylation modification

(Lee et al., 2017). Moreover, the deacetylation of DosR at K182

promotes the hypoxia response in M. tb and enhances the

transcription of DosR-targeted genes. Rv0998 has been identified as

an acetyltransferase that mediates the acetylation of DosR at K182.

Deletion of Rv0998 also promoted the adaptation ofM. tb to hypoxia

and the transcription of DosR-targeted genes. Mice infected with an

M. tb strain containing acetylation-defective DosRK182R had much

lower bacterial counts and less severe histopathological impairments

compared with those infected with the wild-type strain (Yang et al.,

2018). Additionally, Rv0998 has been shown to regulate carbon flux,

change oxidation reaction, and reduce tricarboxylic acid cycle

reaction, which may contribute to M. tb survival in mice (Bi et al.,

2018; Rittershaus et al., 2018). The acetylase activity of Rv0998 is

regulated by metabolism-related products, including cAMP, acetyl-

CoA, and the deacetylase Rv1151c (Bi et al., 2018). These findings

suggest that targeting M. tb acetyltransferase in its own metabolic

pathway could be a potential pathway for anti-TB therapy.

Furthermore, TB is linked to human metabolism, and

individuals with diabetes and other metabolic disorders have a

higher risk of M. tb infection (Bernal et al., 2014). Therefore,

investigating the effect of M. tb acetyltransferase on host

metabolism could be a promising new strategy for developing

anti-TB therapy targeting metabolism-related enzymes.
2.5 Acetyltransferase associated with host
anti-tuberculous immunity

TB arises from the interplay between bacterial virulence and

host immunity. The virulence factors ofM. tb enable it to evade the

host immune system and survive within the host (Zhu et al., 2019).

For example, Kim et al. (Kim et al., 2012) found that Eis protein

inhibits JNK-dependent autophagy, phagosome maturation and

Reactive Oxygen Species (ROS) production through acetylation of

DUSP16/MKP-7 at K55 site. Duan Liang et al. (Duan et al., 2016)

found that Eis protein inhibits macrophage autophagy by increasing

histone H3 acetylation, up-regulating IL-10 expression, and then

activating AKT/mTOR/P70S6K pathway. Rv3423.1, a novel histone

acetyltransferase fromM. tb, has been shown to mediate acetylation

at the H3K9/K14 positions by co-localizing with the host chromatin

in the nucleus. By binding to the host chromatin, Rv3423.1 may

manipulate the expression of host genes involved in anti-

inflammatory responses, allowing M. tb to evade clearance and

survive in the intracellular environment (Jose et al., 2016). Another

protein secreted by mycobacteria under hypoxia, FadA (Fatty-acid

degradation A), acts as an acetyltransferase that converts host

acetyl-CoA to acetoacetyl-CoA. This reduces the acetyl-CoA level

and suppresses H3K9Ac-mediated expression of the host

proinflammatory cytokine Il-6, thereby promoting granuloma

progression (Yang et al., 2021). Eis also acetylates M. tb HU

(MtHU), which leads to reduced DNA interactions and altered

DNA compaction capacity of NAP (Ghosh et al., 2016).
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Overexpression of Eis can result in excessive acetylation of HU and

genomic decompression. Given the importance of HU for M. tb

survival, it is possible that its acetylation by Eis is also linked to drug

resistance and survival.

Thus, understanding the role of acetyltransferases in host

immunity against TB may offer a new therapeutic approach to

TB infection.

3 Acetylation modification of host
proteins in TB

3.1 Protein acetylation modification
and diseases

Protein acetylation and deacetylation is catalyzed by protein

acetyltransferases and deacetylases, respectively, of which several

families exist. There are two types of protein acetylation: the

acetylation of proteins at the e-amino group and the acetylation of

the a-amino group of the N-terminal amino acid (Bernal et al., 2014;

