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Using multiple indicators to
predict the risk of surgical
site infection after ORIF of
tibia fractures: a machine
learning based study

Hui Ying1, Bo-Wen Guo1, Hai-Jian Wu1, Rong-Ping Zhu1,
Wen-Cai Liu2* and Hong-Fa Zhong1*

1Department of Emergency Trauma Surgery, Ganzhou People’s Hospital, Ganzhou, China,
2Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital,
Shanghai, China
Objective: Surgical site infection (SSI) are a serious complication that can occur

after open reduction and internal fixation (ORIF) of tibial fractures, leading to

severe consequences. This study aimed to develop a machine learning (ML)-

based predictive model to screen high-risk patients of SSI following ORIF of tibial

fractures, thereby aiding in personalized prevention and treatment.

Methods: Patients who underwent ORIF of tibial fractures between January 2018

and October 2022 at the Department of Emergency Trauma Surgery at Ganzhou

People’s Hospital were retrospectively included. The demographic characteristics,

surgery-related variables and laboratory indicators of patients were collected in

the inpatient electronic medical records. Ten different machine learning

algorithms were employed to develop the prediction model, and the

performance of the models was evaluated to select the best predictive model.

Ten-fold cross validation for the training set and ROC curves for the test set were

used to evaluate model performance. The decision curve and calibration curve

analysis were used to verify the clinical value of the model, and the relative

importance of features in the model was analyzed.

Results: A total of 351 patients who underwent ORIF of tibia fractures were

included in this study, among whom 51 (14.53%) had SSI and 300 (85.47%) did

not. Of the patients with SSI, 15 cases were of deep infection, and 36 cases were

of superficial infection. Given the initial parameters, the ET, LR and RF are the top

three algorithms with excellent performance. Ten-fold cross-validation on the

training set and ROC curves on the test set revealed that the ET model had the

best performance, with AUC values of 0.853 and 0.866, respectively. The

decision curve analysis and calibration curves also showed that the ET model

had the best clinical utility. Finally, the performance of the ET model was further

tested, and the relative importance of features in the model was analyzed.

Conclusion: In this study,weconstructedamultivariatepredictionmodel for SSI after

ORIFof tibial fracture throughML,andthestrengthof this studywas theuseofmultiple

indicators to establish an infection predictionmodel, which can better reflect the real

situation of patients, and the model show great clinical prediction performance.
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Introduction

The incidence of tibia fractures has gradually increased in tandem

with the development of the economy and transportation industry.

As a serious complication that can occur after open reduction and

internal fixation (ORIF) of tibial fractures, surgical site infections

(SSI) can lead to serious consequences such as prolonged

hospitalization, increased hospital costs, readmissions,

osteomyelitis, pseudoarthrosis and even sepsis or death

(Henkelmann et al., 2017; Petrosyan et al., 2021; Ying et al., 2021;

Barrés-Carsı ́ et al., 2022), which poses a substantial burden to patients
and their families. Another noteworthy problem is that the number of

patients who develop SSI after discharge from hospital increases with

shorter hospitalization times. As preventing SSI is more critical than

secondary treatment, clinicians should balance the relationship

between infection prevention and shortening hospitalization time.

Consequently, it is essential to identify high-risk patients of SSI after

tibia fracture and personalize prevention strategies accordingly.

There are many studies that have reported recognized risk

factors for SSI, such as diabetes mellitus, obesity, prolonged

surgical duration, smoking, elevated inflammatory indicators, etc

(Ma et al., 2018; Norris et al., 2019; Ballhause et al., 2021).

Additionally, some studies have also highlighted unexpected risk

factors such as urinary tract infection (UTI) and bleeding disorders

(Yoon and King, 2020; Saiz et al., 2022). To analyze postoperative

infections ideally, it is necessary to consider adequate variables.

However, most studies’ risk factors are not comprehensive, and

simple risk factor analysis has limited clinical application. The use

of multiple indicators to develop a prediction model for SSI can be

more clinically valuable.

