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Introduction: This study aimed to identify biomarkers for acute and chronic

brucellosis using advanced proteomic and bioinformatic methods.

Methods: Blood samples from individuals with acute brucellosis, chronic

brucellosis, and healthy controls were analyzed. Proteomic techniques and

differential expression analysis were used to identify differentially expressed

proteins. Co-expression modules associated with brucellosis traits were

identified using weighted gene co-expression network analysis (WGCNA).

Results: 763 differentially expressed proteins were identified, and two co-

expression modules were found to be significantly associated with brucellosis

traits. 25 proteins were differentially expressed in all three comparisons, and 20

hub proteins were identified. Nine proteins were found to be both differentially

expressed and hub proteins, indicating their potential significance. A random forest

model based on these nine proteins showed good classification performance.

Discussion: The identified proteins are involved in processes such as inflammation,

coagulation, extracellular matrix regulation, and immune response. They provide

insights into potential therapeutic targets and diagnostic biomarkers for brucellosis.

This study improves our understanding of brucellosis at the molecular level and

paves the way for further research in targeted therapies and diagnostics.

KEYWORDS

brucellosis, biomarkers, proteomics, bioinformatics, differential expression analysis,
weighted gene co-expression network analysis (WGCNA), random forest model,
enrichment analysis
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1 Introduction

Brucellosis, caused by gram-negative bacteria of the genus

Brucella, is a zoonotic disease with a global impact (Shakir, 2021).

Annually, it affects approximately half a million people, and it poses

a significant public health challenge, particularly in developing

countries where it is prevalent in both animals and humans

(Hisham and Ashhab, 2018). The consumption of unpasteurized

dairy products remains the primary mode of transmission (Rizkalla

et al., 2021). Brucellosis is a significant public health issue in the

Mediterranean region, the Middle East, Africa, Latin America, and

parts of Asia (Mirnejad et al., 2017; Munyua et al., 2021). In China,

the number of brucellosis patients has been increasing (Li et al.,

2023). In 2021, there were 69,767 reported cases of Brucella

infection with an incidence rate of 4.95 per 100,000, which is an

increase of 22,522 cases compared to the previous year, representing

a 47.7% increase (National Overview of Statutory Infectious Disease

Epidemic Situation). This poses a significant threat to human health

and overall socioeconomic development. Brucellosis can manifest as

either acute or chronic forms, and both presentations share non-

specific clinical symptoms that can mimic other infectious diseases,

such as typhoid fever, rheumatic fever, osteoarthritis, and other

diseases; hence it complicates accurate diagnosis and treatment

(Zheng et al., 2018; Gentilini et al., 2019).

Given the heterogeneous and nonspecific cl inical

manifestations of brucellosis, laboratory confirmation is essential

for accurate diagnosis (Yagupsky et al., 2019). Conventional

diagnostic methods include culture, serology, and molecular

techniques; however, these approaches exhibit limitations, such as

suboptimal sensitivity, high costs, and lengthy turnaround times

(Manzulli et al., 2022). Recently, proteomics and bioinformatics

have emerged as potent tools for identifying novel biomarkers,

providing potential advantages for the diagnosis, prognosis, and

treatment of infectious diseases (Hamidi et al., 2022; Aggarwal et al.,
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2023; Mu et al., 2023). The analysis of circulating proteins in blood

provides promising possibilities for diagnosis, risk stratification,

and potentially prevention of diseases (Deutsch et al., 2021).

Cristiana Iosef et al. suggested a vascular proliferative process in

long COVID by analyzing the plasma proteome of long-COVID

patients (Iosef et al., 2023). New proteomic methods, such as data

independent acquisition mass spectrometry (DIA-MS), have

recently surfaced as a valuable technique for the detection of

blood-based biomarkers (Scott et al., 2023). In this study, we

applied data dependent acquisition (DDA) and data independent

acquisition mass (DIA) proteomic analysis to blood samples

obtained from individuals with acute brucellosis, chronic

brucellosis, and healthy controls. Our aim was to discover

potential biomarkers that can effectively discriminate between

acute and chronic brucellosis cases, as well as differentiate

brucellosis patients from healthy individuals.