Khadela et al., 2022). While the acetylation of the a-amino group of

the N-terminal amino acid of proteins is very rare in bacteria, it is

frequent in eukaryotes (30 - 80% of proteins) and archaea (14 - 29%

of proteins) (Polevoda and Sherman, 2003; Soppa, 2010). On the

other hand, the acetylation of proteins at the e-amino group of

internal lysine residues is a widely distributed PTMs, frequent in all

domains of life. In eukaryotes, the physiological relevance of N-e-
lysine protein acetylation is well demonstrated. It has been

demonstrated that the 8-amino group of multiple lysine side chains

in histones can be acetylated to manipulate gene expression by

regulating chromatin tightness or influencing transcription factor

binding in promoters and distal enhancers, as well as histone DNA

interactions (Roth et al., 2001; Yuan et al., 2009; Bannister and

Kouzarides, 2011; Barnes et al., 2019). For the first time, Choudhary

et al. identified the existence of acetylation modification at 3600 lysine

sites on 1750 proteins, suggesting that lysine acetylation has a wide

range of regulatory effects (Choudhary et al., 2009). Non-histone

acetylation plays a key role in physiological and pathological

processes, including the regulation of enzyme activity, protein

degradation, protein interaction, subcellular localization, chromatin

regulation and metabolism (Drazic et al., 2016; Narita et al., 2019).

Abnormal protein acetylation or deacetylation is closely related to

many diseases, such as leukemia, cancer, diabetes, infectious diseases,

cardiovascular and nervous system related diseases and so on

(Timmermann et al., 2001; Morales-Tarré et al., 2021).

3.2 Histone acetylation modification
induced by M. tb infection

During M. tb infection, the host anti-TB immune response was

regulated by M. tb-induced gene expression, which is one of the

strategies for its intracellular survival and progression of TB.

Research reports that M. tb-infected macrophages inhibit histone

H3 acetylation (H3Ac) in the interleukin-12B (IL-12B) promoter

region, leading to down-regulation of IL-12B expression and

inhibition of Th1 type immune response. This promotes M. tb
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survival in the host (Chandran et al., 2015). Wang et al. found that

M. tb infection inhibit HLA-DR gene expression by regulating the

recruitment of HDAC complex in the HLA-DR promoter to enable

its intracellular survival (Wang et al., 2005). Chen et al. found that

the expression of H3K14Ac in peripheral blood lymphocytes of TB

patients was reduced, especially the specific enrichment in the

promoter region of TNF-a and IL-12B was decreased, which was

related to the survival rate of TB patients (Chen et al., 2017). In

addition, the up-regulated expression of HDAC1 inhibits the

expression of H3K14Ac and plays a role in the outcome of active

pulmonary TB and its clinical treatment. Moores et al. found that

M. tb regulates the expression of matrix metalloproteinases (MMP-

1 and MMP-3) via HDAC and histone acetyltransferase (HAT)

activity and the manipulation of histone acetylation modification,

which is a key factor in TB immune pathogenesis (Moores et al.,

2017). These studies suggest that acetylation of histones, or

acetylation of specific lysine sites, is associated with intracellular

survival of M. tb and the development of TB.

Recently, the studies of histone acetylome-wide associations

(HAWAS) showed that there were at least 2000 differences in

acetylation sites associated with differential gene expression in the

whole genome of peripheral granulocytes and monocytes of TB

patients and healthy people. Histone acetylation quantitative trait

locus (haQTL) analysis revealed candidate causal immunophenotypic

changes in different populations of granulocyte and monocyte

haQTL. M. tb infection regulates the differential enrichment of the

inward rectifier potassium channel subfamily promoter J member 15

(CNJ15) of H3K27Ac, which enhances cell apoptosis and promotes

M. tb clearance in vitro (Del Rosario et al., 2022). On the other hand,

trained immunity, proposed by Netea et al. and Joosten et al., has

become an important new evaluation index system for host immune

protection induced by TB vaccines (Netea et al., 2016; Joosten et al.,

2018). Post-immunization mediated trained immunity (mainly

affecting H3K27Ac) of BCG or MTBVAC, an active M. tb

candidate vaccine, can enhance the production of cytokines by

monocytes and thus provide immune protection (Tarancón et al.,

2020; Sheng and Cristea, 2021). Li et al. found that BCG infection can

up-regulate the expression level of p300 in mature THP-1 cell lines

and regulate the acetylation level of histone H3 and AP-2a. It was
further demonstrated that trichostatin A (TSA), a broad-spectrum

histone deacetylase inhibitor, enhances the enrichment of the toll-like

receptor2 (TLR2) promoter by regulating the acetylation of AP-2a.
Furthermore, promoter transcriptional activity was increased to up-

regulate TLR2 gene expression (Li et al., 2013). Pennini et al. found

that activation of TLR2 inhibits IFN-induced acetylation of histones

H3 and H4 (Pennini et al., 2006). Therefore, targeted regulation of

acetylation of specific lysine sites in histones may be an important

way to enhance the host’s effective resistance toM. tb infection and/or

promote immune clearance.
3.3 M. tb infection induced host non-
histone acetylation modification

