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Objective: The aim of this study was to compare the differences in salivary

metabolites between pregnant women with gestational diabetes mellitus (GDM),

healthy pregnant women (HPW), and healthy non-pregnant women (HNPW),

and analyze the possible associations between the identified metabolites

and gingivitis.

Method: The study included womenwith GDM (n = 9,mean age 28.9 ± 3.6 years,

mean gestational age 30.1 ± 3.2 weeks), HPW (n = 9, mean age 27.9 ± 3.0 years,

mean gestational age 28.6 ± 4.7 weeks), and HNPW (n = 9, mean age 27.7 ± 2.1

years). Saliva samples were collected from all participants andwere analyzed with

LC-MS/MS-based untargeted metabolomic analysis. Metabolite extraction,

qualitative and semi-quantitative analysis, and bioinformatics analysis were

performed to identify the differential metabolites and metabolic pathways

between groups. The identified differential metabolites were further analyzed

in an attempt to explore their possible associations with periodontal health and

provide evidence for the prevention and treatment of periodontal inflammation

during pregnancy.

Results: In positive ion mode, a total of 2,529 molecular features were detected

in all samples, 166 differential metabolites were identified between the GDM and

HPW groups (89 upregulated and 77 downregulated), 823 differential metabolites

were identified between the GDM and HNPW groups (402 upregulated and 421

downregulated), and 647 differential metabolites were identified between the

HPW and HNPW groups (351 upregulated and 296 downregulated). In negative

ion mode, 983 metabolites were detected in all samples, 49 differential

metabolites were identified between the GDM and HPW groups (29

upregulated and 20 downregulated), 341 differential metabolites were

identified between the GDM and HNPW groups (167 upregulated and 174

downregulated), and 245 differential metabolites were identified between the

HPW and HNPW groups (112 upregulated and 133 downregulated). A total of nine

differential metabolites with high confidence levels were identified in both the
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positive and negative ion modes, namely, L-isoleucine, D-glucose 6-phosphate,

docosahexaenoic acid, arachidonic acid, adenosine, adenosine-

monophosphate, adenosine 5′-monophosphate, xanthine, and hypoxanthine.

Among all pathways enriched by the upregulated differential metabolites, the

largest number of pathways were enriched by four differential metabolites,

adenosine, adenosine 5′-monophosphate, D-glucose 6-phosphate, and

adenosine-monophosphate, and among all pathways enriched by the

downregulated differential metabolites, the largest number of pathways were

enriched by three differential metabolites, L-isoleucine, xanthine, and

arachidonic acid.

Conclusion: Untargeted metabolomic analysis of saliva samples from pregnant

women with GDM, HPW, and HNPW identified nine differential metabolites with

high confidence. The results are similar to findings from previous metabolomics

studies of serum and urine samples, which offer the possibility of using saliva for

regular noninvasive testing in the population of pregnant women with and

without GDM. Meanwhile, the associations between these identified differential

metabolites and gingivitis need to be further validated by subsequent studies.
KEYWORDS
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1 Introduction

It has been proven that periodontal disease is one of the risk

factors for adverse pregnancy outcomes in pregnant women (Wu

et al., 2015; Komine-Aizawa et al., 2019). Gingivitis is the most

prevalent oral disease during pregnancy, which is more likely to

occur in the second and third trimester of pregnancy. The gums of

patients are hyperemic, swollen, and bleeding. Gingivitis affects

30%–70% of pregnant women worldwide (Dommisch et al., 2015),

and the prevalence of pregnancy gingivitis is 60%–90% in China

(Hu et al., 1999). Xiong et al. (2006) concluded that the prevalence

of periodontitis in women with and without gestational diabetes

mellitus (GDM) was 44.8% and 13.2%, respectively, and the results

demonstrate a correlation between periodontitis and GDM.

Therefore, it is clinically important to effectively prevent or treat

periodontal diseases, control periodontitis-associated local and

systemic inflammation, maintain oral health, and avoid the

occurrence of adverse pregnancy outcomes in pregnant women,

especially in pregnant women with GDM.

Saliva is a complex fluid that plays an important role in the

maintenance of oral health. Salivary components contain not only a

large amount of water, but also various electrolytes, proteins, and a

large amount of volatile organic compounds that originate from

compounds produced by microorganisms in the oral cavity, such as

fatty ammonia, branched-chain fatty acids, indoles, phenols, and

volatile sulfur-containing compounds (Cheng et al., 2016). Many

blood components enter the saliva via intracellular transport

pathways (passive intracellular diffusion and active transport) or
02
paracellular pathways (extracellular ultrafiltration) (Haeckel and

Hnecke, 1993; Jusko and Milsap, 1993). Most compounds found in

blood are also present in saliva. Saliva testing can provide insight

into the health and disease status of human body.

Untargeted metabolomics is an approach that aims to identify

differentially expressed metabolites using univariate and

multivariate statistical methods, thus reflecting the internal

environment of cells and their interaction with external

influencing factors. Goldsmith (Goldsmith et al., 2010) et al.

suggest that metabolomics has an important role in clinical

diagnosis of diseases. In recent years, a lot of attention has been

paid to the basic saliva research; saliva presents an obvious

advantage in diagnosing diseases earlier (Cheng et al., 2014;

Zhang et al., 2016). Metabolomics full-spectrum analysis is a

technique for the identification and quantification of all

metabolites in organisms, discovering the relative relationship

between metabolites and physiopathological changes, which

focuses on small molecules with a relative molecular mass of less

than 1,000, such as lipids, ketones, and organic acids.

Therefore, in this study, we conducted untargeted metabolomics

on saliva samples from pregnant women with GDM, healthy

pregnant women (HPW), and healthy non-pregnant women

(HNPW) using liquid chromatography–tandem mass spectrometry

(LC-MS/MS) to investigate the differences in salivary metabolites

between these patients, and explore their possible associations with

gingivitis, in an attempt to identify possible key metabolites and

related metabolic pathways, and provide new ideas for the prevention

and treatment of GDM and pregnancy gingivitis.
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2 Materials and methods

2.1 Saliva samples

Twenty-seven pregnant and non-pregnant women who received

preconception health examination and antenatal examination in the

Maternal and Child Health Hospital of Changshou District in

January 2022 were included, namely, nine pregnant women with

GDM (mean age 28.9 ± 3.6 years, mean gestational age 30.1 ± 3.2

weeks, fasting plasma glucose 5.55 ± 0.17 mmol/L), nine HPW (mean

age 27.9 ± 3.0 years, mean gestational age 28.6 ± 4.7 weeks, fasting

plasma glucose 4.57 ± 0.33 mmol/L), and nine HNPW (mean age

27.7 ± 2.1 years, fasting plasma glucose 4.4 ± 0.085 mmol/L).

This study was approved by the Research Ethics Committee of

Stomatological Hospital of Chongqing Medical University.
2.2 Inclusion criteria

Women were included in the GDM group if they were diagnosed

with gestational diabetes mellitus (GDM) during antenatal

examination by oral glucose tolerance test according to the

diagnostic criteria recommended by the International Association

of Diabetes and Pregnancy Study Group (IADPSG) in 2011; did not

have dental caries; have moderate gingivitis assessed based on the

modified Loe–Silness gingival index (presenting as shiny, red, swollen

gums that bleed easily upon probing); had no systemic or congenital

diseases, developmental malformations, and bacterial or severe

infections in other parts of the body; did not take antibiotics,

fluorides, and microecological modulators; and did not receive

orthodontic treatment within the last 3 months.