In this study as shown in Figure 1, a total of 60 participants were

enrolled, comprising of 24 individuals with acute brucellosis, 24

individuals with chronic brucellosis, and 12 healthy controls. Serum

samples were collected from each participant, and a high-

performance liquid chromatography-mass spectrometry system

was used to analyze the expression of proteins in the serum. A

total of 3,911 proteins were identified, out of which 2,440 proteins

were found to be expressed in all three groups. These 2,440 proteins

underwent Differential Expression Analysis and Weighted Gene

Co-Expression Network Analysis (WGCNA). The former identified

two sets of important differentially expressed proteins, with 25 and

19 proteins, respectively, while the latter identified two modules that

were significantly associated with clinical traits. Top 20 hub

proteins were identified from each module, and nine key proteins

were finally identified based on the results of the analyses. Machine

learning classification models and biological enrichment analysis

were then performed to further explore the potential significance of

these proteins in the progression of brucellosis.
FIGURE 1

Flow chart of present study. Identification of key proteins in brucellosis. Serum samples were collected from 24 acute brucellosis patients, 24
chronic brucellosis patients, and 12 healthy controls. High-performance liquid chromatography-mass spectrometry identified 3,911 proteins, with
2,440 proteins expressed in all groups. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed,
resulting in 9 key proteins being identified. Machine learning classification models and biological enrichment analysis were used to investigate the
role of these proteins in brucellosis progression.
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2 Materials and methods

2.1 Study populations

This research belongs to a cross-sectional study, and the study

population consisted of 60 individuals from three groups: acute

brucellosis (24 persons), chronic brucellosis (24 persons), and

healthy controls (12 persons). The sample size was estimated

using the formula n = (
Za=2+Zb

d )2 � p� (1 − p). The male to

female ratio in all groups was 3:1. All the participants were

described in detail in Supplementary Table 1. The diagnosis of

brucellosis was made according to the “Diagnostic criteria for

brucellosis” (WS 269-2019) standard (Diagnosis for brucellosis),

which included a history of brucellosis epidemiology, positive blood

culture for Brucella, or positive Rose Bengal plate agglutination test

with a tube agglutination test titer of 1:100 or higher. Acute

brucellosis was defined as a history of illness within six months,

while chronic brucellosis was defined as a history of illness for more

than six months. Patients with other serious internal diseases or

with other infectious diseases such as typhoid, paratyphoid,

rheumatic fever, pulmonary tuberculosis, malaria, were excluded.

Individuals considered inappropriate for inclusion in this study by

the researchers were also excluded. The healthy control group

population was composed of individuals who underwent

health checkups.
2.2 Sample preparation and fractionation
for data dependent Acquisition (DDA)
library generation

According to the method of previous research (Wisniewski

et al., 2009), we separated serum or plasma pools into high and low

abundance protein fractions using a commercially available Human

14/Mouse 3 Multiple Affinity Removal System Column (Agilent

Technologies), and concentrated the samples using a 5 kDa

ultrafiltration tube (Sartorius). Sodium Dodecyl Sulfate

Dithiothreitol (SDT) buffer (4% SDS, 100 mM DTT, 150 mM

Tris- HCl pH 8.0) was added to the protein samples, which were

then boiled and centrifuged. The supernatant was quantified using a

Bicinchoninic Acid (BCA) Protein Assay Kit (Bio-Rad, USA) and

stored at -80°C. This method enables the detection of lower

abundance proteins that are potentially important in disease

diagnosis and prognosis.
2.3 Filter-aided sample preparation (FASP
Digestion) procedure

For protein digestion, we followed the modified FASP protocol

described previously (Wisniewski, 2018). Briefly, 200 mg of high

abundant and low abundant proteins were subjected to repeated

ultrafiltration using Urea-Containing (UA) buffer (8 M Urea, 150

mM Tris-HCl pH 8.0) to remove the detergent, Dithiothreitol

(DTT), and low-molecular-weight components. The reduced
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cysteine residues were blocked by adding 100 ml of 100 mM

Iodoacetamide (IAA) in UA buffer, followed by incubation in

darkness for 30 min. The samples were washed with UA buffer

and 25 mM NH4HCO3 buffer, and then digested with 4 mg of

trypsin in 40 ml of 25 mM NH4HCO3 buffer overnight at 37°C. The

resulting peptides were collected as a filtrate and desalted on C18

cartridges, concentrated, and reconstituted in 0.1% formic acid. To

fractionate the peptides, we used the High pH Reversed-Phase

Peptide Fractionation Kit and collected 10 fractions. The peptides

from the low-abundance components of serum/plasma samples

were fractionated. Each fraction was concentrated, desalted on C18

cartridges, and reconstituted in 0.1% formic acid. To correct the

relative retention time differences between runs, we added iRT-Kits

(Biognosys) with a volume proportion of 1:3 for iRT standard

peptides versus sample peptides.
2.4 Data dependent acquisition (DDA) mass
spectrometry assay

For DDA library generation, all fractions were analyzed on a

Thermo Scientific Q Exactive HF X mass spectrometer connected to

an Easy nLC 1200 chromatography system (Thermo Scientific).