In addition to histone acetylation, non-histone acetylation also

plays a crucial role in regulating cellular processes. Like histone
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proteins, non-histone proteins are also modified by histone

acetyltransferases and HDACs. Various studies have reported that

non-histone acetylation plays an essential role in the occurrence,

development, and outcome of infectious diseases caused by viruses,

bacteria, and other pathogens such as DNA virus, influenza virus,

rabies virus, and Salmonella typhi infection (Wu et al., 2010; Green

et al., 2018; Song et al., 2020). Furthermore, non-histone acetylation

modification has been found to regulate autophagy, apoptosis, and

inflammasome activation in innate immune responses (Wan et al.,

2017; Son et al., 2020; Pagán et al., 2022) Autophagy-related

proteins such as ATG5, ATG7, ATC8, and ATG12 can be

acetylated by p300, leading to inhibition of autophagy (Lee and

Finkel, 2009; Battaglioni et al., 2022; Wang D. et al., 2022). On the

other hand, NAD+-dependent histone deacetylase Sirt1 can

deacetylate ATG5, ATG7, and LC3, promoting autophagy

occurrence (Lee et al., 2008).

In the process of M. tb infection, studies have shown that Sirt1

activation induced by M. tb infection can activate autophagy by

directly mediating MAP1LC3B/LC3B deacetylation, which may

limit the growth of intracellular M. tb (Iqbal et al., 2021). These

findings suggest that acetylated autophagy-related proteins play a

key role in regulating autophagy activation and inhibition, and the

role of autophagy in host anti-M. tb infection has been established

(Pellegrini et al., 2021). Non-histone deacetylation mediated by Sirt

family proteins is suggested to be significant in understanding M.

tb-mediated inflammatory response and discovering new drug

targets (Cheng et al., 2017; Bhaskar et al., 2020; Yang et al., 2021;

Yang et al., 2022). In another recent experiment, Brandenburg J.

et al. showed that Wnt family member 6 (WNT6) promotes foam

cell formation during TB by regulating key lipid metabolism genes

including Acetyl Coenzyme A Carboxylase (ACC2). These findings

open new perspectives for host-directed adjunctive treatment of

pulmonary TB (Brandenburg et al., 2021).

Based on the above studies, non-histone acetylation

modification is shown to be effective in host anti-TB immunity.

Additionally, non-histone modifications involved in cell signal

transduction, protein interaction, protein aggregation, protein

degradation, and subcellular localization may also play a critical

role in regulating host anti-TB immunity during M. tb infection.
4 N-acetyltransferase acetylation
polymorphisms and TB treatment

4.1 Introduction of N-
acetyltransferase acetylation

Arylamine N-acetyltransferase comprises N-acetyltransferase 1

(NAT1) and N-acetyltransferase 2 (NAT2) in humans (Hein et al.,

2022). NAT2 is mainly expressed in the liver and the GI tract

(Husain et al., 2007), and is responsible for the N-acetylation

polymorphism observed in human populations (Weber and Hein,

1985; McDonagh et al., 2014; Agundez and Garcia-Martin, 2018;

Mitchell, 2020). There are several single nucleotide polymorphisms

(SNPs) in the coding exon of the NAT2 gene, which are inherited as

NAT2 haplotypes and genotypes and confer rapid, intermediate,
Frontiers in Cellular and Infection Microbiology 07
and slow acetylator phenotypes that modify drug metabolism

(Hein, 2009; Hein and Millner, 2021).
4.2 Relationship between NAT2 genotype
with drug metabolism and toxicology

Although isoniazid (INH) remains one of the major first-line

drugs, the extensive use of INH to treat active and latent TB

infections is compromised by INH-induced hepatotoxicity and

liver failure (Hall et al., 2009; Sterling et al., 2020). The NAT2

genotype dependent pharmacokinetic parameters measured in

human subjects have been confirmed by measurement of INH N-

acetylation both in vitro and in situ in cryopreserved human

hepatocytes and the TB patient (Doll et al., 2017; Hein and

Millner, 2021). A study conducted in Indonesia revealed that

patients with TB and the slow-acetylator phenotype caused by

NAT2 variants are highly susceptible to drug-induced liver injury

caused by anti-TB drugs, confirming the association between slow-

acetylator NAT2 variants and susceptibility to drug-induced liver

injury in an Indonesian population (Yuliwulandari et al., 2016).