Machine learning (ML) is a form of artificial intelligence that

focuses on the use of data and algorithms to predict outcomes,

identify patterns and trends within the data and learn from previous

experience (Handelman et al., 2018; Liu WC. et al., 2022). ML has

demonstrated robust predictive capabilities and is suitable for

preoperative medical risk stratification and resource allocation

(Ngiam and Khor, 2019; Yeo et al., 2022). In recent years, ML is

widely used in the field of medicine, such as for early detection and

diagnosis of cancer (Jones et al., 2022), as well as for coronavirus

disease 2019 (COVID-19) diagnosis (Pfaff et al., 2022). Although ML

has been demonstrated to have greater accuracy than conventional

methods, few studies have established ML-based predictive models to

identify high-risk patients of SSI, especially in patients with tibia

fractures. The purpose of this study was to develop a ML-based

predictive model to identify high-risk patients of SSI after ORIF of

tibial fractures, which contributes to providing guidance for surgeons

to develop personalized prevention and treatment.
Materials and methods

Study population

Patients who underwent ORIF of tibial fractures in the

Department of Emergency Trauma Surgery at Ganzhou People’s

Hospital from January 2018 to October 2022 were retrospectively
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collected. This study was approved by the Ethics Committee of

Ganzhou People’s Hospital. The inclusion criteria were as follows:

(1) patients were diagnosed as closed tibial fractures; (2) patients

underwent ORIF surgery. The exclusion criteria were as follows: (1)

patients with Open injury; (2) patients with multiple site damage;

(3) patients with pathological fracture or fracture nonunion; (4)

Patients with acute inflammation and infection in other areas of the

body; (5) Patients with incomplete data.
Diagnosis of surgical site infection

The diagnosis of SSI for this study was based on the criteria

developed by the Centers for Disease Control in the United States

(Horan et al., 1992). In this study, SSI was defined as acute infection

within 30 days after ORIF. Patients who met one of the following

criteria would be diagnosed as SSI: (1) the wound presented the

symptoms or signs of redness, swelling, fever, pain, tenderness to

palpation and/or purulent drainage; (2) there was abscess aspirated

from the wound and the culture was positive; (3) Fluid or tissue

harvested from revision surgery was cultured positively; (4)

evidences of SSI was confirmed by histopathologic and radiologic

examinations; (5) SSI was diagnosed by the surgeons and definitely

noted in the medical records. According to the location of SSI, it was

divided into superficial infection and deep infection.
Data selection

We collected the demographic characteristics, surgery-related

variables and laboratory parameters of patients from inpatient

electronic medical records, while these variables have been shown

to be associated with SSI according to relevant studies (Liu et al.,

2018; Norris et al., 2019). Demographic characteristics including

Gender, Age, Smoking, Hypertension, Diabetes. Surgery-related

variables including Estimated blood loss, Procedure duration,

ASA score, Blood transfusion history. Preoperative laboratory

parameters including White blood cell (WBC), Neutrophil

percentage (%), Lymphocyte percentage (%), Neutrophil count,

Lymphocyte count, Red blood cell (RBC), Hemoglobin, Platelet

(PLT), Prothrombin time (PT), Activated partial thromboplastin

time (APTT), D-Dimer, Total Protein, Albumin, Globulin, Serum

glucose, Urinary leukocyte count, Urinary bacterial count.

Information on all variables was complete for these patients.
Statistical analyses

The statistical analyses in this study were all performed by

Python (version 3.8, Python Software Foundation). Categorical

variables were expressed as frequency or proportions and

compared by the chi-square test or Fisher’s exact test. K-S-L test

was used to test the normality of continuous data. Continuous non-

normally distributed variables were evaluated using the Wilcoxon

rank-sum test and shown as median and the first quartile (Q1) and

the third quartile (Q3). A significant difference was set as P<0.05.
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Data preprocessing, model establishment
and performance evaluation

Data of patients were randomly sliced into training and test set

in a ratio of 7:3 using a stratified random sampling method in

python. Categorical variables such as smoking and diabetes status

were processed using label encoding methods. The training set was

used to construct the models, and the test set was used to evaluate

the prediction performance of models. To address the imbalance of

data distribution, random oversampling methods were used. The

key of this method is to oversampling the data samples of small

classes to increase the number of data samples of small classes to

improve the accuracy of the model.