Briefly, 1.5 mg of peptide was loaded onto an EASY-SprayTM C18

Trap column (Thermo Scientific) and separated on an EASY-

SprayTM C18 LC Analytical Column (Thermo Scientific) with a

linear gradient of buffer B (84% acetonitrile and 0.1% Formic acid)

at a flow rate of 250 nl/min over 120 min. The Mass Spectrometry

(MS) detection method was positive ion, and the scan range was

300-1800 m/z with a resolution of 60000 at 200 m/z for MS1 scan.

The Automatic Gain Control (AGC) target was 3e6, and the

maximum IT was 25ms, with dynamic exclusion set at 30.0s.

Each full Mass Spectrometry Selected Ion Monitoring (MS-SIM)

scan was followed by 20 ddMS2 scans, and the resolution for MS2

scan was 15000, with an AGC target of 5e4, maximum Injection

Time (IT) of 25 ms, and normalized collision energy of 30 eV.
2.5 Mass spectrometry assay for data
independent acquisition (DIA)

For liquid chromatography tandem mass spectrometry (LC-

MS/MS) analysis in the data-independent acquisition (DIA) mode,

peptides from each sample were analyzed by Shanghai Applied

Protein Technology Co., Ltd. A DIA cycle included one full MS–

SIM scan, with 30 DIA scans covering a mass range of 350–1800 m/

z. SIM full scan resolution was set at 120,000 at 200 m/z with AGC

at 3e6 and a maximum IT of 50ms. DIA scans were performed at a

resolution of 15,000, with AGC target at 3e6 and maximum IT set to

auto. Normalized collision energy was set at 30 eV. The runtime was

120 min with a linear gradient of buffer B (84% acetonitrile and

0.1% Formic acid) at a flow rate of 250 nl/min. To monitor MS

performance, Quality Control (QC) samples were injected with DIA

mode at the beginning of the MS study and after every 6 injections

throughout the experiment.
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2.6 Mass spectrometry data analysis

For the generation of DDA library data, the Uniprot human

database was searched using Spectronaut ™ (14.4.200727.47784)

software with the addition of indexed Retention Time (iRT) peptides

sequence. The search parameters included trypsin as the enzyme, 2 as

the maximum missed cleavages, carbamidomethyl(C) as the fixed

modification, and oxidation(M) and acetyl (Protein N-term) as the

dynamic modifications. The protein identification was determined by a

false discovery rate (FDR) of ≤ 1% based on 99% confidence. The

original raw files and DDA searching results were imported into

Spectronaut Pulsar X™ (12.0.20491.4) for the construction of the

spectral library. For the DIA data, the constructed spectral library was

searched using Spectronaut™ (14.4.200727.47784) software with

dynamic iRT as the retention time prediction type, enabled

interference on MS2 level correction, and enabled cross-run

normalization. The results were filtered based on a Q value cutoff of

0.01, equivalent to FDR< 1%. The mass spectrometry proteomics data

have been deposited to the ProteomeXchange Consortium (http://

proteomecentral.proteomexchange.org) via the iProX partner

repository (Ma et al., 2019; Chen et al., 2022) with the dataset

identifier PXD042212.
2.7 Data pre-processing and differential
expression analysis

Data pre-processing was conducted using R software (version

4.2.2) with the tidyverse package (version 1.3.2). Firstly, proteins/

peptides with missing expression values in more than 15 samples

out of the 60 total were eliminated. The resulting data were log-

transformed, and differential expression analysis was performed

using the limma package (version 3.44.3) between the groups of

interest (Ritchie et al., 2015). Volcano maps and boxplot graphics

were created using the ggplot2 package (version 3.4.0), while

heatmaps were generated using the pheatmap package

(version 1.0.12).
2.8 Weighted gene correlation network
analysis (WGCNA)