Women were included in the HPW group if they did not have

blood glucose abnormalities and dental caries; have moderate gingivitis

assessed by the modified Loe–Silness gingival index (presenting as

shiny, red, swollen gums that bleed easily upon probing); have no

systemic or congenital diseases, developmental malformations, and

bacterial or severe infections in other parts of the body; did not take

antibiotics, fluorides, and microecological modulators; and did not

receive orthodontic treatment within the last 3 months.

Women were included in the HNPW group if they did not have

dental caries, gingivitis assessed by the modified Loe–Silness

gingival index, systemic or congenital diseases, developmental

malformations, and bacterial or severe infections in other parts

of the body; and did not take antibiotics, fluorides, and

microecological modulators, and did not receive orthodontic

treatment within the last 3 months.

Patients with a history of chronic disease, diabetes, thyroid function

disease, and other metabolic diseases are excluded from this study
2.3 Saliva sample collection

Non-stimulated whole saliva was collected from all participants

according to the modified Rhodus method (Rhodus et al., 2005)

between 9:00 and 11:00 a.m. All participants fasted 1 h prior to

collection. During collection, participants were asked to let saliva
Frontiers in Cellular and Infection Microbiology 03
collect in their mouth for at least 1 min and spit into a centrifuge tube

or sterile cup; it is not allowed to spit sputum. This process needs to

be repeated several times in order to ensure that an adequate volume

(2–5 ml) of saliva was collected. The collected saliva samples were

placed in an ice box and transported immediately to the laboratory.

After centrifugation at 5,000g at 4°C for 10 min, the supernatant was

collected and filtered through a 0.22-mm sterile membrane; 1 ml was

dispensed into labeled 2-ml Eppendorf tubes and stored at −80°C.

Before undertaking untargeted metabolomic analysis, all samples

were taken and thawed.

Extraction and preparation steps of saliva metabolites:①Add 100

µl of each sample into the corresponding centrifuge tube, and freeze

the remaining samples. ② Add 700 µl of the extractant containing

internal standard 1 (methanol:acetonitrile:water = 4:2:1), shake for

10 min, and place it in a refrigerator at −20°C for 2 h. ③ Centrifuge at

25,000g at 4°C for 15 min. ④ The sample is removed from the

centrifuge and 600 µl of supernatant is transferred to a new centrifuge

tube. ⑤ Drain with a drainer. ⑥ Add 180 µl of methanol:pure water

(1:1 v/v) and swirl for 10 min until it is completely dissolved in the

complex solution. ⑦ Centrifuge at 25,000g at 4°C for 15 min again. ⑧

The remaining samples (50 µl each) were taken into the three upper

plates for the detection of positive and negative ions, and the other

plate was used as the spare plate, and the remaining samples (20 µl

mixed QC) were taken.
2.4 Untargeted metabolomic analysis of
saliva samples

Untargeted metabolomic analysis of saliva samples from

women with GDM, HPW, and HNPW was performed using the

LC-MS/MS method. A high-resolution mass spectrometer, Q

Exactive (Thermo Fisher Scientific, USA), was used to collect data

in both the positive and negative ion modes in order to improve the

coverage of metabolites. The raw data generated by LC-MS/MS

were processed using Compound Discoverer 3.1 software (Thermo

Fisher Scientific, USA) to perform peak alignment, peak picking,

and compound identification.
2.5 Statistical analysis

Data pre-processing, statistical analysis, andmetabolite taxonomic

and functional annotations were performed using the metabolomics R

software package metaX (Wen et al., 2017) and the metabolome

information analysis process. Principal component analysis (PCA)

was used to reduce the dimensionality of original multivariate data to

analyze the groupings, trends (similarities and differences within and

between sample groups), and outliers (presence of outlier samples) of

the observed variables in the data set. The variable importance in the

projection (VIP) values of the first two principal components of the

partial least squares discriminant analysis (PLS-DA) model (Barker

and Rayens, 2003; Westerhuis et al., 2008) combined with the

multiplicity of variance change (fold change) obtained from the

univariate analysis and the t-test (Student’s t-test) results were used

to screen for differential metabolites.
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In a strict sense, biological data did not strictly obey normal

distribution. Before t-test, we processed the data by log2 to make the

data approximately obey normal distribution, so that the result of t-

test is relatively more reasonable. At the same time, considering that

the difference between groups is not so significant, we used p-value

(Zheng et al., 2019) as the condition for screening the difference in

order to screen the appropriate differential metabolites for

subsequent research and did not correct it.
3 Saliva metabolomics results

3.1 Results of sample quality control

As shown in Figures 1A, B, after overlapping the base peak ion

chromatograms of all quality control samples, the chromatograms

well overlapped in both the positive and negative ion modes, the

retention time and peak response intensity fluctuated little,

indicating that the instrument was in a good state with stable
Frontiers in Cellular and Infection Microbiology 04
signal during the whole sample detection process. A PCA analysis of

the QC sample and all samples can be used to observe the overall

distribution of each set of samples and the stability of the entire

analytical process. As shown in Figures 1C, D, the better the

QC samples aggregate, the more stable the instrument and the

better the repeatability of the acquired data. CV distribution of

compounds in each sample as shown in Figures 1E, F.
3.2 Results of compound identification

The results of this study showed that in positive ion mode, a

total of 2,529 metabolites were detected in all saliva samples; 905 out

of these 2,529 metabolites could be found in the Chemspider and

mzCloud databases with corresponding compound information. In

negative ion mode, a total of 983 metabolites were detected in all

saliva samples, 335 out of these metabolites could be found in the

Chemspider and mzCloud databases with corresponding

compound information Table 1.
A B

D

E F

C

FIGURE 1

Base peak ion chromatograms of samples from each group. (A) Positive ion mode. (B) Negative ion mode; overlapping of base peak ion
chromatograms of all the quality control samples showed that the chromatograms well overlapped in both the positive and negative ion modes,
with small fluctuation in the retention time and peak response intensity, indicating that the instrument was in a good state with stable signal
throughout the whole sample detection process. A PCA of the QC sample and all samples can be used to observe the overall distribution of each
set of samples and the stability of the entire analytical process. As shown in (C, D), the better the QC samples aggregate, the more stable the
instrument and the better the repeatability of the acquired data. CV distribution of compounds in each sample as shown in (E, F), and the number of
compounds with a relative peak area CV of 30% or less in the QC sample. Ratio: The ratio of the number of compounds with a relative peak area CV
less than or equal to 30% in the QC sample to the total number of compounds detected. Ratio ≥60%, the data quality is qualified. The two lines
perpendicular to the X-axis in the figure are 20% and 30% CV reference line, and the line parallel to the X-axis is 60% of the reference line.
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3.3 Classification of metabolites

The identified metabolites were annotated using the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database and