In this study, ten different ML algorithms were constructed with

scikit-learn, xgboost and lightgbm modules: Logistic regression (LR),

K Neighbors Classifier (KNN), Decision Tree Classifier (DT), Extra

Trees Classifier (ET), Random Forest Classifier (RF), Extreme

Gradient Boosting (XGBoost), Light Gradient Boosting Machine

(Lightgbm), naïve Bayes (NB), Gradient Boosting Classifier (GBC),

and Ada Boost Classifier (ADA). The performance of these

algorithms was compared without hyper-parameter optimization

and the accuracy and area under the receiver operating

characteristic curve (AUC) were calculated to select the top three

algorithms for further development. The models were then optimized

by adjusting the hyper-parameters using the randomized search

method, followed by internal and external validation.

Ten-fold cross-validation was used for internal verification,

which the training set was split into 10 sets, and nine of them

were used for model training and one for model evaluation. The

corresponding correct rate was obtained for each trial and the

average of the correct rate of the results of 10 times was used as an

estimate of the accuracy of the algorithm. AUC and ROC curve

were calculated in the test set to externally validate the predictive

performance of the ML models. To further evaluate the clinical

value of the models, decision curve analyses (DCA) were calculated

to show the net benefit of using a model at different thresholds.

Calibration was assessed graphically between the predicted and

observed outcomes for the training and validation samples.

Calibration curve was plotted to assess the calibration of different

ML models. Calibration curves depict the calibration of each model

in terms of the agreement between the predicted risks of SSI and

observed outcomes. Comparing the evaluation indexes of the three

model to select the best-performing model.

For the best model, the Youden index, which maximizes the

sum of the sensitivity and specificity, was defined to calculate the

appropriate cut-off values. External validation was performed using

cumulative lift measures to calculate the multiple of the model’s

prediction ability compared with the random selection. The

confusion matrix intuitively showed prediction performance and

the difference between the model prediction result and the real

situation. The feature importance and impact of each input variable

on the model output was assessed by computing Shapley Additive

Explanations (SHAP) values. SHAP was a game-theoretic approach

to interpreting the output of ML models. It used the classical

Shapley values from game theory and their associated extensions

to relate optimal credit allocation to local explanations.
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Results

Data baseline

According to the inclusion and exclusion criteria, a total of 351

patients underwent ORIF of tibial fractures were included in this

study and 242 patients were excluded. Among the patients included,

51 (14.53%) had SSI and 300 (85.47%) without. In 51 patients with

SSI, there were 15 cases of deep infection and 36 cases of superficial

infection. The detailed characteristics are shown in Table 1. The

total cohort was split into a training set (n=245) and a test set

(n=106) in a ratio of 7:3, while the differences in variables between

two groups were not statistically significant (Table 2).
Candidate algorithms screening

245 samples were randomly selected for model training. Of

these samples, 36 (14.69%) had SSI and 209 (85.31%) without. And,

all features were used to construct predictive models in this study.

The prediction performances of the various models are exhibited in

Figure 1. In the initial selection, accuracy and AUC were defined as

the main parameters to evaluate the models’ performance. The top

three algorithms with excellent performance were selected for the

next step experiment, including Extra Trees Classifier (ET)

(accuracy: 0.841; AUC: 0.805), Logistic regression (LR) (accuracy:

0.734; AUC: 0.789) and Random Forest Classifier (RF) (accuracy:

0.820; AUC: 0.786).
Model development and selection

Internal and external validation after adjusting the optimal

hyper-parameter configuration of the models. The final

hyperparameters setting of the three models are listed in

Supplementary Table 1. The performance of the machine learning

models was verified by 10-fold cross-validation in the training set,

and the results are shown in Figure 2A. It can be seen that the ET

(AUC: 0.853) model had better performance than LR (AUC: 0.832)

and RF (AUC: 0.781) model in internal verification. The ROC

curves of three constructed models using the test set are shown in

Figure 2B. The results also show that the ET model has the best

prediction performance with an AUC of 0.866. Both internal

validation and external validation show that ET model has the

best performance.
Clinical utility

The Decision curve analysis (DCA) of the three model is

presented in Figure 3A. DCA demonstrated that the ET model

added more net benefit compared with RF model or LR model,

indicating that it had better clinical impact at a wide range of

probability thresholds. Calibration curves depict the calibration of

each model in terms of the agreement between the predicted risks of
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infection and observed outcomes of infection. As shown in

Figure 3B, the calibration curve of ET model demonstrated good

agreement between prediction and observation. The above results

show that the ET model has the best clinical performance, so we

choose the ET model as the final prediction model to identify high-

risk patients of SSI after ORIF of tibial fractures.
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Model performance and
feature importance

As illustrated in Figure 4A, decreasing sensitivity and increasing

specificity are shown for an increasing probability of infection, with

a histogram for the distribution of the predicted probability. We
TABLE 1 Baseline characteristics of study population.

