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Background: Combining immunotherapy with surgical intervention is a

prevailing and radical therapeutic strategy for individuals afflicted with gastric

carcinoma; nonetheless, certain patients exhibit unfavorable prognoses even

subsequent to this treatment regimen. This research endeavors to devise a

machine learning algorithm to recognize risk factors with a high probability of

inducing mortality among patients diagnosed with gastric cancer, both prior to

and during their course of treatment.

Methods: Within the purview of this investigation, a cohort of 1015 individuals

with gastric cancer were incorporated, and 39 variables encompassing diverse

features were recorded. To construct the models, we employed three distinct

machine learning algorithms, specifically extreme gradient boosting (XGBoost),

random forest (RF), and k-nearest neighbor algorithm (KNN). The models were

subjected to internal validation through employment of the k-fold cross-

validation technique, and subsequently, an external dataset was utilized to

externally validate the models.

Results: In comparison to other machine learning algorithms employed, the

XGBoost algorithm demonstrated superior predictive capacity regarding the risk

factors that affect mortality after combination therapy in gastric cancer patients

for a duration of one year, three years, and five years posttreatment. The

common risk factors that significantly impacted patient survival during the

aforementioned time intervals were identified as advanced age, tumor
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invasion, tumor lymph node metastasis, tumor peripheral nerve invasion (PNI),

multiple tumors, tumor size, carcinoembryonic antigen (CEA) level, carbohydrate

antigen 125 (CA125) level, carbohydrate antigen 72-4 (CA72-4) level, and H.

pylori infection.

Conclusion: The XGBoost algorithm can assist clinicians in identifying pivotal

prognostic factors that are of clinical significance and can contribute toward

individualized patient monitoring and management.
KEYWORDS

gastric tumor, gastrectomy, immunotherapy, Helicobacter pylori, risk factor,
machine learning
Introduction

Gastric cancer is among the most prevalent malignancies and

serves as the primary cause of cancer-related deaths, with a particularly

high incidence observed in developing countries (Maomao et al., 2022;

Sekiguchi et al., 2022). Global epidemiological surveys on tumors have

indicated that the incidence of gastric cancer is on the rise, concurrent

with a shift in dietary habits (Morgan et al., 2022). Early diagnosis and

prompt treatment hold critical importance in tumor management.

Over the years, the advent of comprehensive therapeutic modalities

such as immunotherapy and molecular targeted drugs has significantly

improved the survival rates of patients with advanced gastric cancer (Li

et al., 2021). However, a considerable fraction of tumor cells lack the

requisite molecules that can interact with the immune system or exhibit

immune evasion mechanisms, consequently resulting in

immunotherapy failure. Furthermore, immunotherapy necessitates

specific biomarkers or gene expression in patients, thus limiting its

applicability to certain patient populations. The presence of side effects

such as immune suppression or immune hyperactivation post

immunotherapy further impedes its development. In contemporary

clinical practice, clinicians frequently resort to combining advanced

surgical techniques with immunotherapy to combat gastric cancer;

notwithstanding, treatment failure may still occur, ultimately leading to

patient mortality. This can be attributed to diverse factors, such as

tumor type, stage, location and size, patient age, physical condition, and

immune system status. Tumor cells may undergo mutation and evolve,

resulting in increased tumor resistance to treatment (Kakinuma et al.,

2021; Xiang et al., 2021; Shibata et al., 2022).

Clinicians commonly use their clinical experience and factors such

as the patient’s medical history and presentation to assess the risk of

death after combination therapy for gastric cancer. However, this

method has limitations in terms of accuracy and subjectivity. Imaging

tests such as CT and MRI are also used in diagnosis, but they increase

the workload of medical staff and are financially burdensome for

patients’ families. Additionally, some examination protocols are

invasive and radioactive, which can cause harm to patients.

Traditional regression models have been used, but they have poor

discrimination and calibration ability (Niu et al., 2020). Artificial

intelligence, particularly machine learning algorithms, can analyze and
02
learn from large amounts of data to discover complex relationships

and patterns between variables, enabling prediction of future disease

occurrence (Wang et al., 2015). Compared to traditional prediction

methods based on statistical methods and empirical rules, machine

learning algorithms have stronger adaptive and generalization

capabilities and can adapt to a wider and more complex data

situation while avoiding errors introduced by researchers’ subjective

factors and limitations of research methods. Liu et al. employed

sophisticated data mining techniques to enhance the identification

of prognostic risk factors in individuals diagnosed with early-stage

gastric cancer, focusing specifically on non-invasive variables (Liu

et al., 2018; Afrash et al., 2023). In this study, we analyzed clinical data

from patients with gastric cancer and utilized machine learning

algorithms to develop a prediction model for patient death after

radical gastric cancer surgery combined with immunotherapy to

improve the quality of postoperative survival.
Materials and methods

Study subjects

In this study, we used data from the clinical databases of the

Affiliated Wuxi People’s Hospital of Nanjing Medical University,

Wuxi Second People’s Hospital, and Shandong Provincial Hospital

affiliated with Shandong First Medical University. The criteria for

patient inclusion in this study were as follows: (1) adult patients aged

18 years and above but below 80 years of age; (2) patients who

underwent a combination of radical gastric cancer surgery and

immunotherapy; (3) the surgical team involved senior surgeons with

the expertise to independently perform radical gastric cancer surgery;

and (4) patients were diagnosed with gastric adenocarcinoma through

postoperative pathology. Exclusion criteria for the case included the

following: (1) patients presenting with coexisting malignancies; (2)

patients diagnosed with gastric cancer with distantmetastasis based on

pathological examination or imaging studies; (3) patients diagnosed

with severe cardiovascular or respiratory diseases; (4) patients with

significant liver or kidney pathology; and (5) patients with incomplete

case data, missing clinical information, or absent visits. All patients in
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the study were followed up for at least 5 years after surgery. This study

was conducted in accordance with the Declaration of Helsinki andwas

approved by the Ethics Committee of the Affiliated Wuxi People’s

Hospital of Nanjing Medical University, Wuxi Second People’s

Hospital, and Shandong Provincial Hospital affiliated with

Shandong First Medical University, with approval number KY22085.
Diagnosis of Helicobacter pylori infection
and determination of associated factors