Human Metabolome Database (HMDB) to understand the

classification of metabolites. The number of metabolites in each

class is shown in Figures 2A, B. Identification results without

classification information were not included in the analysis. At

the same time, the identified metabolites were functionally

annotated by the KEGG database in order to understand their

functional properties, and determine the major biochemical
Frontiers in Cellular and Infection Microbiology 05
metabolic pathways and signal transduction pathways involved in

the metabolites. The number of metabolites identified in each type

of metabolic pathways is shown Figures 2C, D.
3.4 Statistical analysis

By comparing among groups in the positive ion mode, a total of

166 differential metabolites were identified between the GDM and

HPW groups, of which 89 were upregulated and 77 were

downregulated; a total of 823 differential metabolites were

identified between the GDM and HNPW groups, of which 402

were upregulated and 421 were downregulated; a total of 647

differential metabolites were identified between the HPW and

HNPW groups, of which 351 were upregulated and 296 were

downregulated in the positive ion mode. In the negative ion

mode, a total of 49 differential metabolites were identified

between the GDM and HPW groups, of which 29 were

upregulated and 20 were downregulated; a total of 341 differential

metabolites were identified between the GDM and HNPW groups,

of which 167 were upregulated and 174 were downregulated; a total

of 245 differential metabolites were identified between the HPW

and HNPW groups, of which 112 were upregulated and 133 were

downregulated Figure 3.
A B

DC

FIGURE 2

Bar chart of metabolite classification in positive ion mode (A) and negative ion mode (B). The X-axis represents the number of metabolites in each
class, and the Y-axis represents the metabolite classification entries. Others mean that classification information is the remaining category. The
results showed that among the 905 molecular features identified in the positive ion mode, 515 molecular features were classified into four
categories, including compounds with biological roles (n = 311), lipids (n = 38), phytochemical compounds (n = 61), and others (n = 105). Among the
335 metabolites identified in the negative ion mode, 126 molecular features were classified into four categories, including compounds with
biological roles (n = 195), lipids (n = 17), phytochemical compounds (n = 18), and others (n = 25). Bar chart of KEGG functional annotation of
metabolites in positive ion mode (C) and negative ion mode (D). The X-axis represents the number of metabolites, and the Y-axis represents KEGG
pathway entries. The results showed that in positive ion mode, 34 KEGG pathways involving 451 metabolites were annotated. The top four pathways
with the largest number of metabolites were global and overview maps (116 metabolites), amino acid metabolism (51 metabolites), digestive system
(34 metabolites), and metabolism of cofactors and vitamins (27 metabolites). The number of metabolites contained in these four pathways
accounted for 50.55% of all metabolites annotated to the pathways. In negative ion mode, 30 KEGG pathways involving 238 metabolites were
annotated. The top four pathways with the largest number of metabolites were global and overview maps (56 metabolites), amino acid metabolism
(25 metabolites), carbohydrate metabolism (21 metabolites), and digestive system (13 metabolites). The number of metabolites contained in these
four pathways accounted for 48.32% of all metabolites annotated to the pathways. These results suggest that metabolites with identification
information detected and identified in either the positive or negative ion modes functioned mainly through two types of KEGG pathways,
metabolism and organismal systems.
TABLE 1 Number of compounds and number of compounds with
identification information identified in positive and negative ion modes.

Mode Number of
compounds

Number of compounds with
identification information

Positive ion
mode (pos)

2,529 905

Negative ion
mode (neg)

983 335
Positive ion mode (pos): when the substances are ionized in an ion source, the adduct ions are
positive ions, such as H+, NH+

4 , Na
+, and K+.

Negative ion mode (neg): when the substances are ionized in an ion source, the adduct ions are
negative ions, such as −H, +Cl.
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A B
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C

FIGURE 3

(A, C, D, G, H, K, L) Positive ion mode. (B, E, F, I, J, M, N) Negative ion mode. GDM, gestational diabetes mellitus; HPW, healthy pregnant women;
HNPW, healthy non-pregnant women. A PCA model was constructed to observe the distribution and separation of samples between the groups.
Data were log transformed (log2) prior to constructing PCA mode and scaled using the Pareto scaling method. PCA results. (A, B) The abscissa is the
first principal component PC1, the ordinate is the second principal component PC2, and the ellipse in the PCA score graph is 95% confidence
interval. Each dot represents a sample, and different groups are labeled with different colors. The number is the score of the principal component,
which represents the percentage of the explanation on overall variance of the specific principal component. PLS-DA results. PLS-DA score plots
between gestational diabetes mellitus (GDM) and healthy pregnant women (HPW) groups in positive (C) and negative ion modes (E). PLS-DA score
plots between the GDM group and the healthy non-pregnant women (HNPW) group in positive (G) and negative ion modes (I). PLS-DA score plots
between the HPW group and the HNPW group in positive (K) and negative ion modes (M). The horizontal axis represents the first principal
component; the vertical axis represents the second principal component. The number in parentheses is the score of the principal component, which
represents the percentage of the overall variance explained by the corresponding principal component. Based on the following conditions, (1) the
VIP of the first two principal components of the PLS-DA model ≥ 1; (2) fold-change ≥ 1.2 or ≤ 0.83; and (3) p-value< 0.05, the differential
metabolites among groups were identified (Table 2). The two rightmost points in the figure are the actual R2Yand Q2 values of the PLS-DA model,
and the remaining points are the R2Y and Q2 values obtained by randomly arranging the samples used (D, F, H, J, L, N).
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3.5 Results from volcano plot and
metabolic pathway enrichment analysis of
differential metabolites

Metabolic pathway enrichment analysis was performed based on

the KEGG database Figure 4. Metabolic pathways with a p-value< 0.05

were considered to be significantly enriched by differential metabolites.

The X-axis shows the enrichment factor. A larger enrichment factor

indicates a greater degree of enrichment. The size of dots represents the

number of differential metabolites annotated to the pathway. The dot

size represents the number of differential metabolites annotated to this

pathway. Enrichment analysis was based on annotated metabolites in

the KEGG database. The annotation results of differentiated

metabolites screened in this project were statistically analyzed by

combining the hypergeometric test, and the p-value of corresponding

pathway was obtained. Then, p-value< 0.05 was taken as the threshold

to determine whether the pathway was enriched or not. The ggplot2

package in the R package is used for mapping.

In the present study, metabolic pathway enrichment analysis

results of differential metabolites between GDM and HPW groups
Frontiers in Cellular and Infection Microbiology 07
showed that in positive ion mode (Figure 4B), six enriched

metabolic pathways were significantly different between the two

groups, namely, alpha-linolenic acid metabolism [enriched by two

metabolites 12-oxo phytodienoic acid and 13(s)-HOTrE]; valine,

leucine, and isoleucine biosynthesis (enriched by L-isoleucine);

carbohydrate digestion and absorption (enriched by sucrose);

mineral absorption (enriched by L-isoleucine); ABC transporters

(enriched by sucrose and L-isoleucine); and metabolic pathway

[enriched by sucrose, hypoxanthine, L-isoleucine, dihydroxyindole,

(+/-)-tropinone, bisphenol A, 12-oxo phytodienoic acid, and

protoporphyrin IX]. In negative ion mode (Figure 4D), five

enriched metabolic pathways were significantly different between

the two groups, including caffeine metabolism (enriched by

xanthine), carbohydrate digestion and absorption (enriched by

maltotriose), and biosynthesis of unsaturated fatty acids (enriched

by docosahexaenoic acid), purine metabolism (enriched by

xanthine), and ABC transporters (enriched by maltotriose).