In this study, we employed Weighted Gene Correlation

Network Analysis (WGCNA) to identify distinct protein/peptide

modules among the all identified proteins (Langfelder and Horvath,

2008). To construct the weighted protein co-expression network, we

used the WGCNA package (version 1.71) and set the network type

as an unsigned network, with Pearson correlation as the correlation

method. More details on the parameters and cut-offs used,

including the power of 2 and module size cut-off of 30. To

analyze the network, we calculated and visualized the module

eigengene expression, adjacency matrix heatmap, module-trait

relationship matrix, and gene significance versus module

membership analysis, following the recommended guidelines of

the WGCNA package. We exported the networks of the top 20 hub

proteins/peptides to VisANT, an integrative framework for
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networks in systems biology, and visualized the network

connections among the most connected proteins/peptides in the

significant modules using the VisANT software (version 5.53)

(Granger et al., 2016).
2.9 Random forests learning

Random forest is a machine learning algorithm that combines

the results of multiple decision trees to make predictions. In this

study, we employed a random forest model to classify blood

samples from acute brucellosis patients, chronic brucellosis

patients and healthy individuals based on the different expression

of the key 9 proteins/peptides. We trained the model with the scikit-

learn (version 1.0.2) module on the Python (version 3.7.7)

Anaconda (version 23.1.0) platform. The max depth of decision

trees was set to 4. We randomly split the data into training and

testing sets at a ratio of 3:1 to avoid overfitting. We measured the

impact of each feature (key protein/peptide) on the accuracy of the

model using the Mean Decrease Accuracy (MDA) method.

Additionally, we evaluated the performance of the model using

the area under the receiver operating characteristic (ROC) curve,

which measures the trade-off between the true-positive rate and the

false-positive rate.
2.10 Analysis and visualization of
functional enrichment

To investigate the biological functions and pathways associated

with the key genes identified in our study, we performed an

enrichment analysis using the clusterProfiler package (version

4.6.1) in R (Wu et al., 2021). We analyzed the gene ontology

(GO) terms in three categories, including cellular component

(CC), biological process (BP), and molecular function (MF), as

well as Reactome pathways and disease ontology (DO) terms. We

used the enrichGO function for GO analysis, enrichPathway

function for Reactome pathway analysis, enrichDO function for

DO analysis, and barplot function to visualize the results.
3 Results

3.1 Identification of differentially
expressed proteins/peptides in acute
and chronic brucellosis

High-throughput mass spectrometry data commonly contain

missing values, and in this study, those proteins/peptides with

missing expression values in more than 15 samples in all 60

samples were removed, resulting in 2440 proteins/peptides being

analyzed. Differential expression analysis was performed using

limma on the R platform, and volcano plots were used to visualize

the significant differentially expressed proteins/peptides in three

comparisons between the acute brucellosis group, the chronic

brucellosis group, and the healthy control group. The overlap of
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differentially expressed proteins/peptides in the three comparisons

was determined using Venn diagrams. As shown in Figure 2A,

among the total 2440 proteins, 763 proteins were differentially

expressed with statistical significance in pairwise comparisons

between the three groups. Specifically, 146 proteins were

differentially expressed between acute group and control group,

138 between chronic group and control group, and 34 between

chronic group and acute group; 344 proteins were differentially

expressed between acute vs control and chronic vs control group,

57 proteins were differentially expressed between acute vs control and

chronic vs acute group, 19 proteins were differentially expressed
Frontiers in Cellular and Infection Microbiology 05
between chronic vs control and chronic vs acute group; 25 proteins