Variables Overall No Yes P-Value

n 351 300 51

Gender, n (%) Female 161 (45.9) 139 (46.3) 22 (43.1) 0.672

Male 190 (54.1) 161 (53.7) 29 (56.9)

Age, median [Q1,Q3] 44.0 [27.5,56.0] 43.0 [27.0,55.0] 50.0 [34.0,56.5] 0.055

Smoking, n (%) No 314 (89.5) 270 (90.0) 44 (86.3) 0.423

Yes 37 (10.5) 30 (10.0) 7 (13.7)

Hypertension, n (%) No 285 (81.2) 248 (82.7) 37 (72.5) 0.087

Yes 66 (18.8) 52 (17.3) 14 (27.5)

Diabetes , n (%) No 322 (91.7) 285 (95.0) 37 (72.5) <0.001

Yes 29 (8.3) 15 (5.0) 14 (27.5)

Estimated blood loss, median [Q1,Q3] 50.0 [30.0,150.0] 50.0 [27.5,100.0] 100.0 [100.0,300.0] <0.001

Procedure duration, median [Q1,Q3] 150.0 [105.0,200.0] 150.0 [99.8,180.0] 220.0 [157.5,292.5] <0.001

ASA, n (%) 1 29 (8.3) 27 (9.0) 2 (3.9) 0.061

2 311 (88.6) 266 (88.7) 45 (88.2)

3 11 (3.1) 7 (2.3) 4 (7.8)

Blood transfusion history, n (%) No 333 (94.9) 294 (98.0) 39 (76.5) <0.001

Yes 18 (5.1) 6 (2.0) 12 (23.5)

WBC, median [Q1,Q3] 9.1 [7.5,11.1] 9.1 [7.4,11.0] 9.8 [8.4,11.6] 0.095

Neutrophils%, median [Q1,Q3] 74.5 [68.6,79.8] 73.4 [68.1,79.0] 79.0 [73.3,84.3] <0.001

Lymphocyte%, median [Q1,Q3] 16.9 [12.6,21.7] 17.4 [13.4,22.3] 14.0 [9.3,17.0] <0.001

Neutrophil count, median [Q1,Q3] 6.7 [5.1,8.4] 6.5 [5.1,8.3] 7.5 [6.2,9.2] 0.012

Lymphocyte count, median [Q1,Q3] 1.5 [1.2,1.9] 1.5 [1.2,1.9] 1.2 [1.0,1.5] <0.001

RBC, median [Q1,Q3] 4.4 [4.0,4.8] 4.4 [4.0,4.8] 4.2 [3.7,4.6] 0.036

HB, median [Q1,Q3] 130.0 [117.0,141.0] 131.0 [118.0,141.0] 129.0 [112.0,138.5] 0.263

PLT, median [Q1,Q3] 234.0 [201.0,280.0] 234.0 [202.0,279.2] 234.0 [182.0,282.5] 0.568

PT, median [Q1,Q3] 11.2 [10.6,11.8] 11.2 [10.7,11.8] 11.1 [10.4,11.9] 0.631

APTT, median [Q1,Q3] 26.2 [24.8,28.3] 26.3 [24.8,28.3] 25.9 [24.4,28.4] 0.619

D_Dimer, median [Q1,Q3] 3.9 [1.9,9.4] 3.4 [1.6,8.1] 7.3 [3.5,16.2] <0.001

Total Protein, median [Q1,Q3] 65.9 [63.1,69.7] 65.8 [63.4,69.7] 66.4 [62.0,69.8] 0.364

Albumin, median [Q1,Q3] 41.2 [39.2,43.1] 41.4 [39.2,43.2] 40.7 [38.5,42.6] 0.203

Globulin, median [Q1,Q3] 24.9 [22.2,27.5] 24.8 [22.2,27.5] 25.1 [22.5,27.4] 0.784