Among the six differential metabolic pathways in positive ion

mode, four differential pathways were enriched with L-isoleucine

and three were enriched with sucrose. Among the five differential
A B D

E F G

I

H

J K L

C

FIGURE 4

Volcano plot of differential metabolites between the gestational diabetes mellitus (GDM) and healthy pregnant women (HPW) groups in positive (A)
and negative ion modes (C). Volcano plot of differential metabolites between the GDM and healthy non-pregnant women (HNPW) groups in positive
(E) and negative ion modes (G). Volcano plot of differential metabolites between the HPW and HNPW groups in positive (I) and negative ion modes
(K). Green plots represent downregulated metabolites, red plots represent upregulated metabolites, and purple–gray plots represent meaningless
metabolites. Bubble chart of KEGG enrichment analysis of differential metabolites identified between the gestational diabetes mellitus (GDM) and
healthy pregnant women (HPW) groups in positive (B) and negative ion modes (D). Bubble chart of KEGG enrichment analysis of differential
metabolites identified between the GDM and healthy non-pregnant women (HNPW) groups in positive (F) and negative ion modes (H). Bubble chart
of KEGG enrichment analysis of differential metabolites identified between the HPW and HNPW groups in positive (J) and negative ion modes (L).
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metabolic pathways in negative ion mode, two differential pathways

were enriched with xanthine and two were enriched

with maltotriose.

The results from metabolic pathway enrichment analysis of

differential metabolites between GDM and HNPW groups showed

that in positive ion mode (Figure 4F), 27 enriched metabolic pathways

were significantly different between the two groups; the top three

metabolic pathways with the largest differences between the two groups

were intestinal immune network for IgA production (enriched with

retinoate), small cell lung cancer (enriched with retinoate), and

morphine addiction (enriched with two metabolites adenosine and

dopamine). In negative ion mode (Figure 4H), 28 enriched metabolic

pathways were significantly different between the two groups, and the

top three differential metabolic pathways were mTOR and PI3K-Akt

signaling pathways, FoxO and PPAR signaling pathways, and olfactory

transduction, morphine addiction, and longevity regulating pathway;

except for the PPAR signaling pathway that was enriched by 8(s)-

hydroxy-(5z,9e,11z,14z)-eicosatetraenoic acid, the remaining pathways

were enriched by adenosine 5′-monophosphate. Among the 29

differential metabolic pathways in the positive ionization mode, the

largest number of metabolic pathways were enriched by the four

differential metabolites adenosine, dopamine, arachidonic acid, and

retinoate; these four metabolites were enriched in nine, eight, eight, and

seven metabolic pathways, respectively. Among the 28 differential

metabolic pathways in negative ion mode, the largest number of

metabolic pathways were enriched by adenosine 5′-monophosphate

and D-glucose 6-phosphate; these two metabolites were enriched in 19

and 7 metabolic pathways, respectively.

Metabolic pathway enrichment analysis results of differential

metabolites between HPW and HNPW groups showed that in

positive ion mode (Figure 4J), 27 enriched metabolic pathways were

significantly different between the two groups; the top three metabolic

pathways with the largest differences between the two groups were
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PI3K-Akt and mTOR signaling pathways, cortisol synthesis and

secretion, and Cushing syndrome. Among these pathways, PI3K-Akt

and mTOR signaling pathways were enriched by the differential

metabolite adenosine-monophosphate, and the remaining pathways

were enriched by adenosine-monophosphate and cortisol. In negative

ion mode (Figure 4L), 27 enriched metabolic pathways were

significantly different between the two groups; the top three

differential metabolic pathways were PI3K-Akt and mTOR signaling

pathways, FoxO signaling pathway, and olfactory transduction,

morphine addiction, and longevity regulating pathway; these

differential pathways were enriched by adenosine 5′-monophosphate.

Among the 27 differential metabolic pathways in positive ionmode, the

largest number of metabolic pathways were enriched by the five

differential metabolites adenosine-monophosphate, arachidonic acid,

L-threonine, L-methionine, and cortisol; these five metabolites were

enriched in 10, 7, 6, 5, and 5 pathways, respectively. Among the 27

differential metabolic pathways in negative ion mode, the largest

number of metabolic pathways were enriched by two differential

metabolites, adenosine 5′-monophosphate and D-glucose 6-

phosphate, which were involved in 20 and 5 pathways, respectively.

The results (Tables 3–5) showed that among the top three

upregulated differential metabolites, only one metabolite with

molecular formula C18H1ClN2O6S2 that can be found in

ChemSpider and mzCloud databases (ID 187436) was classified into

others, and belonged to the class of benzodioxoles, but this metabolite

was not annotated to a pathway. Among the top three downregulated

differential metabolites, one metabolite with molecular formula

C17H22O5 that can be found in ChemSpider and mzCloud databases

(ID 37260) was classified into phytochemical compounds, and

belonged to the class of terpenoids; one metabolite (ChemSpider ID

and mzCloud ID: 37260, molecular formula C16H19NO) was classified

as benzene and derivatives, and had compounds with biological roles;

and one metabolite (ChemSpider ID and mzCloud ID: 12665,
TABLE 2 Differential metabolites among groups in positive and negative ion modes.

Group Total number of
differential
metabolites

Number of up- and
downregulated
metabolites

Expression
status

Number of metabolites with different
confidence levels

Level
1

Level
2

Level
3

Level
4

Level
5

GDM vs. HPW in negative
ion mode

49 29 Up 0 2 1 6 20

20 Down 1 1 1 4 13

GDM vs. HPW in positive
ion mode

166 89 Up 1 1 3 27 57

77 Down 2 1 0 34 40

GDM vs. HNPW in
negative ion mode

341 167 Up 4 6 0 43 115

174 Down 0 6 1 36 131

GDM vs. HNPW in positive
ion mode 823

402 Up 5 9 10 119 259

421 Down 0 5 6 143 267

HPW vs. HNPW in
negative ion mode 245

112 Up 8 5 1 68 30

133 Down 0 6 0 26 101

HPW vs. HNPW in positive
ion mode 647

351 Up 7 10 7 96 231

296 Down 0 3 4 109 180
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molecular formula C9H17NO) was classified into others, and belonged

to the class of piperidinones; these 3 metabolites were also not

annotated to specific metabolic pathways. The results (Tables 6–8)

showed that among the top three upregulated metabolites, only one

metabolite (ChemSpider ID and mzCloud ID:30778505, molecular

formula C9H7NO5S) was classified as indole and derivatives, had

compounds with biological roles, and was not annotated to specific

pathways. Among the top three downregulated metabolites, one

metabolite with molecular formula C15H29NO3 (ChemSpider ID

mzCloud code 21513291) and one metabolite with molecular

formula C12H11NO5 (ChemSpider ID mzCloud code 74852585) were

classified as amino acids, peptides, and analogues, and had compounds

with biological roles, which were not annotated to specific metabolic

pathways Table 9.
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3.6 Metabolic pathway enrichment analysis
results of differential metabolites with
identification confidence levels 1 and 2
between different groups

Table 9 presents the specific information of each differential

metabolite with confidence levels 1 and 2, after conducting pathway

enrichment analysis of (GDM vs. HPW), (GDM vs. HNPW), and

(HPW vs. HNPW) differential metabolites.