were differentially expressed in all three pairwise comparisons. We

are particularly interested in the 25 proteins/peptides identified as

differentially expressed in all three comparisons (abbreviated as

DEPs-ACH). Additionally, 19 proteins/peptides were significantly

differentially expressed only in the comparisons of the chronic

brucellosis group versus the healthy control group and the chronic

brucellosis group versus the acute brucellosis group (abbreviated as

DEPs-C), which were considered as potential biomarkers for chronic

brucellosis. The Uniprot accessions of DEPs-ACH and DEPs-C were

listed in Figure 2A.
A

B C

FIGURE 2

Differential Protein Expression in Plasma Proteome of Acute and Chronic Brucellosis Patients and Healthy Controls. (A) Volcano plots and Venn
diagrams depicting differential protein expression in pairwise comparisons between the three groups. A total of 25 proteins/peptides were found to
be significantly differentially expressed in all three pairwise comparisons. Moreover, 19 proteins/peptides were differentially expressed only in the
comparisons between the chronic brucellosis group versus the healthy control group and the chronic brucellosis group versus the acute brucellosis
group. The Uniprot accessions of these 25 and 19 proteins/peptides are provided. (B) Heatmaps demonstrating the expression patterns of the 25 and
19 differentially expressed proteins/peptides in plasma samples of the acute brucellosis group, the chronic brucellosis group, and the healthy control
group. (C) Boxplots presenting the expression levels of the 25 and 19 differentially expressed proteins/peptides in plasma samples of the acute
brucellosis group, the chronic brucellosis group, and the healthy control group.
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3.2 Expression patterns of DEPs-ACH and
DEPs-C revealed by hierarchical clustering,
heatmaps, and boxplots

In order to provide a detailed depiction of the expression patterns

of the differentially expressed proteins/peptides (DEPs), we generated

heatmaps and boxplots for DEPs-ACH and DEPs-C, as shown in

Figures 2B, C.Hierarchical clustering of both samples and proteinswas

performed in the heatmaps, which revealed that in DEPs-ACH,

samples could be divided into two main clusters, namely the healthy

control cluster and the brucellosis cluster, with acute and chronic

brucellosis samples well-dispersed within the brucellosis cluster. In

contrast, the samples in DEPs-C clustered into a chronic brucellosis-

specific cluster and another cluster comprising the healthy control and

acute brucellosis samples. In the heatmaps ofDEPs-ACHandDEPs-C,

theDEPsweremainly clustered into two categories. InDEPs-ACH, the

4 proteins A0A5C2GYH7, B4E0X1, A0A5C2GR55, and D3DWL9

were highly expressed in the acute and chronic groups but lowly

expressed in the control group, while the other 21 proteins showed the

opposite trend. In DEPs-C, the 4 proteins A0A5C2FUQ0, B4E2S7,

A0A0S2Z333, and A0A5C2FYT9 were highly expressed in the acute

and control groups but lowly expressed in the chronic group, while the

other 15 proteins showed the opposite trend. The expression changes

inDEPs-ACH andDEPs-Cwere visually represented by the heatmaps,

where the expression level of DEPs-ACH increased or decreased

successively in the order of the healthy control group, chronic

brucellosis group, and acute brucellosis group. In contrast, the

expression of DEPs-C did not exhibit the same trend as DEPs-ACH,

with only significant differential expression observed between the

chronic brucellosis and the other two groups. To provide an

overview of the variation in DEPs levels, boxplots were generated for

DEPs-ACH and DEPs-C as shown in Figure 2C. Consistent with the

heatmaps, the boxplots of DEPs-ACH showed a trend of increasing or

decreasing expression levels from the healthy control group to the

chronic brucellosis group and the acute brucellosis group, but P59665

was the only exception. Among the 25 DEPs-ACH, four DEPs

(A0A5C2GYH7, B4E0X1, A0A5C2GR55, D3DWL9) exhibited

increasing expression levels in the same order, while P59665 had the

highest expression level in the healthy control group, the lowest in the

chronic brucellosis group, and an intermediate level in the acute

brucellosis group. The other 20 DEPs-ACH exhibited decreasing

expression levels in the same order. Among the 19 DEPs-C, four

DEPs (A0A5C2FUQ0, B4E2S7, A0A0S2Z333, A0A5C2FYT9) showed

lower expression levels in the chronic brucellosis group than in the

other two groups, while the other 15 DEPs-C exhibited higher

expression levels in the chronic brucellosis group.
3.3 Identification of co-expression
protein/peptide modules using WGCNA
and their correlation with clinical traits in
brucellosis patients

To identify co-expression protein/peptide modules, we utilized

the WGCNA method to construct a weighted co-expression

network from the 2440 filtered proteins/peptides. Eleven modules
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with different colors, including 10 co-expression modules and the