Glucose, median [Q1,Q3] 5.5 [5.0,6.2] 5.5 [5.0,6.0] 6.2 [5.5,6.9] <0.001

Urinary leukocyte, median [Q1,Q3] 4.0 [0.0,13.9] 3.7 [0.0,13.7] 5.0 [1.2,19.3] 0.195

Urinary bacterial, median [Q1,Q3] 7.2 [0.0,105.5] 7.0 [0.0,95.1] 9.1 [0.0,123.5] 0.471
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defined an optimal cut-off probability of 0.18 for the ET model

according to the Youden index and the sensitivity and specificity

were 0.867, 0.769 respectively. Figure 4B demonstrates the

cumulative gains of ET model, which showed the rate of SSI
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events captured by ET model over a given number of samples.

The cumulative lift demonstrates a snapshot of the ratio of the

percentage of patients with infection to the percentage of patients

without. We used it to compare ET model vs a theoretically ideal
TABLE 2 Baseline characteristics of training set and test set.

Variables Overall Train Test P-Value

n 351 245 106

Infection, n (%) No 300 (85.5) 209 (85.3) 91 (85.8) 1

Yes 51 (14.5) 36 (14.7) 15 (14.2)

Gender, n (%) Female 161 (45.9) 113 (46.1) 48 (45.3) 0.977

Male 190 (54.1) 132 (53.9) 58 (54.7)

Age, median [Q1,Q3] 44.0 [27.5,56.0] 44.0 [27.0,55.0] 46.0 [28.2,57.8] 0.369

Smoking, n (%) No 314 (89.5) 218 (89.0) 96 (90.6) 0.799

Yes 37 (10.5) 27 (11.0) 10 (9.4)

Hypertension, n (%) No 285 (81.2) 200 (81.6) 85 (80.2) 0.866

Yes 66 (18.8) 45 (18.4) 21 (19.8)

Diabetes , n (%) No 322 (91.7) 228 (93.1) 94 (88.7) 0.247

Yes 29 (8.3) 17 (6.9) 12 (11.3)

Estimated blood_loss, median [Q1,Q3] 50.0 [30.0,150.0] 100.0 [30.0,150.0] 50.0 [30.0,150.0] 0.751

Procedure duration, median [Q1,Q3] 150.0 [105.0,200.0] 155.0 [106.0,210.0] 150.0 [96.2,180.0] 0.114

ASA, n (%) 1 29 (8.3) 18 (7.3) 11 (10.4) 0.562

2 311 (88.6) 220 (89.8) 91 (85.8)

3 11 (3.1) 7 (2.9) 4 (3.8)

Blood transfusion history, n (%) No 333 (94.9) 232 (94.7) 101 (95.3) 1

Yes 18 (5.1) 13 (5.3) 5 (4.7)

WBC, median [Q1,Q3] 9.1 [7.5,11.1] 9.1 [7.5,11.1] 9.1 [7.6,11.0] 0.883

Neutrophils%, median [Q1,Q3] 74.5 [68.6,79.8] 74.1 [68.5,79.3] 74.8 [68.8,81.3] 0.487

Lymphocyte%, median [Q1,Q3] 16.9 [12.7,21.7] 17.0 [13.2,21.9] 16.8 [11.2,21.3] 0.591

Neutrophil count, median [Q1,Q3] 6.7 [5.1,8.4] 6.7 [5.1,8.4] 6.7 [5.3,8.3] 0.809

Lymphocyte count, median [Q1,Q3] 1.5 [1.2,1.9] 1.5 [1.2,1.9] 1.5 [1.1,1.8] 0.716

RBC, median [Q1,Q3] 4.4 [4.0,4.8] 4.4 [4.0,4.8] 4.3 [3.9,4.8] 0.638

HB, median [Q1,Q3] 130.0 [117.0,141.0] 131.0 [117.0,141.0] 129.0 [117.0,140.0] 0.521

PLT, median [Q1,Q3] 234.0 [201.0,280.0] 234.0 [203.0,279.0] 239.5 [193.8,282.8] 0.732

PT, median [Q1,Q3] 11.2 [10.6,11.8] 11.2 [10.6,11.8] 11.2 [10.6,11.8] 0.581

APTT, median [Q1,Q3] 26.2 [24.8,28.3] 26.2 [24.8,28.3] 26.3 [24.7,28.3] 0.76

D_Dimer, median [Q1,Q3] 3.9 [1.9,9.4] 3.9 [1.8,9.5] 3.7 [1.9,8.9] 0.822

Total Protein, median [Q1,Q3] 65.9 [63.1,69.7] 65.9 [63.2,69.8] 66.1 [63.0,69.7] 0.931