4 Discussion

In the present study, nine samples were included in each group.

Based on our previous study on oral microbial diversity of dental
TABLE 4 Top 3 (pu1–pu3) upregulated and top 3 (pd1–pd3) downregulated differential metabolites between the gestational diabetes mellitus and
healthy non-pregnant women groups in positive ion mode.

ChemSpider ID
mzCloud

Molecular formula Molecular weight Level Family Metabolites

D-W pu1 – – 220.0349 Da Level 5 – –

D-W pu2 – – 379.0877 Da Level 5 – –

D-W pu3 – – 261.0616 Da Level 5 – –

D-W pd1 12665 C9H17NO 155.1312 Da Level 4 Piperidinones Others

D-W pd2 37260 C16H19NO 241.1467 Da Level 4 Benzene and derivatives Compounds with biological roles

D-W pd3 59352 C33H34N4O6 582.2484 Da Level 4 – –
TABLE 5 Top 3 (pu1–pu3) upregulated and top 3 (pd1–pd3) downregulated differential metabolites between the healthy pregnant women and
healthy non-pregnant women groups in positive ion mode.

ChemSpider ID
mzCloud

Molecular formula Molecular weight Level Family Metabolites

P-W pu1 – C7H12N5O4P 261.0616 Da Level 5 – –

P-W pu2 29738718 C24H19FN2O3 402.1362 Da Level 4 – –

P-W pu3 – C10H22NO12P 379.0877 Da Level 5 – –

P-W pd1 – C26H46N6O9 586.3327 Da Level 5 – –

P-W pd2 6001 C17H12I2O3 517.8899 Da Level 4 – –

P-W pd3 7826270 C27H32F6O3 518.2244 Da Level 4 – –
TABLE 3 Top 3 (pu1–pu3) upregulated and top 3 (pd1–pd3) downregulated differential metabolites between the gestational diabetes mellitus and
healthy pregnant women groups in positive ion mode.

Molecular formula Molecular weight Level Family Metabolites

D-P pu1 C12 H25NO11 359.142 Da Level 5 – –

D-P pu2 C18H1ClN2O6S2 454.0046 Da Level 4 Benzodioxoles Other

D-P pu3 – 159.0301 Da Level 5 – –

D-P pd1 C13H22N6O3 310.1756 Da Level 5 – –

D-P pd2 C19H29N5O2 359.2308 Da Level 4 – –

D-P pd3 C17H22O5 306.1467 Da Level 4 Terpenoids Phytochemical compounds
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plaque and salivary samples from nine pregnant women with GDM,

nine HPW, and nine HNPW, at both species and genus levels,

species accumulation curves showed that when the sample size

reached nine per group, the number of new species in different oral

environments would not significantly increase with an increasing

sample size, there is a tendency toward saturation in species

richness, and all currently recognized pathogenic bacteria

associated with periodontal diseases have been detected.

Therefore, in the present study, we considered a sample size of

nine for each group, and performed untargeted metabolomic

analysis to identify salivary metabolites that were differentially

expressed in the saliva of women with GDM, HPW, and HNPW,

and explore the possible correlation between the identified

differential salivary metabolites and periodontal health.

The combination of three dimensions, retention time, and MS1

and MS2 spectra, is currently the most widely used approach to

improve the confidence of metabolite identification in metabolomic

analysis (Liang et al., 2020; Shen et al., 2020). In terms of confidence
Frontiers in Cellular and Infection Microbiology 10
levels of metabolites identified in the present study, among the top

three upregulated and top three downregulated differential

metabolites identified in both the positive and negative ion modes

(36 metabolites), 14 metabolites were identified with identification

confidence level 4 and 22 were identified with identification

confidence level 5. It can be seen that although a variety of

differential metabolites were identified, relatively few metabolites

with high confidence were available for further analysis, and their

biological information needs to be further explored and analyzed.

Furthermore, we can see that although the metabolic pathway is

enriched by the largest number of differential metabolites, the

pathway showed little difference between groups.

Branched-chain amino acids (BCAAs) are essential amino

acids, including leucine, isoleucine, and valine, which cannot be

synthesized by the human body itself. The levels of BCAAs in

plasma are associated with diabetes. The results of this study

showed that compared with the HNPW group, the level of

isoleucine was decreased in the GDM group, and increased in the
TABLE 6 Top 3 (pu1–pu3) upregulated and top 3 (pd1–pd3) downregulated differential metabolites between the gestational diabetes mellitus and
healthy pregnant women groups in negative ion mode.

ChemSpider ID
mzCloud

Molecular
formula

Molecular
weight

Level Family Metabolites

D-P
nu1 – C14H19N5O7S 401.0987 Da

Level
5 – –

D-P
nu2

– C16H24N4O10 432.1473 Da Level
5 – –

D-P
nu3 – C34H62N6O8 682.4654 Da

Level
5 – –

D-P
nd1

21513291 C15H29NO3

271.2142 Da
Level
4

Amino acids, peptides, and
analogues

Compounds with biological
roles

D-P
nd2

–

C6H5ClO3S
191.9647 Da Level

5
– –

D-P
nd3

74852585
C12H11NO5 249.0633 Da

Level
4

Amino acids, peptides, and
analogues

Compounds with biological
roles
TABLE 7 Top 3 (pu1–pu3) upregulated and top 3 (pd1–pd3) downregulated differential metabolites between the gestational diabetes mellitus and
healthy non-pregnant women groups in negative ion mode.

ChemSpider ID
mzCloud

Molecular
formula

Molecular
weight

Level Family Metabolites

D-W
nu1 30778505 C9H7NO5S 241.0042 Da

Level
4 Indole and derivatives

Compounds with biological
roles

D-W
nu2

– C7H4N2O4S 211.989 Da Level
5

– –

D-W
nu3 – C20H37N3O10 479.2471 Da

Level
5 – –

D-W
nd1

74852585 C12H11NO5

249.0633 Da
Level
4

Amino acids, peptides, and
analogues

Compounds with biological
roles

D-W
nd2

–

C46H75N4O16P
970.4906 Da Level

5
– –

D-W
nd3

–

C23H41N5O7 499.2996 Da
Level
5

– –
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HPW group, but the differences were not statistically significant,

whereas there were statistically significant differences between the

GDM and HPW groups. Since isoleucine cannot be synthesized

endogenously, and needs to be absorbed exogenously, the above-

mentioned results indicate that the absorption of isoleucine was

obviously reduced in pregnant women with GDM compared to

HPW. In terms of differential metabolic pathways involving L-

isoleucine between the GDM and HPW groups, we found that

except for the shared differential metabolic pathways, ABC

transporters; Valine, leucine, and isoleucine biosynthesis; and

mineral absorption were differential metabolic pathways between

the two groups. A previous study has shown that the ABC

transporter family is associated with the development and

progression of diabetes, dietary isoleucine can be absorbed

through the intestine to bypass the hepatic first pass effect (Mann

et al., 2021), while the P-glycoprotein (P-gp) encoded by the ABCB1

gene is mainly distributed in specific tissues such as the intestine,

kidney, liver, and cerebrovascular endothelium, and the function

and expression of P-GP are altered under diabetic conditions (Liu

et al., 2006; Liu et al., 2007; Liu et al., 2008). Meanwhile, ABCC8 and

ABCC9 are important components of ATP-sensitive potassium

(KATP) channels, which can regulate KATP channel activity, and

modulate insulin release to control blood glucose levels (Aguilar-

Bryan and Bryan, 1999; Bryan et al., 2007). Therefore, we speculate

that the changes in isoleucine level in patients with GDM may be

caused by changes in P-gp, ABCC8, and ABCC9 expression.