Furthermore, recent studies concluded that INH N-acetylation in

human subjects differs significantly with respect to rapid,

intermediate, and slow acetylator NAT2 genotypes in terms of

plasma half-life, bioavailability (area under the curve), plasma

metabolic ratio of INH to N-acetyl-INH, and clearance. The

meta-analysis studies report that slow acetylators were

significantly more likely to experience hepatotoxicity from INH

treatment for TB than rapid acetylators (Khan et al., 2019;

Richardson et al., 2019).
4.3 NAT2 polymorphisms and guide
isoniazid dosing for TB treatment

Personalized therapy, also known as host-directed therapy

(HDT), is being developed in many recent studies for conditions

such as TB caused by M. tb. Epigenetic processes, including

acetylation modification, play a crucial role in the development of

personalized HDT (Marimani et al., 2018). One of the most focused

themes among these studies is NAT2 polymorphisms. The

paradigm for NAT2 phenotype-dependent dosing strategies is

presented as a value of pharmacogenomics-guided isoniazid

therapy for the prevention and treatment of TB. Béranger Agathe

et al. have demonstrated that NAT2 genotype is the most impactful

factor of INH metabolism, compared with low-birth-weight (LBW)

and preterm infant born (Béranger et al., 2022). Phenotype-

dependent dosing strategies aim to reduce the risk of adverse

reactions, increase therapeutic efficacy, reduce costs, and improve

patient care and disease prevention. Several studies have proposed

pharmacogenomics-guided INH therapy for TB (Matsumoto et al.,

2014; Jung et al., 2015; Choi et al., 2017; Motta et al., 2018;

Suvichapanich et al., 2018; Jing et al., 2020). A recent study

conducted in the USA and Brazil found that the clearance rates of

INH were lowest in predicted slow acetylators (median 19.3 L/hr),

moderate in intermediate acetylators (median 41.0 L/hr), and
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highest in fast acetylators (median 46.7 L/hr) (Verma et al., 2021).

Moreover, there are significant differences in the distribution of

NAT2 gene polymorphisms among different nationalities and races,

the anti-TB treatment regimens adopted by patients are different,

and the tolerance and exclusion standards of the subjects are

different (Suarez-Kurtz et al., 2016; Zahra et al., 2020; Zhang

et al., 2021). Depending on the NAT2 genotype of the patients,

several studies have evaluated isoniazid doses of 2.5 mg/kg (0.5

times standard dose), 5 mg/kg (standard dose), and 7.5 mg/kg (1.5

times standard dose) for slow, intermediate, and fast metabolizers,

respectively. As a result, a better treatment success rate was

achieved, and the occurrence of liver function injury was reduced

(Azuma et al., 2013; Huerta-Garcıá et al., 2020).

All these results suggest that understanding the diversity of

drug-related genetic markers is critical for individualized drug-gene

therapy programs in ethnic minorities in China and populations

highly mixed with these ethnic groups. The above studies could

make personalized TB treatment dosing available in reality.

Pharmacogenomic-guided dosing can help achieve consistent

drug levels and improve clinical outcomes.
5 Conclusions and future directions

As one main type of epigenetics in TB, acetylation plays a

crucial role in aiding M. tb survival in the host, rendering the host

vulnerable to the pathogen, and activating the host’s immune

system against the invading pathogen. Hence, the study of

acetylation processes is crucial for comprehending the

progression of M. tb, identifying ideal candidates for therapeutic

targets, minimizing drug toxicity, and monitoring the efficacy of

administered therapy in developing personalized medication

regimens. There are still some limitations of current research on

protein acetylation within TB. We still lack dynamic change

analysis of the acetylated protein expression. Future research may
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focus on the dynamic changes of acetylated protein expression inM.

tb and host at different time points, which will provide more

effective HDT targets for drug treatment of TB.
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