Albumin, median [Q1,Q3] 41.2 [39.2,43.1] 41.5 [39.3,43.3] 40.8 [38.8,43.0] 0.173

Globulin, median [Q1,Q3] 24.9 [22.2,27.5] 24.8 [22.2,27.5] 25.2 [22.4,27.7] 0.422

Glucose, median [Q1,Q3] 5.6 [5.0,6.2] 5.5 [5.0,6.1] 5.7 [5.1,6.5] 0.165

Urinary leukocyte, median [Q1,Q3] 4.0 [0.0,13.9] 4.6 [0.4,15.3] 2.3 [0.0,8.9] 0.054

Urinary bacterial, median [Q1,Q3] 7.2 [0.0,105.5] 8.1 [0.0,110.5] 5.4 [0.0,93.6] 0.262
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model (perfectly predicts SSI given a sample) and a model that is no

better than random guessing. When cut-off value was 0.18, the lift

value was 2.7 for the ETmodel. The confusion matrix (Figure 4C) of

the ET model in the test set indicated its great prediction

performance. To reveal the relative importance of features in ET

model, SHAP values were calculated and are plotted in Figure 5. As

shown, Diabetes, Estimated blood loss, Procedure duration, Blood

transfusion history are the most important features for

distinguishing the SSI and non-SSI groups.
Discussion

Tibial fractures are a frequent and complicated injury for

orthopedic surgeons, typically resulting from high-energy trauma

and often leading to complications (Choo and Morshed, 2014;
Frontiers in Cellular and Infection Microbiology 06
Henkelmann et al., 2017). Identification high-risk patients for

surgical site infection (SSI) and providing personalized prevention

and treatment are important considerations. This study included 351

patients, of whom 51 developed postoperative infections. Previous

literature reported a wide range of the rate of SSI between 2.6–45% for

tibial fractures (Henkelmann et al., 2017), while our results show that

the overall incidence of SSI is 15%, and 4.1% for deep SSI, falling

within the previously reported range. Compared to other types of

fractures, there is a higher incidence rate of SSI after ORIF of tibial

fractures (Shen et al., 2021), and the possible cause for this difference

is that tibia is covered with sparse soft tissue and usually suffers from

severe injuries (Norris et al., 2019).

ML has been widely used in the medical field, and a ML-based

multivariate prediction model was constructed to screen out high-

risk patients of SSI in this study. Ten algorithms including LR,

KNN, DT, ET, RF, XGBoost, Lightgbm, NB, GBC and ADA were
FIGURE 1

Performance of different models in internal validation without initial parameters. Models are ordered according to their AUC. AUC, area under
receiver operating characteristic curve; ET, Extra Trees Classifier; LR, Logistic regression; RF, Random Forest Classifier; NB, Naive Bayes; GBC,
Gradient Boosting Classifier; XGBoost, Extreme Gradient Boosting; Lightgbm, Light Gradient Boosting Machine; KNN, K Neighbors Classifier; ADA,
Ada Boost Classifier; DT, Decision Tree Classifier.
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used to predict SSI risk after ORIF of tibial fractures. Through

internal and external validation, it is found that ET model has the

best prediction performance, and the test set AUC of ET model is

0.896, moreover, the prediction model also shows great

clinical performance.

In the models we constructed, all the included indicators are the

possible risk factors for SSI according to previous literature (Liu

et al., 2018; Norris et al., 2019) and these indicators mainly fall into

three categories: demographic characteristics, surgery-related

variables and laboratory parameters. Predictor variables should be

included as much as possible to better reflect the actual situation of
Frontiers in Cellular and Infection Microbiology 07
patients, but some risk factors for SSI are excluded because they