Numerous studies (Doi et al., 2005; Doi et al., 2007; Ikehara

et al., 2008; Guasch-Ferré et al., 2016; Ullrich et al., 2016; Newmire

et al., 2019; Elovaris et al., 2021a; Elovaris et al., 2021b) have

suggested that the effect of isoleucine on glucose metabolism may

be related to the decreased expression of glucose-6-phosphatase

(G6Pase). In the present study, we found that glucose 6-phosphate

(G6P) level was elevated after pregnancy, presumably due to a

decrease in G6Pase expression. Additionally, we found that except

for the shared differential metabolic pathways involving D-glucose

6-phosphate, two pathways, namely, inositol phosphate metabolism

and carbohydrate digestion and absorption, differed significantly

between the GDM and HNPW groups. However, the changes in

these two differential metabolic pathways did not result in a

significant difference in changes in G6P level between the GDM

and HPW groups. From these results, we hypothesize that changes

in isoleucine expression, either upregulation or downregulation, can
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both lead to a decrease in G6Pase expression. These results are

similar to the findings from the previous studies investigating the

alterations of isoleucine in diabetes.

Insulin resistance is a predominant pathogenic component of

GDM. Several population studies have found that GDM can cause

changes in maternal fatty acid metabolism, especially polyunsaturated

fatty acids (PUFAs), during the third trimester of pregnancy (Wijendran

et al., 1999; Thomas et al., 2004; Chen et al., 2010). PUFAs can be

classified into n-3 PUFA [mainly derived from eicosapentaenoic acid

(EPA), docosahexaenoic acid (DHA), and a-linolenic acid (ALA)] and

n-6 PUFA [mainly derived from linoleic acid (LA) and arachidonic acid

(AA)]. ALA is a dietary precursor for EPA andDHA (Gogus and Smith,

2010) and exerts anti-inflammatory and immunomodulatory effects

mainly through regulation of cell proliferation and response activity,

production of inflammatory cytokines, and adhesion molecule

expression (Ho et al., 2011; Wutzler et al., 2013; Liu et al., 2015). LA,

a precursor in the synthesis of AA, can increase the risk of chronic

diseases via regulating inflammatory responses (Simopoulos, 2003; Yary

et al., 2016).

The synthesis of other long-chain polyunsaturated fatty acids

(LC-PUFAs) of the same series requires the enzyme systems such as

fatty acid desaturases and elongase enzymes. The n-3 and n-6 PUFA

synthesis share the same set of enzymes, resulting in the occurrence

of competitive inhibition (Mariamenatu and Abdu, 2021). The

mechanism linking the ratio of n-6 and n-3 PUFAs and diabetes

has not yet been clarified. One explanation is that n-3 and n-6

PUFAs compete for desaturase and elongase enzymes, and

conversion of LA to AA and ALA to DHA and EPA occurs

through desaturation and elongation by d-6 and d-5 desaturases

(Mozaffarian et al., 2005). ALA and its metabolites can inhibit the

conversion of LA to AA, thus reducing the production of

inflammatory markers (Pischon et al., 2003). However, a higher

intake of ALA may affect the pathway of n-6 PUFA metabolism.

PUFAs can be transported from the mother to the fetus through the

placenta (Makrides et al., 1994; Salem et al., 1996; Greiner et al.,

1997), and the placenta preferentially takes up and transports fatty

acids essential for fetal growth and development (Haggarty et al.,

1997; Haggarty et al., 1999), with the order of preference being AA >

DHA > ALA > LA (Haggarty, 2002).

GDM causes metabolic disorders involving fatty acids in

maternal and cord blood, but fatty acid alterations display

different trends in different tissues; for example, DHA levels are
TABLE 8 Top 3 (pu1–pu3) upregulated and top 3 (pd1–pd3) downregulated differential metabolites between the healthy pregnant women and
healthy non-pregnant women groups in negative ion mode.

ChemSpider ID
mzCloud

Molecular formula Molecular weight Level Family Metabolites

P-W nu1 – C7H4N2O4S 211.989 Da Level 5 – –

P-W nu2 – C17H32N2O8 392.2155 Da Level 5 – –

P-W nu3 – C35H60N4O13 744.4185 Da Level 5 – –

P-W nd1 – C46H75N4O16P 970.4906 Da Level 5 – –

P-W nd2 – C26H46N6O9 586.3324 Da Level 5 – –

P-W nd3 65099 C27H50O7P2 548.3044 Da Level 4 – –
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TABLE 9 Enrichment of metabolic pathways of differential metabolites with identification confidence levels 1 and 2 between different groups.

Group Model Location Name Level KEGG
ID

Pathway ID Family Metabolites

GDM
vs.

HPW

Pos Down 54/
77

L-isoleucine Level
1

C00407 map01100 Metabolic pathways
map02010 ABC transporters
map00290 Valine, leucine, and isoleucine
biosynthesis
map04978 Mineral absorption

Amino acids Compounds
with biological

roles

Down 66/
77

Hypoxanthine Level
1

C00262 map01100 Metabolic pathways Purines and
derivatives

Compounds
with biological

roles

Neg Down 8/20 Docosahexaenoic acid Level
2

C06429 map01040 Biosynthesis of unsaturated fatty
acids

Fatty acyls Lipids

Down 14/
20

Xanthine Level
1

C00385 map00230 Purine metabolism
map00232 Caffeine metabolism

Purines and
derivatives

Compounds
with biological
roles

GDM
vs.