The diagnosis of H. pylori infection was established using three

criteria: first, through postoperative bacterial culture of gastric

mucosa, duodenal mucosa, gastric fluid, and expiratory samples

to confirm the presence of positive H. pylori; second, through

postoperative HE staining of gastric mucosal tissue sections to

determine the presence of positive H. pylori; and third, through

postoperative confirmation of H. pylori infection by means of urea

breath test (UBT), fecal antigen test, and endoscopy active infection.

The patient fulfilled all three criteria and was ultimately diagnosed

with H. pylori infection (Hou et al., 2020). In this study, clinicians

employed PD-1/PD-L1 checkpoint inhibitors for the

immunotherapeutic treatment of patients.
Study design and data collection

Clinical information of the patients was evaluated, including

demographic characteristics, basic clinical features, basic medical

history, laboratory test indices before and during combination

therapy, tumor characteristics, and intraoperative information of the

patients. All laboratory tests conducted prior to the combination

therapy were collected within 24 hours of the day, which included

the measurement of albumin (ALB) levels. All laboratory tests

conducted after the combination therapy were collected within 48

hours and included the patient’s H. pylori infection status, as well as

the levels of carcinoembryonic antigen (CEA), carbohydrate antigen

19-9 (CA19-9), carbohydrate antigen 72-4 (CA72-4), carbohydrate

antigen 125 (CA125), neutrophil-to-lymphocyte ratio (NLR),

procalcitonin (PCT), C-reactive protein (CRP), and serum amyloid

A (SAA). Demographic information included sex, age, body mass

index (BMI), and history of smoking and alcohol abuse. Basic clinical

features comprised the American Society of Anesthesiologists physical

status classification (ASA score), Nutrition Risk Screening 2002

(NRS2002) score, history of surgery, family history, history of

adjuvant chemotherapy, and history of adjuvant radiotherapy.

Medical history included anemia, diabetes mellitus, hypertension,

hyperlipidemia, and coronary heart disease (CHD). The study

included tumor characteristics such as tumor T-stage, N-stage,

peripheral nerve invasion (PNI), tumor size, and tumor number, as

well as intraoperative variables such as the surgical approach, type of

surgery, number of intraoperative lymph node dissections,

anastomosis, type of anastomosis, and whether the surgery was

performed as an emergency. The outcome indicators for this study

were patient mortality rates at one, three, and five years.
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Statistical analysis

Continuous variables were presented using medians and

interquartile ranges (IQRs), whereas categorical variables were

presented using frequencies and percentages. The chi-square test

was utilized to compare differences between the two groups for

categorical variables, while the t test was employed for continuous

variables that followed a normal distribution. For continuous

variables that did not follow a normal distribution, the rank sum

test was applied. A two-tailed P value of less than 0.05 was

considered statistically significant. All statistical analyses were

conducted using SPSS, R, and Python software.
Development and evaluation of predictive
models for machine learning algorithms

(1) Data preprocessing. Patients with gastric cancer who received

treatment at Wuxi People’s Hospital and Wuxi Second People’s

Hospital between January 2010 and January 2018 were selected as

the internal validation group, while patients with gastric cancer who

received treatment at the Provincial Hospital affiliated with the First

Medical University of Shandong Province during the same period

were selected as the external validation group. The internal validation

group was divided randomly into a training set (70%) and a testing set

(30%). (2) The internal validation set data underwent univariate

analysis, and only the variables that demonstrated significant

associations were selected for the subsequent stages of the prediction

model construction. (3) Build and evaluate prediction models. The

selected feature variables were integrated into the prediction models of

three machine learning algorithms, namely, extreme gradient boosting

(XGBoost), random forest (RF), and k-nearest neighbor algorithm

(KNN). Utilizing the algorithm’s underlying principle, we employ an

iterative methodology to dynamically modify the model’s parameters

and observe its outcomes, aiming to ascertain the model parameters

that yield optimal results. To compare and select different model

algorithms, k-fold cross-validation was used since it is easy to

implement and has a lower bias evaluation capability compared to

other methods. Hyperparameters were adjusted by grid search, and k-

fold cross-validation was performed on the internal validation set

using a resampling method with k=5. The dataset was divided into five

groups, with one group used as a test dataset and the rest used as a

training dataset. This process was repeated until each group had been

used as a test dataset (Zhao et al., 2023). Model evaluation metrics

such as the area under the curve (AUC), accuracy, sensitivity, and

specificity were calculated and averaged over the k-round fitness to

derive the most accurate estimate of the model prediction

performance. The models were evaluated for discrimination,

calibration, and clinical utility, and the best model was selected for

prediction analysis. Receiver operating characteristic (ROC) curves

were used to determine the predictive efficacy of the model, calibration

curves were used to assess agreement between the predicted and actual

outcomes, and decision curve analysis (DCA) was used to evaluate the

clinical utility of themodel. The DCA curve starts at the intersection of

the red curve with the All curve and ends at the intersection of the red
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curve with None, within which the corresponding patient can benefit.