cannot be collected or difficult to measure, for instance, it is difficult

to weigh fracture patients, so BMI cannot be calculated, and wound

dressing is greatly affected by the experience and habits of the

clinician and cannot be measured. To our knowledge, this is the first

to include almost all collectable indicators to develop a ML-based

prediction model for SSI after ORIF of tibia fractures. Through the

feature importance experiment, we identified several indicators that

have the greatest impact on the model, and diabetes, estimated

blood loss, procedure duration, blood transfusion history,

lymphocyte count and PLT are the top six.
B

A

FIGURE 3

(A) The DCA curves of the three model. The net benefit was calculated by adding the true positives and subtracting the false positives. The y-axis
represents the net benefit, and the x-axis represents the threshold probability. The Oblique line represents the assumption that all patients will
infection, and the horizontal line represents the assumption that no patients with infection. (B) The calibration curves of the three models. The y-axis
represents the actual infection rate. The diagonal dotted line represents an ideal model and the blue solid line represents the performance of the
model, while the model closer fit to the diagonal dotted line represents a better prediction. DCA, decision curve analysis; ET, Extra Trees Classifier;
LR, Logistic regression; RF, Random Forest Classifier.
BA

FIGURE 2

(A) Ten-fold cross-validation results of different machine learning models. (B) The ROC curves of different machine learning models in external test
set. AUC, area under receiver operating characteristic curve; ROC, receiver operating characteristic; ET, Extra Trees Classifier; LR, Logistic regression;
RF, Random Forest Classifier.
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Our results show that the diabetes was the most important

variable in the model, and lots of research have indicated diabetes is

an independent risk factor for SSI. Such as, Bachoura et al. found

that diabetes is the nonmodifiable risk factors for SSIs after skeletal

trauma (Bachoura et al., 2011), and Oladeji et al. show that diabetic

patients were 2.7 times more likely to develop a deep infection than

ordinary patients after pilon fracture fixation (Oladeji et al., 2021).
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The microvascular blood flow of patients with diabetes is usually

damaged, which decreased the ability to deliver antibiotics or

inflammatory cells to the injured area to resist infection, resulting

in the higher risk of SSI. Diabetic status was identified by the

medical records, and we noticed that glucose control in patients

with diabetes was different, which may have different effects on the

occurrence of infection. Similar study has been reported by
FIGURE 5

Distribution of the impact of each feature on the output of ET model estimated using the SHAP values. The plot sorts features by the sum of SHAP
value magnitudes over all samples and shows the order of feature importance. This figure described data from the test cohort, with each point
representing one patient. The color represents the feature value (red high, blue low). The x axis measures the impact on the model output (right
positive, left negative). A positive value indicate a SSI risk and a negative value indicate a good outcome. SHAP, SHapley Additive explanation; PLT,
Platelet; PT, Prothrombin time.
B C

A

FIGURE 4

(A) Sensitivity and specificity versus cut-off probability plot of the ET model. Decreasing sensitivity and increasing specificity are shown for increasing
probability thresholds for infection. (B) The cumulative lift demonstrates a snapshot of the ratio of the percentage of patients with infection events
reached during a treatment campaign to the percentage of patients targeted. It showed the rate of positive events captured by a model over a given
number of samples. (C) The confusion matrix of the ET model in the test set.
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Anderson et al. that glucose ≥200 mg/dL was a significant

independent risk factor for 90-day deep surgical site infections in

orthopaedic trauma patients (Anderson et al., 2021). In addition,

Andres et al. indicated that stress-induced hyperglycemia also

increased the risk of infection in orthopedic trauma patients

without a history of diabetes (Rodriguez-Buitrago et al., 2019).

Therefore, diabetes alone cannot well reflect its impact on infection,

while the combination of serum glucose and diabetes can produce a

better predictive value.

Prolonged operative time is a well-accepted risk factor for SSI

after tibia fractures. A retrospective analysis of 309 tibial plateau

fractures found operative times approaching 3 hours was related to

an increased risk for SSI (Colman et al., 2013). Li et al. also showed

that patients who developed SSI after surgery had a longer operative

time (200.5 ± 82.5 min) than those without infection (142.8 ± 54.1

minutes) (Li et al., 2018). Prolonged operative time not only results

in more extensive soft-tissue stripping and extended exposure of the

wound but also leads to higher estimated blood loss (EBL). EBL, as

an independent predictor of SSI after orthopedic surgery, has been

widely reported in the previous literature (Li et al., 2015; Liu WC.

et al., 2022), and our results also show that the EBL plays an

important role in infection prediction. Moreover, our study found

that patients with SSIs had a higher proportion of blood transfusion

history compared with patients without SSIs. Similar evidence was

also found in Panteli et al.’s study, and it show post-operative

transfusion associations with deep infection (Panteli et al., 2021).