grey module (MEgrey) for proteins/peptides outside all modules,

were identified, as shown in Figures 3A, B. In Figure 3C, the

module-trait relationship heatmap demonstrates the correlations

between the module eigengene and clinical traits, while a module-

trait relationship heatmap containing more clinical indexes were

presented in the Supplemental Figure 1. Since we constructed an

unsigned WGCNA network, the expression of proteins/peptides in

the significant module changes significantly with the specific clinical

trait. The results indicate that the turquoise module is negatively

correlated with brucellosis infection and clinical symptoms such as

fatigue, fever, muscle aches, and low back pain; while there is a

positive correlation between the brown module and acute

brucellosis infection, as indicated by the red dashed box and

green dashed box in Figure 3C. Moreover, we analyzed the gene

significance for brucellosis of the proteins/peptides in the turquoise

module and the gene significance for acute infection of the proteins/

peptides in the brown module, as presented in Figure 3D. The

higher module membership proteins/peptides in the module are

more significant for the corresponding clinical trait, so the hub

proteins/peptides that are highly connected in the module are

considered as hub genes according to the naming convention of

WGCNA. We exported the networks consisting of the top 20 hub

genes (proteins/peptides actually) of the turquoise and brown

modules to the VisANT software, and visualized the Uniprot

accessions and network relations of the top 20 hub proteins/

peptides of the turquoise and brown modules in Figure 3E. These

hub genes are critical components of network structures and

functions, and usually have significant biological functions and

association with traits of interest.
3.4 Identification and classification of key
proteins associated with brucellosis and
enrichment analysis of biological functions

We identified key proteins by intersecting differentially

expressed proteins (DEPs-ACH and DEPs-C) with hub proteins

(MEturquosis and MEbrown) from WGCNA. This analysis

eventually yielded 9 key proteins that overlapped with DEPs-ACH

and the hub proteins ofMEturquosis. Figure 4A displays the relevant

information for these 9 proteins, with all except for B0AZL7 having

corresponding gene symbols, while a more detailed information

table was presented in the Supplemental Table 2. Furthermore, these

nine proteins were used to train a random forest model for

classifying samples into three categories: acute brucellosis, chronic

brucellosis, and healthy control. Figures 4B, C show one decision

tree of the model and feature importance, respectively. As shown in

the feature importance chart, Q96PD5 was the most important

feature in classification. Q96PD5(PGLRP2) is a peptidoglycan

recognition protein, which belongs to the N-acetylmuramoyl-L-

alanine amidase 2 family. As shown in Figure 4D, ROC curves for

the three different categories, with all three having an AUC greater

than 0.95, indicating good classification performance. By zooming in

on the plot, we can clearly see that the healthy control group is better

than the acute brucellosis group, which in turn is better than the
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chronic brucellosis group. To investigate the biological functions of

the nine key proteins identified in the previous analysis, we

performed enrichment analysis using the clusterProfiler package

in R. Since B0AZL7 lacks a corresponding gene name, we analyzed

eight genes in total. Enrichment analysis was performed for gene

ontology (GO) terms in three categories, including cellular

component (CC), biological process (BP), and molecular function

(MF), as well as Reactome pathways and disease ontology (DO)
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terms. The results of the analysis are presented in Figure 4E. The

enrichment analysis revealed that these proteins are primarily

concentrated in blood microparticles, which is consistent with the

serum samples used in the study. Additionally, the proteins were

found to have molecular functions mainly involving serine-type

peptidase activity and were implicated in regulating fibrinolysis and

complement cascade processes. The proteins were also associated

with nephritis, as indicated by the DO term analysis.
A B

D

E

C

FIGURE 3

Weighted gene co-expression analysis (WGCNA) of the plasma proteome in patients with acute and chronic brucellosis and healthy controls.
(A) Hierarchical clustering and module detection based on protein/peptide expression patterns. The dendrogram shows the clustering of proteins/
peptides, and the colors below represent the 11 identified modules. (B) Dendrogram of consensus module eigengenes and heatmap of module
adjacencies. The heatmap shows the correlations (positive or negative) between the identified modules. (C) Module-trait relationships for various
clinical traits. The module name is shown on the left side of each cell, and the correlations between the module eigengene and each trait are
displayed. The color-coded table indicates the strength of the correlations. (D) Scatter plots showing the relationship between gene significance and
module membership in the turquoise (left) and brown (right) modules. (E) Network diagrams constructed using the top 20 hub proteins/peptides in
the turquoise (left) and brown (right) modules. The Uniprot accessions and relationships between hub proteins/peptides are shown.
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4 Discussion

In the present investigation, we employed advanced proteomic

and bioinformatic methodologies to scrutinize blood specimens

derived from individuals with acute and chronic brucellosis,

alongside healthy controls, with the aim of uncovering potential

biomarkers associated with brucellosis. Our findings unveiled a

distinct set of differentially expressed proteins, which hold promise

as diagnostic or prognostic indicators for brucellosis. Furthermore,

these molecular signatures may provide valuable insights into the
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underlying mechanisms and pathological processes involved in

brucellosis pathogenesis.