(4) External validation of the best model will be conducted using an

external test set. ROC curves will be plotted to evaluate the predictive

efficiency and generalizability of the model. (5) Model interpretation.

The Shapley value, obtained through Shapley additive explanation

(SHAP) analysis, allows us to determine the contribution of each

feature in the sample to the prediction. Based on the Shapley values,

two types of plots are constructed: the SHAP summary plot, which

ranks the importance of risk factors, and the single-sample SHAP

force plot, which analyzes and explains the prediction results of a

single sample (Chi et al., 2023).
Results

Basic clinical information of the patient

A total of 1015 patients were included in the study, of whom 92

(9.06%) died within one year, 299 (29.46%) died within three years,

and 404 (39.8%) died within five years (Figures 1A, B). The internal
Frontiers in Cellular and Infection Microbiology 04
validation set consisted of 709 patients with gastric cancer, of whom

66 (9.31%) died within one year, 206 (29.06%) died within three

years, and 281 (39.63%) died within five years. The external

validation set included 306 patients with gastric cancer, of whom

26 (8.5%) died within one year, 93 (30.39%) died within three years,

and 123 (40.2%) died within five years. The original data presented

in the study are included in Table S1.
Screening for risk factors for death at one,
three, and five years after combination
therapy in patients with gastric cancer

The univariate analysis results indicated that several factors

significantly influenced the one-year death rate among gastric

cancer patients, including age, emergency surgery, tumor T-stage,

lymph node metastasis, peripheral nerve metastasis, tumor number,

size, CEA level after combined treatment, CA125 level, CA72-4

level, and H. pylori infection (p<0.05). Similarly, the death rate at

three years was influenced by several factors, such as age, surgical
A

B

FIGURE 1

Model-making process and flowchart of the study. (A) Study design flow chart. (B) Flow diagram of patients included in the study.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1207235
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2023.1207235
method, operative time, intraoperative bleeding, operation mode,

tumor T-stage, lymph node metastasis, peripheral nerve metastasis,

tumor number, size, CEA level, CA125 level, CA72-4 level after

combined treatment, intraoperative blood transfusion, andH. pylori

infection. Moreover, gender, age, surgical method, time of surgery,

intraoperative bleeding, tumor T-stage, lymph node metastasis,

peripheral nerve metastasis, tumor number, size, CEA level after

combined treatment, CA125 level, CA72-4 level, NRS2002 score,

intraoperative blood transfusion, and H. pylori infection were found

to be significant influencing factors for five-year mortality in gastric

cancer patients (Table 1).
Model building and evaluation

Regarding the prediction analysis of one-year, three-year, and

five-year death of patients with gastric cancer, the results of ROC

curve analysis revealed that XGBoost had the highest

performance compared to the other two algori thms.

Specifically, the AUC value of XGBoost was 0.993 in the

training set and 0.808 in the validation set for one-year death

prediction; 0.994 in the training set and 0.758 in the validation set

for three-year death prediction; and 0.995 in the training set and

0.829 in the validation set for five-year death prediction (Table 2).

Additionally, the calibration curves of the three models were

similar to the ideal curves, indicating a high level of agreement

between the predicted and actual outcomes. The DCA curves also

showed that all three models achieved a net clinical benefit

relative to the full treatment or no treatment plan (Figures 2A–

L). Finally, the k-fold cross-validation method was used to

compare the generalization ability of the three models.

In this process, a test set comprising 213 cases (30.04%) was

taken, while the remaining samples were used for training the

models through 5-fold cross-validation. In the prediction of risk

factors for patient mortality within one year, the XGBoost

algorithm achieved an AUC of 0.8373 ± 0.0457 in the validation

set and an AUC of 0.7938 in the test set, with an accuracy of 0.8873

(Figures 3A–C). In comparison, the RF algorithm achieved an AUC

of 0.7556 ± 0.0636 in the validation set and an AUC of 0.6627 in the

test set, with an accuracy of 0.6056. The KNN algorithm achieved

an AUC of 0.6555 ± 0.0648 in the validation set and an AUC of

0.5787 in the test set, with an accuracy of 0.8873.

In the prediction of risk factors for patient mortality within

three years, the XGBoost algorithm showed an AUC of 0.7403 ±

0.0174 in the validation set and an AUC of 0.7654 in the test set,

with an accuracy of 0.7606 (Figures 3E–G). The RF algorithm

showed an AUC of 0.6214 ± 0.0654 in the validation set, an AUC of

0.5733 in the test set, and an accuracy of 0.6808. The KNN

algorithm showed an AUC of 0.7130 ± 0.0239 in the validation

set and an AUC of 0.7141 in the test set, with an accuracy of 0.7183.

The results of the prediction analysis of patients’ five-year

mortality showed that XGBoost had an AUC value of 0.8076 ±

0.0317 in the validation set and an AUC value of 0.8516 in the test

set, with an accuracy of 0.7653 (Figures 3I–K). RF had an AUC

value of 0.8045 ± 0.0466 in the validation set and an AUC value of

0.8089 in the test set, with an accuracy of 0.7371. KNN had an AUC
Frontiers in Cellular and Infection Microbiology 05
value of 0.7800 ± 0.0311 in the validation set, an AUC value of

0.8297 in the test set, and an accuracy of 0.7277.