HNPW

Pos Up 7/402 Adenosine Level
2

C00212 map00230 Purine metabolism map01100
Metabolic pathways
map04024 cAMP signaling pathway
map04080 Neuroactive ligand–receptor
interaction
map04270 Vascular smooth muscle
contraction
map04923 Regulation of lipolysis in
adipocytes
map05012 Parkinson disease
map05032 Morphine addiction
map05034 Alcoholism

Purines and
derivatives

Compounds
with biological
roles

Down 213/
421

Retinoate Level
2

C00777 map01100 Metabolic pathways
map04659 Th17 cell differentiation
map04672 Intestinal immune network for
IgA production
map05200 Pathways in cancer
map05222 Small cell lung cancer
map05223 Non-small cell lung cancer
map05226 Gastric cancer

Prenol lipids Lipids

Down 271/
421

Arachidonic acid Level
2

C00219 map00591 Linoleic acid metabolism
map01100 Metabolic pathways map04270
Vascular smooth muscle contraction
map04726 Serotonergic synapse map04750
Inflammatory mediator regulation of TRP
channels
map04912 GnRH signaling pathway
map04923 Regulation of lipolysis in
adipocytes
map05140 Leishmaniasis

Fatty acyls Lipids

Neg Up 7/167 Adenosine 5'-
monophosphate

Level
2

C00020 map00230 Purine metabolism
map01100 Metabolic pathways
map01523 Antifolate resistance
map04022 cGMP-PKG signaling pathway
map04068 FoxO signaling pathway
map04150 mTOR signaling pathway
map04151 PI3K-Akt signaling pathway
map04152 AMPK signaling pathway
map04211 Longevity regulating pathway
map04740 Olfactory transduction
map04742 Taste transduction
map04923 Regulation of lipolysis in
adipocytes
map04924 Renin secretion
map04925 Aldosterone synthesis and
secretion
map04927 Cortisol synthesis and secretion
map04928 Parathyroid hormone synthesis,

Purines and
derivatives

Compounds
with biological
roles

(Continued)
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TABLE 9 Continued

Group Model Location Name Level KEGG
ID

Pathway ID Family Metabolites

secretion and action
map04934 Cushing syndrome
map05012 Parkinson disease
map05032 Morphine addiction

Up 117/
167

D-glucose 6-phosphate Level
2

C00092 map00562 Inositol phosphate metabolism
map01100 Metabolic pathways
map04911 Insulin secretion
map04917 Prolactin signaling pathway
map04918 Thyroid hormone synthesis
map04931 Insulin resistance
map04973 Carbohydrate digestion and
absorption

Carbohydrates Compounds
with biological
roles

Down 174/
174

8(s)-hydroxy-
(5z,9e,11z,14z)-

eicosatetraenoic acid

Level
2

C14776 map00590 Arachidonic acid metabolism
map01100 Metabolic pathways
map03320 PPAR signaling pathway

Fatty acyls Lipids

HPW
vs.

HNPW

Pos Up 189/
351

Adenosine-
monophosphate

Level
1

C00020 map00230 Purine metabolism
map01100 Metabolic pathways
map01523 Antifolate resistance
map04068 FoxO signaling pathway
map04150 mTOR signaling pathway
map04151 PI3K-Akt signaling pathway
map04923 Regulation of lipolysis in
adipocytes
map04925 Aldosterone synthesis and
secretion
map04927 Cortisol synthesis and secretion
map04934 Cushing syndrome

Nucleic acids Compounds
with biological
roles

Up 192/
351

L-(−)-methionine Level
2

C00073 map00970 Aminoacyl-tRNA biosynthesis
map01100 Metabolic pathways
map01523 Antifolate resistance
map04974 Protein digestion and absorption
map04978 Mineral absorption

Amino acids Compounds
with biological
roles

Up 235/
351

Cortisol Level
2

C00735 map01100 Metabolic pathways
map04927 Cortisol synthesis and secretion
map04934 Cushing syndrome
map04976 Bile secretion

Steroids and
derivatives

Compounds
with biological
roles

Down 93/
296

Arachidonic acid Level
2

C00219 map00591 Linoleic acid metabolism
map01100 Metabolic pathways
map04726 Serotonergic synapse
map04912 GnRH signaling pathway
map04923 Regulation of lipolysis in
adipocytes
map04925 Aldosterone synthesis and
secretion
map05140 Leishmaniasis

Fatty acyls Lipids

Neg Up 9/112 Adenosine 5'-
monophosphate

Level
2

C00020 map00230 Purine metabolism
map01100 Metabolic pathways
map01523 Antifolate resistance
map04022 cGMP-PKG signaling pathway
map04024 cAMP signaling pathway
map04068 FoxO signaling pathway
map04150 mTOR signaling pathway
map04151 PI3K-Akt signaling pathway
map04152 AMPK signaling pathway
map04211 Longevity regulating pathway
map04740 Olfactory transduction
map04742 Taste transduction
map04923 Regulation of lipolysis in
adipocytes
map04924 Renin secretion
map04925 Aldosterone synthesis and

Purines and
derivatives

Compounds
with biological
roles

(Continued)
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markedly higher in the serum or plasma and lower in the

erythrocyte membranes of patients with GDM; these differences

in AA and DHA levels in the serum/plasma and the erythrocyte

membranes may be related to the negative feedback regulation of

the human body. The plasma fatty acids reflect short-term fatty acid

intake (1 to 2 weeks), and the plasma fatty acid levels are influenced

by many factors, such as the physiological state of the body, dietary

intake, and genes, whereas the erythrocyte fatty acid levels can

accurately reflect the long-term (approximately 1 to 2 months)

dietary fatty acid intake (Hai-Tao et al., 2021).

The results of this study showed that DHA expression was

significantly downregulated in the GDM group compared with the

HPW group. Meanwhile, DHA expression was significantly

downregulated in the GDM group compared with the HNPW

group, whereas no statistically significant difference was found

between the HPW and HNPW groups. DHA was annotated to

biosynthesis of unsaturated fatty acids (map01040) pathway.

Compared with the HNPW group, AA levels was significantly

downregulated in both the GDM and HPW groups, but no

statistically significant difference was found between GDM and

HPW groups. In terms of differential metabolic pathways involving

AA, changes in AA expression in two pathways including vascular

smooth muscle contraction map (map04270) and inflammatory

mediator regulation of TRP channels (map04750) were observed in

the GDM group when compared with the HNPW group. Unlike the

GDM group, changes in AA expression were observed in

aldosterone synthesis and secretion (map04925) pathway in the

HPW group when compared with the HNPW group.

We speculate that the possible reasons for the downregulation of

DHA in the GDM group are as follows: (i) the lack of precursor

substances for DHA synthesis due to inadequate ALA intake from

foods in GDM patients; (ii) although adequate ALA intake from

foods is achieved, the synthesis of AA is stronger than that of DHA

due to the presence of insulin resistance and the competition between

n-3 and n-6 PUFAs. According to the differential metabolic pathways

involving AA observed in this study, we suggest that when GDM

occurs, AA is involved in the chronic inflammatory response, and has

an impact on the placental transport of maternal PUFAs.

Under normal physiological conditions, the ratio of adenosine

monophosphate (AMP), adenosine bisphosphonate (ADP), and
Frontiers in Cellular and Infection Microbiology 14
adenosine triphosphate (ATP) is in a relatively stable state.

However, under excessive starvation, ischemic conditions, or

other extreme conditions, the production of ATP is insufficient,

ADP accumulation occurs, and the lack of ATP is compensated to

some extent through the reaction 2ADP ! ATP + AMP, resulting

in an increase in AMP levels. Since the AMP/ATP ratio varies as the

square of the ADP/ATP ratio (Hardie and Hawley, 2001), sensing

the levels of AMP is more sensitive than ADP.