The endeavor of identifying pivotal proteins is intrinsically

enlightening. In this investigation, we utilized two prevalent

approaches in the realm of biological informatics: differential

expression analysis and weighted gene co-expression network

analysis (WGCNA). Through differential expression analysis, we

discerned 25 proteins within the DEPs-ACH dataset, exhibiting

significant differential expression across all three pairwise

comparisons among the three groups. Concurrently, WGCNA
A B

D

E

C

FIGURE 4

Functional Analysis of the key nine proteins/peptides. (A) Summary of key 9 proteins/peptides: This table provides detailed information on the 9 proteins/
peptides identified as potential biomarkers for brucellosis in our study, including Uniprot accession, protein/peptide name, gene symbol, and amino acid
sequence length. (B) Decision Tree Example in Random Forest Model: This figure illustrates an example of a decision-making tree generated by our
random forest model for predicting brucellosis. The tree is based on the most important features identified in our analysis and shows the decision rules
for classifying samples as acute brucellosis, chronic brucellosis, or healthy. (C) Feature Importance in Forest Model: This figure shows the feature
importance scores for the 9 key proteins/peptides in our random forest model. The x-axis represents the importance scores, and the y-axis shows the
proteins. (D) ROC Curves of Forest Model: This figure presents the ROC curves of the three different classes for our random forest model. The x-axis
displays the false-positive rate, and the y-axis shows the true-positive rate. The area under the curve (AUC) values for all three classes are above 0.95,
indicating that our model has good discriminatory power. (E) Enrichment Analysis of the Key 8 Genes: This section displays the results of the enrichment
analysis of the 8 key genes, including DO analysis, MF analysis, pathway analysis, BP analysis, and CC analysis.
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analysis revealed 20 hub proteins in the MEturquoise module,

demonstrating a strong associat ion with the cl inical

manifestations of brucellosis.

Proteomic studies related to brucellosis reported to date have

primarily focused on the investigation of Brucella-specific antigens

and their interaction with host antibodies. Gamal Wareth et al.

performed a comprehensive identification of immunodominant

proteins in Brucella abortus and Brucella melitensis using

antibodies present in sera from naturally infected hosts (Wareth

et al., 2016). Ayman Elbehiry et al. conducted proteomics-based

screening and antibiotic resistance assessment of clinical and sub-

clinical Brucella species (Elbehiry et al., 2022). Meijuan Pei et al.

utilized mass spectrometry in conjunction with the collection of

major histocompatibility complex class I or II (MHC-I/II)-binding

peptides from blood samples for the identification of potential

antigenic peptides of Brucella (Pei et al., 2023). In our study, we

aimed to compare patients with acute and chronic brucellosis

infections to a healthy control group, with the objective of

identifying distinctive key proteins or peptides in the blood.

Ideally, these proteins would possess discriminatory characteristics

capable of distinguishing between acute and chronic infections.

Based on the aforementioned aim, employing two bioinformatics

analyses, we ultimately obtained nine proteins, thereby offering

mutual validation of the reliability of these techniques, and

underscoring the crucial role of these proteins in brucellosis

progression. The overlap indicates that these shared key proteins

likely serve as central players in the biological processes, with their

regulation potentially impacting brucellosis. It is imperative to

acknowledge the complementary nature of WGCNA and

differential expression analysis. WGCNA is geared towards the

identification of gene clusters with analogous expression patterns,

subsequently unveiling potential functional modules and gene

interactions (Kakati et al., 2019). In contrast, differential expression

analysis is primarily concerned with significantly differentially

expressed genes under diverse conditions to pinpoint key genes

linked to specific biological processes or states (Deshpande et al.,

2023). Hence, the integration of these two analytical methodologies

can yield a more comprehensive understanding of the regulatory

networks andmolecular mechanisms governing biological processes.