The XGBoost algorithm was selected to develop the model in

this research after conducting a thorough comparison.
Model external validation

The AUC value in the external validation set for the prediction

analysis of one-year patient mortality was 0.73, for the prediction

analysis of three-year patient mortality was 0.77, and for the

prediction analysis of five-year patient mortality was 0.79. These

values indicate that the prediction model has high accuracy in

diagnosing the disease (Figures 3D, H, L).
Model explanation

The SHAP summary plot results revealed that certain risk

factors contribute to one-year, three-year, and five-year mortality

in patients with gastric cancer. For one-year mortality, the highest-

ranking risk factors were the CEA level after combined treatment,

advanced age, CA72-4 level, multiple tumors, CA125 level, tumor

lymph node metastasis, H. pylori infection, tumor size, tumor

peripheral nerve metastasis, emergency surgery, and T3 and T4

tumors. The top-ranking risk factors for three-year mortality were

tumor size, advanced age, CA72-4 level, intraoperative blood

transfusion, tumor lymph node metastasis, intraoperative

bleeding, surgical approach, tumors of T3 and T4, multiple

tumors, CEA level, CA125 level, time of surgery, H. pylori

infection, and tumor peripheral nerve invasion. For five-year

mortality, the top-ranking risk factors were advanced age,

intraoperative blood transfusion, sex, CA72-4 level, surgical

approach, tumor lymph node metastasis, multiple tumors, CA125

level, tumor size, tumors in T3 and T4, H. pylori infection,

intraoperative bleeding volume, CEA level, time to surgery,

NRS2002 score, and peritumor nerve invasion (Figures 4A–C).

The shared risk factors that were found to influence patient

mortality at one, three, and five years after radical gastric cancer

surgery included advanced age, tumors classified as T3 and T4,

tumor lymph node metastasis, tumor peripheral nerve invasion,

presence of multiple tumors, tumor size, elevated CEA levels,

CA125 levels, CA72-4 levels, and H. pylori infection.
Discussion

This study aimed to assess risk prediction models constructed

using three machine learning algorithms. Of the three algorithms,

XGBoost exhibited the highest accuracy (Tseng et al., 2020; Liu

et al., 2023). In comparison to the RF algorithm, XGBoost employs

an adaptive gradient boosting algorithm that can automatically

select the optimal splitting point and tree depth, thus improving

prediction performance. Furthermore, XGBoost takes into account

regularization and effectively avoids model overfitting (Zhou et al.,

2022). Although the KNN algorithm has higher accuracy and can
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TABLE 1 Univariate analysis of the prognosis of combined treatment.

Variables
One-year mortality Three-year mortality Five-year mortality

OR (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value

Sex
Female Reference Reference Reference

Male 1.029 [0.617,1.713] 0.914 0.734 [0.530,1.017] 0.063 0.567 [0.418,0.768] <0.001

Age
<65 Reference Reference Reference

≥65 3.359 [1.995,5.656] <0.001 4.098 [2.910,5.773] <0.001 9.505 [6.643,13.599] <0.001

BMI
<25 kg/m2 Reference Reference Reference

≥25 kg/m2 1.064 [0.608,1.864] 0.827 1.147 [0.801,1.641] 0.454 1.203 [0.861,1.680] 0.278

ASA
<3 Reference Reference Reference

≥3 1.155 [0.670,1.993] 0.604 0.94 [0.656,1.346] 0.736 0.927 [0.665,1.293] 0.655

Drinking history
No Reference Reference Reference

Yes 1.052 [0.595,1.859] 0.862 0.711 [0.484,1.042] 0.081 0.855 [0.606,1.207] 0.373

Smoking history
No Reference Reference Reference

Yes 1.634 [0.969,2.755] 0.066 1.391 [0.982,1.970] 0.063 1.368 [0.986,1.898] 0.06

ALB
≥30g/L Reference Reference Reference

<30g/L 0.821 [0.427,1.578] 0.554 0.948 [0.635,1.415] 0.793 0.897 [0.618,1.301] 0.565

NRS2002 score
<3 Reference Reference Reference

≥3 1.33 [0.742,2.385] 0.338 0.691 [0.454,1.050] 0.083 0.634 [0.432,0.930] 0.02

Surgical history
No Reference Reference Reference

Yes 1.452 [0.817,2.579] 0.204 1.148 [0.777,1.697] 0.489 1.133 [0.785,1.633] 0.505

Anemia
No Reference Reference Reference

Yes 0.724 [0.377,1.389] 0.331 0.744 [0.499,1.111] 0.149 0.747 [0.518,1.076] 0.117

Hyperlipidemia
No Reference Reference Reference

Yes 1.439 [0.791,2.615] 0.233 0.971 [0.640,1.474] 0.892 0.936 [0.635,1.378] 0.736

Hypertension
No Reference Reference Reference

Yes 0.992 [0.586,1.680] 0.976 0.908 [0.647,1.274] 0.576 0.866 [0.632,1.185] 0.368

Diabetes
No Reference Reference Reference

Yes 1.441 [0.782,2.656] 0.242 1.315 [0.870,1.988] 0.194 1.266 [0.856,1.873] 0.237

COPD
No Reference Reference Reference

Yes 1.795 [0.841,3.830] 0.131 1.538 [0.891,2.653] 0.122 1.424 [0.841,2.412] 0.188

CHD
No Reference Reference Reference

Yes 1.475 [0.670,3.246] 0.335 0.974 [0.550,1.727] 0.929 0.865 [0.506,1.479] 0.595

Adjuvant Radiotherapy
No Reference Reference Reference

Yes 1.326 [0.731,2.406] 0.353 1.185 [0.796,1.765] 0.404 1.206 [0.830,1.752] 0.325