Additionally, some studies believe that Immunosuppression as the

consequence of blood transfusion is related to the increase of SSI

rate (Hill et al., 2003; Guerado et al., 2016). From a clinical

perspective, patients who need blood transfusion after surgery are

associated with more blood loss or poor physical condition, and all

these factors may increase the rate of SSI. Operation time, EBL, and

blood transfusion history influence each other to varying degrees,

and they should not be considered in isolation.

In contrast to patient and intraoperative factors, which are

sometimes subjective and unclear in showing body status, serum

biomarkers are more sensitive and objective (Wu et al., 2022). The

abnormal preoperative inflammatory indicators is not only the

reflection of the acute inflammatory response but also the stress

response of body to injury, which may contribute to the prediction

of infection. Zhao et al. reported that the increase in preoperative

inflammatory markers such as WBC count is significantly

associated with SSI (Zhao et al., 2022), and Lu et al. showed that

NLR (the values of ratio of neutrophil to lymphocyte) ≥6.4 is

independently associated with SSI (Lu et al., 2022). Some scholars

believed that lymphocytes represent the immune function of

patients and thus are associated with infection (Iwata et al., 2016).

Consistent with the previous literature, we also found that some

inflammatory indicators had statistically significant differences

between SSI and non-SSI patients and played an important role

in model construction in this study, such as neutrophil and

lymphocyte. As Imabayashi et al. found that the combination of

neutrophil count, lymphocyte ratio, and C-reactive protein ratio,

may be a strong tool for detecting SSI (Imabayashi et al., 2022),

Thus, it may be a better choice to use a combination of

inflammation indicators to predict infection.
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Although the univariate analysis did not suggest a significant

correlation between the PLT and SSI, we cannot completely ignore

its importance in infection prediction. Liu et al. reported that the

temporal changes of the PLT count in immunocompromised

patients who have undergone femoral neck fracture repair can

serve as an early warning of SSI (Liu J. et al., 2022). Zhang et al. posit

that platelet count were significantly higher in the Deep surgical site

infection (DSSI) group than in the non-DSSI group PLT after ORIF

for traumatic limb fractures (Zhang et al., 2018). On the other hand,

Hu et al.’s study found that PLT<288 × 109 is an independent risk

factor for wound infection after surgical treatment of open fractures

(Hu et al., 2020). Saiz et al. found that patients with bleeding

disorder are more likely to develop SSI than patients without (Saiz

et al., 2022). The lack of statistical difference in PLT indicators may

be due to the limited sample size in our study. However, it is

important to note that PLT has a significant impact on the ML-

based predictive model for SSI, which highlights the potential

benefits of using ML methods to detect subtle associations that

may not be apparent with traditional statistical approaches.

It is worth noting that the prediction model in this study was

established for clinical purposes, and the ET model demonstrated

good clinical performance. The confusion matrix showed that 13

out of the 15 infected patients were correctly predicted in the

external test. Further prospective clinical prediction tests are needed

to verify the actual effectiveness of the model. According to the risk

assessment results generated by the prediction model, clinicians

should pay more attention to high-risk patients of SSI and develop

personalized treatment. Furthermore, this screening approach help

to strike a balance between shortening the average hospital stay and

minimizing post-discharge infection rates; screening high-risk

patients allows for selective extension of hospitalization for those

at high risk, while potentially reducing the hospitalization duration

for low-risk patients.
Limitations

This study has several limitations. First, this is a retrospective

study, which limits the source of data to medical records and

reduces the credibility of the evidence. Additionally, the

retrospective study design may introduce selection bias, and

patients with confirmed SSI in other institutions were excluded.

Furthermore, the number of cases in this study was relatively small,

and it was a single-center research. Future studies should be

conducted in multiple centers with larger sample sizes.
Conclusions

In summary, this study constructed a multivariate prediction

model for SSI after ORIF of tibial fracture using ML. The use of

multiple indicators to establish the infection prediction model was a

significant strength of this study, which can better reflect the real

situation of patients. The model demonstrated good clinical

prediction performance, which contributes to the screening and

personalized treatment of high-risk patients of SSI.
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