Drawing upon the expression levels of the nine proteins previously

mentioned, we constructed a multi-class random forest model. This

machine learning approach, predicated on the integration of numerous

decision trees, circumvents challenges associated with overfitting and

inadequate generalization capabilities. The model can be applied

directly to data, boasts commendable interpretability, and can rank

the significance of the provided features, among other merits. The

ROC curve analysis substantiates the model’s efficacy in accurately

classifying the healthy group, acute brucellosis group, and chronic

brucellosis group. Feature importance analysis reveals that the top

three salient features, in descending order, comprise Q96PD5

(PGLYRP2), P00734 (F2), and A0A384MEF1 (GSN). Q96PD5, also

referred to as peptidoglycan recognition protein 2, is a member of a

protein class, peptidoglycan recognition proteins (PGRP), which

possess the ability to bind or hydrolyze peptidoglycan (PGN).

PGRP-S-PGN complexes augment the membrane expression of

CD14, CD80, and CD86 while amplifying the secretion of
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interleukin-8, interleukin-12, and tumor necrosis factor-alpha.

Conversely, these complexes diminish interleukin-10, thereby

manifesting a distinct inflammatory profile (De Marzi et al., 2015).

P00734 (F2) is proteolytically cleaved in multiple steps to form the

activated serine protease thrombin, and thrombin also plays a role in

cell proliferation, tissue repair, and angiogenesis. A0A384MEF1 (GSN)

is a calcium-regulated protein functions in both assembly and

disassembly of actin filaments. Based on the functional

characteristics of these proteins, we speculate that these proteins may

be involved in the immune response of the host and cellular damage

processes during brucellosis infection.

Among the nine proteins previously mentioned, eight possess

corresponding gene designations. We conducted an enrichment

analysis on the following genes: PGLYRP2, VTN, GSN, KLKB1,

AFM, CLU, F2, and PLG. This comprehensive enrichment analysis

encompasses Gene Ontology (GO) assessments, which examine

Cellular Component (CC), Biological Process (BP), and Molecular

Function (MF) categories, as well as Reactome Pathway analysis

and Disease Ontology (DO) investigation. The enrichment analysis

results elucidate that the investigated genes predominantly participate

in an array of biological processes, encompassing inflammation,

coagulation, and extracellular matrix regulation. The implication

in glomerulonephritis and nephritis alludes to a potential function

in renal-associated inflammatory conditions. Currently, there

have been reports linking glomerulonephritis/nephritis with

brucellosis. One such report describes immune complex-mediated

glomerulonephritis occurring in a patient (29-year-old man)

with concurrent brucellosis following COVID-19 vaccination

with the AstraZeneca vaccine (Al Bakr and Alaithan, 2022).

Additionally, there have been several reports documenting cases of

glomerulonephritis attributed to brucellosis (Parlak, 2020; Shebli et al.,

2021). Moreover, the enrichment in processes such as hereditary

angioedema, complement cascade, and platelet activation signaling

insinuates a nexus with immune response and blood coagulation

regulation. The correlation with extracellular matrix constituents,

including glycosaminoglycan binding and collagen-rich extracellular

matrix, underscores their potential role in tissue remodeling and

cellular adhesion. In summary, the multifaceted enrichment of these

genes indicates a possible contribution to an extensive spectrum of

physiological and brucellosis pathological processes, thereby offering

invaluable insights into potential therapeutic targets or diagnostic

biomarkers for brucellosis.

Our study presents certain limitations, including a relatively small

sample size and the absence of validation in a larger patient cohort.

Based on the sample size formula and parameters, we obtained a

sample size of 18 for each group. Due to limitations in the actual

situation, our actual sample size for the healthy control group is 12,

which is lower than the calculated required sample size of 18. However,

the sample sizes for the acute group and chronic group are 24. The

deficiencies may affect the results of the experiment, and we did not

find the specific biomarkers that can effectively discriminate between

acute and chronic brucellosis cases. Additionally, the analysis was

restricted to blood samples, while other body fluids such as

cerebrospinal or synovial fluid may harbor more specific biomarkers

for brucellosis. Despite these limitations, our research highlights the

potential of proteomics technology in discovering novel biomarkers for
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infectious diseases like brucellosis, which could ultimately enhance

diagnosis, prognosis, and treatment. The random forest model based

on nine key proteins demonstrated good classification performance for

acute, chronic and health groups. Future investigations should focus on

validating these biomarkers in larger patient cohorts and diverse body

fluids, as well as conducting longitudinal studies to examine biomarker

expression changes throughout the disease progression and treatment

response. Ultimately, the identification of reliable and specific

biomarkers for brucellosis is a crucial step towards developing

efficacious diagnostic and therapeutic strategies for this

overlooked disease.
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