Adjuvant Chemotherapy
No Reference Reference Reference

Yes 0.84 [0.453,1.558] 0.581 1.143 [0.786,1.662] 0.485 1.088 [0.766,1.546] 0.637

Surgical procedure
Laparoscopic surgery Reference Reference Reference

Open surgery 1.18 [0.700,1.987] 0.535 0.666 [0.480,0.923] 0.015 0.671 [0.495,0.910] 0.01

Emergency surgery
No Reference Reference Reference

Yes 1.679 [1.010,2.792] 0.046 1.05 [0.753,1.464] 0.775 1.072 [0.787,1.460] 0.659

(Continued)
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TABLE 1 Continued

Variables
One-year mortality Three-year mortality Five-year mortality

OR (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value

Surgery type

Proximal gastrectomy Reference Reference Reference

Distal gastrectomy 1.038 [0.538,2.001] 0.912 0.973 [0.656,1.444] 0.892 0.915 [0.633,1.322] 0.636

Total gastrectomy 1.575 [0.841,2.950] 0.156 1.028 [0.686,1.540] 0.894 1.166 [0.802,1.696] 0.422

Anastomosis method
Anastomosis instruments Reference Reference Reference

Manual anastomosis 1.717 [0.997,2.959] 0.051 1.272 [0.875,1.847] 0.207 1.247 [0.878,1.772] 0.218

Anastomosis type

Billroth I Reference Reference Reference

Billroth II 1.271 [0.678,2.381] 0.454 1.305 [0.866,1.968] 0.203 1.165 [0.795,1.707] 0.435

Roux-en-Y 0.955 [0.503,1.815] 0.889 1.147 [0.766,1.717] 0.505 1.264 [0.873,1.830] 0.214

Surgery time
<270 min Reference Reference Reference

≥270 min 1.324 [0.776,2.259] 0.303 1.544 [1.092,2.183] 0.014 1.882 [1.356,2.613] <0.001

Intraoperative bleeding
<100 ml Reference Reference Reference

≥100 ml 1.469 [0.849,2.543] 0.169 1.864 [1.301,2.671] 0.001 2.814 [1.983,3.992] <0.001

Blood transfusion
No Reference Reference Reference

Yes 0.522 [0.233,1.172] 0.115 1.586 [1.059,2.377] 0.025 2.037 [1.381,3.004] <0.001

SPO2

≥90% Reference Reference Reference

<90% 1.275 [0.625,2.601] 0.504 1.283 [0.799,2.058] 0.302 1.218 [0.778,1.908] 0.388

T-stage
T1~T2 Reference Reference Reference

T3~T4 2.897 [1.733,4.843] <0.001 2.007 [1.417,2.843] <0.001 2.212 [1.584,3.089] <0.001

N-stage
N0 Reference Reference Reference

N1~N3 2.289 [1.364,3.841] 0.002 2.191 [1.545,3.109] <0.001 2.595 [1.850,3.640] <0.001

PNI
No Reference Reference Reference

Yes 3.908 [2.039,7.491] <0.001 2.495 [1.461,4.259] 0.001 1.976 [1.160,3.367] 0.012

Tumor number
<2 Reference Reference Reference

≥2 3.184 [1.865,5.437] <0.001 2.168 [1.470,3.198] <0.001 1.853 [1.270,2.703] 0.001

Tumor size
<5 cm Reference Reference Reference

≥5 cm 1.934 [1.103,3.392] 0.021 2.822 [1.921,4.146] <0.001 2.539 [1.738,3.710] <0.001

CA125 level
<35 U/ml Reference Reference Reference

≥35 U/ml 2.691 [1.612,4.492] <0.001 1.766 [1.255,2.487] 0.001 1.658 [1.199,2.293] 0.002

CA72-4 level
<7 U/ml Reference Reference Reference

≥7 U/ml 2.112 [1.267,3.518] 0.004 3.036 [2.172,4.244] <0.001 3.215 [2.341,4.415] <0.001

CEA level
<5 ng/ml Reference Reference Reference

≥5 ng/ml 2.414 [1.441,4.044] 0.001 1.948 [1.373,2.762] <0.001 2.307 [1.649,3.227] <0.001

CA19-9 level
<37 U/mL Reference Reference Reference

≥37 U/mL 0.921 [0.516,1.641] 0.779 0.898 [0.621,1.298] 0.568 0.901 [0.641,1.266] 0.547

PCT level
<0.05 ng/ml Reference Reference Reference

≥0.05 ng/ml 1.074 [0.601,1.919] 0.81 1.055 [0.725,1.534] 0.781 0.853 [0.599,1.214] 0.376

CRP level
<10 mg/l Reference Reference Reference

≥10 mg/l 1.061 [0.587,1.918] 0.845 0.857 [0.580,1.268] 0.441 0.78 [0.543,1.121] 0.18

(Continued)
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TABLE 1 Continued

Variables
One-year mortality Three-year mortality Five-year mortality

OR (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value

SAA level
<10 mg/l Reference Reference Reference

≥10 mg/l 0.959 [0.486,1.890] 0.903 0.802 [0.514,1.251] 0.33 0.945 [0.633,1.411] 0.783

HP infection
No Reference Reference Reference

Yes 2.542 [1.482,4.362] 0.001 2.751 [1.879,4.026] <0.001 2.93 [2.006,4.278] <0.001
F
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OR, odds ratio; CI, confidence interval; BMI, body mass index; ASA, The American Society of Anesthesiologists; ALB, albumin; PCT, procalcitonin; CRP, C-reactive protein; SAA, serum amyloid
A; NRS2002, nutrition risk screening 2002; SPO2, percutaneous arterial oxygen saturation; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease; PNI, peripheral nerve
invasion; CEA, carcinoembryonic antigen, CA19-9, carbohydrate antigen 19-9, CA72-4, carbohydrate antigen 72-4, CA125, carbohydrate antigen 125, NLR, neutrophil-to-lymphocyte ratio.
TABLE 2 Evaluation of the performance of the three models.