When AMP content is high with low energy, the phosphorylation

of AMP-activated protein kinase (AMPK) by the upstream kinases is

promoted, thus increasing AMPK activity (Hawley et al., 1995; Xiao

et al., 2007). Allosteric activation of AMPK induced by AMP further

results in a two- to threefold increase in AMPK activity after

phosphorylation, the increase varies with ATP levels (Gowans

et al., 2013), and maximum AMPK activation can be reached

(Sanders et al., 2007). AMP and ADP binding also inhibits AMPK

dephosphorylation mediated by phosphatases (Davies et al., 1995;

Xiao et al., 2011), and the binding of AMPK complexes to ADP or

AMP also leads to conformational changes, thus promoting

phosphorylation of a threonine residue (Thr-172) and inhibiting its

dephosphorylation. AMPK activation can improve insulin sensitivity

and glucose homeostasis, and AMPK inactivation is associated with

various metabolic disorders, reflecting its importance as a therapeutic

target (Cabarcas et al., 2010).

AMP is an important regulator of insulin and Akt protein kinase

signaling pathways. It has been shown that Akt could regulate the

inhibitory effect of insulin on AMPK (Kovacic et al., 2003). Akt

cannot directly phosphorylate AMPK. Insulin-induced changes in

Akt activity can regulate AMPK activity by altering the intracellular

AMP/ATP ratio. In fact, the activation of Akt could reduce the

intracellular AMP/ATP ratio, leading to a decrease in AMPK activity

(Hahn-Windgassen et al., 2005). Therefore, the insulin–Akt signaling

axis can expand the range of metabolic effects by upregulating AMP

signaling and increasing AMPK activity.

The results of the present study showed that compared with the

HNPW group, the expression of adenosine and adenosine 5′-
monophosphate was significantly upregulated in the GDM group,

and the expression of adenosine-monophosphate and adenosine 5′-
monophosphate was significantly upregulated in the HPW group, but

the difference was not significant between the GDM and HPW
TABLE 9 Continued

Group Model Location Name Level KEGG
ID

Pathway ID Family Metabolites

secretion
map04927 Cortisol synthesis and secretion
map04928 Parathyroid hormone synthesis,
secretion and action
map04934 Cushing syndrome
map05012 Parkinson disease
map05032 Morphine addiction

Up 93/112 D-glucose 6-phosphate Level
2

C00092 map01100 Metabolic pathways
map04911 Insulin secretion
map04917 Prolactin signaling pathway
map04918 Thyroid hormone synthesis
map04931 Insulin resistance

Carbohydrates Compounds
with biological
roles
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groups. In terms of the annotated differential metabolic pathways,

except for the cAMP signaling pathway involving adenosine 5′-
monophosphate that was determined in the HPW group when

compared with the HNPW group, differential metabolic pathways

of the GDM and HNPW groups compared with the HNPW group

were the same. This also seems to indicate that that, after pregnancy,

the energy requirements of pregnant women increase, and the AMPK

activity changes accordingly, so it is speculated that insulin sensitivity

and glucose homeostasis in GDM patients may be affected if the

changes in AMPK activity are insufficient to meet the body’s needs.

GDM and type 2 diabetes mellitus have similar precipitating

factors leading to glucose metabolism disorders. Uric acid has been

suggested to possibly affect oxidative stress, inflammatory responses,

and enzymes associated with glucose and lipid metabolic homeostasis

(Lima et al., 2015). The results of this study showed that uric acid

expression was significantly upregulated in both the GDM and HPW

groups compared with the HNPW group, whereas no statistically

significant difference was found between the GDM and HPW groups.

However, the expression of uric acid precursors, anthine and

hypoxanthine, was significantly downregulated in the GDM group

compared with the PWM group; there was no statistically significant

difference between the GDM and HNPW groups. In terms of

differential metabolic pathways involving anthine and

hypoxanthine among GDM and HPW groups, xanthine was

annotated to two pathways, purine metabolism (map00230) and

caffeine metabolism (map00232), and hypoxanthine was only

annotated to metabolic pathways (map01100), but the next level of

pathways is not yet known.

At present, according to findings from previously published

studies on the relationship between serum uric acid levels and

GDM, some scholars suggest that uric acid levels were positively

correlated with the risk of GDM (Kharb, 2008; Laughon et al., 2009;

Wolak et al., 2010; Wang, 2012; Gkiomisi et al., 2013; Rasika et al.,

2014; Aker et al., 2016; Amudha et al., 2017), while some studies

documented that there was no significant difference in the uric acid

levels between patients with GDM and healthy controls (Seghieri
Frontiers in Cellular and Infection Microbiology 15
et al., 2003; Güngör et al., 2006; Davari-Tanha et al., 2008; Maged

et al., 2014), and some even suggest that serum uric acid levels were

significantly lower in the GDM group than in the non-GDM group

(Javadian et al., 2014). The results of a meta-analysis conducted by

Zhao support a correlation between uric acid levels and the

incidence of GDM (Diqi, 2018).

Xanthine oxidoreductase (XOR) has two redox isoforms,

xanthine dehydrogenase (XDH) and xanthine oxidase (XO), which

is mainly found in capillary endothelial cells, and these two forms are

interconvertible (Battelli et al., 2014). Under normal physiological

conditions, it mainly exists in the form of XDH. During ischemia and

hypoxia, the synthesis of XDH increases due to the decrease of ATP

production and the dysfunction of membrane pump, which is

converted to large amounts of XO. At the same time, ATP cannot

be used to release energy, and is degraded to ADP, AMP, and

hypoxanthine, leading to large accumulation of hypoxanthine in

the ischemic tissues. During reperfusion, a large amount of

molecular oxygen enters into the ischemic tissues along with the

blood, XO catalyzes the conversion of hypoxanthine to xanthine

again, and further catalyzes the conversion of xanthine to uric acid.

These processes use molecular oxygen as an electron acceptor,

resulting in the production of a large amount of superoxide anion

and hydrogen peroxide (Nørholt et al., 1996; Chen et al., 2004), which

can cause hypoxic tissue damage directly, and the body may also

enter a state of oxidative stress, leading to vascular endothelial

damage and promoting the progression of GDM.

Based on the findings of the above-mentioned previous studies

and results of the present study, we hypothesized that the elevated

expression of xanthine and hypoxanthine in the HPW group may

be due to the relatively lower degree of hypoxia in the HPW group

compared to the GDM group; this leads to a decrease in the

production or activity of XO, thereby decreasing the synthesis of

uric acid. Additionally, the oxygen demand is higher in patients

with GDM than in HPW.

In this study, we made a hypothetical map (Figure 5) of several

metabolites that were found to be different in the comparison of
FIGURE 5

Hypothetical diagram about differential metabolites.
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GDM, HPW, and HNPW, so as to further elaborate and confirm

their correlation in subsequent studies.
5 Conclusion

In conclusion, untargeted metabolomic analysis of saliva

samples from pregnant women with DGM, HPW, and HNPW

identified nine differential metabolites with high confidence. The

results are similar to findings from previous metabolomics studies

of serum and urine samples, which offer the possibility of using

saliva for regular noninvasive testing in the population of pregnant

women with and without GDM. Meanwhile, the associations

between these identified differential metabolites and gingivitis

need to be further validated by subsequent studies.
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