AUC
(95%CI)

cutoff
(95%CI)

Accuracy
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

F1 Score
(95%CI)

One-year
mortality

KNN

training set
0.957 (0.941-

0.973)
0.250 (0.250-

0.250)
0.933 (0.923-0.943) 1.000 (1.000-1.000) 0.891 (0.870-0.913) 0.833 (0.767-0.900)

validation
set

0.644 (0.474-
0.814)

0.250 (0.250-
0.250)

0.906 (0.890-0.922) 0.416 (0.243-0.589) 0.864 (0.834-0.893) 0.346 (0.167-0.525)

XGBoost

training set
0.993 (0.986-

1.000)
0.247 (0.206-

0.289)
0.969 (0.954-0.984) 0.968 (0.950-0.987) 0.970 (0.954-0.987) 0.844 (0.776-0.913)

validation
set

0.808 (0.696-
0.920)

0.247 (0.206-
0.289)

0.836 (0.796-0.876) 0.928 (0.864-0.991) 0.676 (0.563-0.789) 0.415 (0.297-0.533)

RF

training set
0.816 (0.738-

0.895)
0.104 (0.082-

0.127)
0.775 (0.707-0.842) 0.755 (0.691-0.819) 0.775 (0.700-0.851) 0.369 (0.305-0.433)

validation
set

0.680 (0.505-
0.856)

0.104 (0.082-
0.127)

0.688 (0.644-0.732) 0.684 (0.386-0.982) 0.731 (0.575-0.887) 0.231 (0.157-0.305)

Three-year
mortality

KNN

training set
0.902 (0.876-

0.929)
0.250 (0.250-

0.250)
0.831 (0.823-0.838) 1.000 (1.000-1.000) 0.663 (0.642-0.685) 0.838 (0.827-0.849)

validation
set

0.728 (0.618-
0.839)

0.250 (0.250-
0.250)

0.772 (0.752-0.792) 0.649 (0.515-0.782) 0.745 (0.613-0.877) 0.643 (0.541-0.745)

XGBoost

training set
0.994 (0.990-

0.999)
0.330 (0.306-

0.354)
0.957 (0.944-0.970) 0.970 (0.963-0.977) 0.954 (0.932-0.975) 0.933 (0.914-0.952)

validation
set

0.758 (0.654-
0.862)

0.330 (0.306-
0.354)

0.712 (0.668-0.756) 0.816 (0.725-0.907) 0.614 (0.486-0.742) 0.568 (0.489-0.647)

RF

training set
0.782 (0.733-

0.831)
0.283 (0.268-

0.299)
0.706 (0.678-0.734) 0.777 (0.735-0.819) 0.682 (0.632-0.731) 0.598 (0.578-0.619)

validation
set

0.734 (0.633-
0.834)

0.283 (0.268-
0.299)

0.676 (0.635-0.717) 0.784 (0.677-0.891) 0.627 (0.515-0.739) 0.574 (0.537-0.611)

Five-year
mortality

KNN

training set
0.925 (0.903-

0.947)
0.400 (0.280-

0.520)
0.815 (0.790-0.840) 0.861 (0.747-0.974) 0.806 (0.696-0.915) 0.875 (0.840-0.909)

validation
set

0.786 (0.693-
0.879)

0.400 (0.280-
0.520)

0.750 (0.697-0.803) 0.592 (0.515-0.669) 0.877 (0.808-0.945) 0.689 (0.624-0.753)

XGBoost

training set
0.995 (0.989-

1.000)
0.414 (0.381-

0.446)
0.980 (0.977-0.983) 0.977 (0.972-0.982) 0.986 (0.978-0.994) 0.978 (0.974-0.982)

validation
set

0.829 (0.747-
0.912)

0.414 (0.381-
0.446)

0.764 (0.751-0.777) 0.812 (0.730-0.893) 0.756 (0.690-0.822) 0.758 (0.742-0.774)

RF

training set
0.828 (0.786-

0.869)
0.416 (0.377-

0.454)
0.769 (0.749-0.790) 0.721 (0.685-0.758) 0.804 (0.759-0.849) 0.716 (0.704-0.728)

validation
set

0.787 (0.695-
0.879)

0.416 (0.377-
0.454)

0.714 (0.665-0.763) 0.737 (0.706-0.769) 0.737 (0.680-0.793) 0.681 (0.606-0.757)
CI, confidence interval; KNN, k-nearest neighbor; XGBoost, extreme gradient boosting; RF, random forest; AUC, area under the curve.
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avoid overfitting problems, it has high computational complexity

when searching for K nearest neighbors in the training set for each

test sample and calculating their distances for classification or

regression prediction. Additionally, the algorithm is less stable

and slower when solving problems with multiple features and

large samples (DeGregory et al., 2018; Zhao et al., 2022). The

XGBoost algorithm is more suitable for multidimensional studies

and reduces computational effort and training time. Importantly,

XGBoost provides a feature importance assessment function that

can help users better understand the contribution of features in the

dataset to the prediction results, improving the algorithm’s

interpretability. Consequently, after a comprehensive comparison

of the three machine learning algorithms, this study selected the

XGBoost algorithm to construct a model to predict the long-term

postoperative prognosis of gastric cancer patients.
Frontiers in Cellular and Infection Microbiology 09
In the realm of clinical studies, multiple risk factors may exhibit

a nonlinear relationship with poor patient prognosis, particularly in

the context of cancer research. This may lead to conventional

models displaying suboptimal goodness of fit or limited predictive

accuracy. In contrast, machine learning is capable of training

algorithms to identify and discern intricate patterns,

accommodating more sophisticated nonlinear relationships. As

such, it may offer superiority over traditional models in medical

research. Jacek et al (Baj et al., 2020). confirmed the effectiveness of

machine learning algorithms for clinical diagnosis and prognosis,

and this technique in artificial intelligence may also enable accurate

prediction of adverse outcomes in disease progression. Notably,

machine learning algorithms assumed a crucial role in developing

the predictive model utilized in this study. The present model

facilitates the identification of high-risk patients with precision by
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FIGURE 2

Evaluation of the three models for predicting prognosis. (A) ROC curves for the training set of three models predicting patient death at one year.
(B) ROC curves for the validation set of three models predicting patient death at one year. (C) Calibration plots of the three models predicting
patient death at one year. (D) DCA curves of the three models predicting patient death at one year. (E) ROC curves for the training set of three
models predicting patient death at three years. (F) ROC curves for the validation set of three models predicting patient death at three years.
(G) Calibration plots of the three models predicting patient death at three years. (H) DCA curves of the three models predicting patient death at
three years. (I) ROC curves for the training set of three models predicting patient death at five years. (J) ROC curves for the validation set of three
models predicting patient death at five years. (K) Calibration plots of the three models predicting patient death at five years. (L) DCA curves of the
three models predicting patient death at five years.
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clinical decision-makers, enabling timely intervention to improve

patient prognosis. Furthermore, it has potential utility for medical

institutions to allocate resources judiciously, monitor the vital signs

of high-risk patients, and enhance survival rates among gastric

cancer patients.

In this study, SHAP analysis was utilized to rank the risk factors

that affect the long-term prognosis of patients with gastric cancer

who received combined treatment. It was discovered that H. pylori

infection was a crucial factor among all high-risk factors. It is

believed that H. pylori infection hinders the effectiveness of

immunotherapy and promotes the growth and survival of cancer

cells by altering the normal environment between the tumor and the

host (Zuo et al., 2022). The primary mechanisms of action include

the following: first, the infection diminishes the number of
Frontiers in Cellular and Infection Microbiology 10
beneficial bacteria, such as lactobacilli and bifidobacteria, which

has an effect on the inflammatory environment, thereby promoting

the development of gastric cancer (Sipos et al., 2006). Second, H.

pylori suppresses the activity of T cells and natural killer cells,

encourages the recruitment of immunosuppressive cells, and affects

the immune response in the stomach, consequently impeding the

immune surveillance and clearance function of the body

(Figueiredo et al., 2014). Furthermore, H. pylori infection is also

known to stimulate the production of proinflammatory cytokines

such as IL-1b, TNF-a, and IL-6, thus creating a microenvironment

that promotes cancer cell growth and survival (Li et al., 2017). At

the genetic level, H. pylori infection triggers the production of

reactive oxygen species (ROS) and reactive nitrogen species (RNS),

thereby increasing the risk of cancer development. Li further
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FIGURE 3

Internal validation of the XGBoost model. (A) ROC curves for the training set of the XGBoost model predicting patient death at one year. (B) ROC
curves for the validation set of the XGBoost model predicting patient death at one year. (C) ROC curves for the test set of the XGBoost model
predicting patient death at one year. (D) External validation of the XGBoost model predicting patient death at one year. (E) ROC curves for the
training set of the XGBoost model predicting patient death at three years. (F) ROC curves for the validation set of the XGBoost model predicting
patient death at three years. (G) ROC curves for the test set of the XGBoost model predicting patient death at three years. (H) External validation of
the XGBoost model predicting patient death at three years. (I) ROC curves for the training set of the XGBoost model predicting patient death at five
years. (J) ROC curves for the validation set of the XGBoost model predicting patient death at five years. (K) ROC curves for the test set of the
XGBoost model predicting patient death at five years. (L) External validation of the XGBoost model predicting patient death at five years.
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established a strong link between H. pylori and the activation of

oncogenes such as c-Met and b-catenin, as well as the inactivation
of tumor suppressor genes such as p53 and E-cadherin (Siregar

et al., 2017), which corroborates the findings of the current study.

Additionally, due to the intricate anatomy of the stomach, surgeons

may find it challenging to accurately assess the extent of tumor

invasion during surgery and perform intraoperative rapid

pathological examination to ensure negative margins. This may

result in the retention of some blood vessels of the tumor after

surgery, which can become the seeds of gastric cancer recurrence,

especially in patients with H. pylori infection. This is because H.

pylori can accelerate the expression of vascular endothelial growth

factor (VEGF), which in turn promotes the formation of new blood

vessels in the tumor microenvironment, thereby promoting tumor

proliferation and migration (Bagheri et al., 2018).H. pylori infection

can also upregulate the expression of metalloproteinase-9 (MMP-

9), an enzyme that degrades the extracellular matrix, which

increases the risk of poor prognosis in tumor patients (Deng

et al., 2022).

Similar to previous research, this study also observed that

deeper tumor infiltration is correlated with an increased risk of

lymphatic and peripheral nerve metastasis and a higher likelihood

of postoperative mortality (Xiang et al., 2021). Highly malignant

and biologically active tumor cells detach from the primary site by

degrading the extracellular matrix and basement membrane via

protein hydrolases. These detached tumor cells invade the

surrounding normal tissues and enter the nearby lymph nodes.

The large perigastric omentum contains numerous blood vessels,

and after gastric cancer invades the surrounding lymph nodes,

vascular invasion can occur, leading to the flow of tumor cells back

to the liver through the portal vein system, resulting in

postoperative recurrence or metastasis (Oster et al., 2022).

Furthermore, these tumors can metastasize to retroperitoneal

organs via lymph nodes, and clinical manifestations are often

obscure, with imaging examinations being difficult to diagnose.

David’s study (Shibata et al., 2002) also demonstrated a strong

correlation between lymph node metastasis and poor outcomes in

patients with tumors, while Radespiel (Radespiel-Tröger et al., 2004;
Frontiers in Cellular and Infection Microbiology 11
Turgeon et al., 2021) discovered that the higher the number of

lymph node metastases, the greater the chance of tumor recurrence

and the higher the postoperative mortality rate. This emphasizes the

importance of thoroughly removing relevant lymph nodes during

radical surgery for gastric cancer while avoiding compression of the

tumor to prevent dissemination into the abdominal cavity.

Furthermore, the size of tumors has been shown to have a

significant impact on patient prognosis. We hypothesize that larger

tumors have a higher proliferation rate and generate more tumor

vessels. Tomisaki conducted a study on 175 patients with

gastrointestinal tumors and found a strong correlation between

metastatic recurrence and microvessel density (MVD). The higher

the MVD, the greater the likelihood of tumor cells entering the

circulatory system (Tomisaki et al., 1996). Similarly, Park reported

that larger tumors have a higher risk of shedding tumor cells into

the abdominal and pelvic cavities and vascular tissues, thus

increasing the potential risk of tumor recurrence after surgery

(Park et al., 1999). Multiple gastric cancers also pose a challenge

for treatment and are associated with a higher risk of tumor

recurrence. Surgical removal of the primary tumor may reduce

the concentration of tumor growth inhibitory factors and accelerate

residual tumor recurrence. Li et al. investigated this hypothesis

using two groups of mouse models, with the experimental group

undergoing conventional tumor resection and the control group

undergoing sham surgery. The results showed significant

differences in tumor growth and recurrence between the

experimental and control groups (Li et al., 2001).

The findings of the current investigation suggest that patients

who display elevated levels of CEA after undergoing radical

gastrectomy for gastric cancer, when followed up with

immunotherapy, are at an increased risk of mortality. Tsuyoshi

previously identified CEA as an acidic glycoprotein expressed by

normal human mucosal cells that lacks specificity in detecting

gastrointestinal tumors (Konishi et al., 2018). However, with the

advancement of medical diagnostic techniques in recent years,

clinicians have recognized the clinical significance of CEA. Polat

conducted a prospective study to explore the association between

serum levels of tumor markers and clinical variables in patients with
A B C

FIGURE 4

SHAP summary plot. Risk factors are arranged along the y-axis based on their importance, which is given by the mean of their absolute Shapley
values. The higher the risk factor is positioned in the plot, the more important it is for the model. (A) SHAP summary plot of models predicting
patient death at one year. (B) SHAP summary plot of models predicting patient death at three years. (C) SHAP summary plot of models predicting
patient death at five years.
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gastrointestinal tumors. In a subsequent investigation, Tsuyoshi

et al. demonstrated that most patients’ serum CEA levels returned

to normal three months after combination therapy, while another

group of patients with persistent CEA elevation after treatment had

a rapid recurrence of tumors compared to their counterparts with

normal posttreatment CEA levels. The results of the present study

indicate that an increase in CEA levels after gastric cancer surgery

could be indicative of tumor recurrence (Attallah et al., 2018;

Konishi et al., 2018). Recently, some clinicians have employed a

combination of CEA, CA19-9, cytokeratin-1 (CK-1), CA72-4 and

mucin-1 (MUC-1) to predict unfavorable outcomes in

gastrointestinal tumors, which has improved the sensitivity and

specificity of tumor surveillance while also evaluating tumor stage

and metastasis (Pua et al., 2020).

In recent years, medical practitioners have endeavored to utilize

certain tests to prognosticate the outcomes of immunotherapy in

conjunction with surgical interventions. However, it has been

observed that such approaches exhibit a higher rate of

misdiagnosis and fail to significantly influence patient prognoses.

Consequently, we have opted to employ more precise machine

learning algorithms for the purpose of identifying high-risk factors

and enhancing patient prognoses. The present study provides a

comprehensive evaluation of the model in terms of discrimination,

calibration, and clinical utility, yet certain limitations exist. While

the study accounted for multiple aspects of risk factors, imaging-

related aspects were not considered. Furthermore, while the

machine learning algorithms were more accurate, their models

were more intricate and less transparent. The entire

computational and decision-making process of the model is

opaque, lacking the intuitive and clear features of the logistic

regression model. Conversely, this retrospective study suffers from

selection bias, distribution bias, and retrospective bias. Thus, further

international, multicenter, large-scale studies are necessary to

validate the reliability of our findings.
Conclusion

This study presented the development of a prediction model

utilizing the XGBoost machine learning algorithm to assess the risk

of mortality in tumor patients who underwent radical gastric cancer

surgery along with immunotherapy. The model demonstrated

promising accuracy and clinical value, enabling surgeons to

diagnose patients promptly. The model identified that a negative

outcome in gastric cancer patients correlated with various factors,

including older age, tumor invasion, tumor lymph node metastasis,

peripheral nerve invasion, presence of multiple tumors, larger

tumor size, increased levels of CEA, CA125, and CA72-4, and H.

pylori infection.
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