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Lactobacillus acidophilus NCFM
and Lactiplantibacillus plantarum
Lp-115 inhibit Helicobacter pylori
colonization and gastric
inflammation in a murine model

Siqi Shen1,2, FeiFei Ren1,2, Haiming Qin1,2, Ihtisham Bukhari1,2,
Jing Yang3, Dafang Gao3, Arthur C. Ouwehand4 ,
Markus J. Lehtinen4, Pengyuan Zheng1,2* and Yang Mi1,2*

1Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall
Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China,
2Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou,
Henan, China, 3R&D Health & Biosciences, Danisco (China) Holding Co. Ltd, Shanghai, China, 4IFF
Health & Biosciences, Global Health and Nutrition Science, Kantvik, Finland
Purpose: To determine the role of Lactobacillus strains and their combinations in

inhibiting the colonization of H. pylori and gastric mucosa inflammation.

Methods: Human gastric adenocarcinoma AGS cells were incubated with H.

pylori and six probiotic strains (Lactobacillus acidophilus NCFM, L. acidophilus

La-14, Lactiplantibacillus plantarum Lp-115, Lacticaseibacillus paracasei Lpc-37,

Lacticaseibacillus rhamnosus Lr-32, and L. rhamnosus GG) and the adhesion

ability of H. pylori in different combinations was evaluated by fluorescence

microscopy and urease activity assay. Male C57BL/6 mice were randomly

divided into five groups (uninfected, H. pylori, H. pylori+NCFM, H. pylori+Lp-

115, andH. pylori+NCFM+Lp-115) and treated with two lactobacilli strains (NCFM

and Lp-115) for six weeks. H. pylori colonization and tissue inflammation statuses

were determined by rapid urease test, Hematoxylin-Eosin (HE) staining,

immunohistochemistry, and qRT-PCR and ELISA.

Results: L. acidophilus NCFM, L. acidophilus La-14, L. plantarum Lp-115, L.

paracasei Lpc-37, L. rhamnosus Lr-32, and L. rhamnosus GG reduced H. pylori

adhesion and inflammation caused by H. pylori infection in AGS cells and mice.

Among all probiotics L. acidophilus NCFM and L. plantarum, Lp-115 showed

significant effects on the H. pylori eradication and reduction of inflammation in-

vitro and in-vivo. Compared with the H. pylori infection group, the mRNA and

protein expression levels of IL-8 and TNF-a in the six Lactobacillus intervention

groups were significantly reduced. The changes in the urease activity (ureA and

ureB) for 1-7h in each group showed that L. acidophilus NCFM, L. acidophilus

La-14, L. plantarum Lp-115, and L. rhamnosus GG effectively reduced the

colonization of H. pylori. We observed a higher ratio of lymphocyte and

plasma cell infiltration into the lamina propria of the gastric mucosa and

neutrophil infiltration in H. pylori+NCFM+Lp-115 mice. The infiltration of

inflammatory cells in lamina propria of the gastric mucosa was reduced in the
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H. pylori+NCFM+Lp-115 group. Additionally, the expression of IFN-g was

decreased significantly in the NCFM and Lp-115 treated C57BL/6 mice.

Conclusions: L. acidophilus NCFM and L. plantarum Lp-115 can reduce the

adhesion of H. pylori and inhibit the gastric inflammatory response caused by

H. pylori infection.
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1 Introduction

Helicobacter pylori infect over 50% of the population

worldwide, and the World Health Organization (WHO) has listed

H. pylori as a class I carcinogen since 1994 (Hooi et al., 2017; Shah

et al., 2021). H. pylori infection is closely related to the occurrence

and development of various gastrointestinal diseases, such as

chronic gastritis, peptic ulcer, gastric cancer, and gastric mucosa

associated lymphoid tissue lymphoma (Sugano et al., 2015; Liu

et al., 2018; Liou et al., 2020; Robinson and Atherton, 2021).

Currently, the primary method to eradicate H. pylori is a

quadruple therapy based on a proton pump inhibitor, two

antibiotics, and a bismuth agent (Fallone et al., 2016; Chey et al.,

2017). However, the antibiotic resistance rate of H. pylori has

increased, and the side effects of the eradication therapy can be

severe (Savoldi et al., 2018). Therefore, searching for novel and

efficient H. pylori management options has become an urgent aim

(Fallone et al., 2019).

Studies on probiotics and H. pylori have made significant

progress recently, thus, increasingly being used in routine clinics

(Suez et al., 2019; Sousa et al., 2022). Currently, blends of probiotics

are the most widely studied, but little is known about the antagonistic

or synergistic effects of the different probiotic strains (Vieira et al.,

2013; Ouwehand et al., 2018; Simon et al., 2021). TomanageH. pylori

infection, the Maastricht VI/Florence Consensus Report mentioned

that only some probiotics could effectively reduce gastrointestinal

side effects in H. pylori eradication therapy, suggesting strain-specific

efficacy (Malfertheiner et al., 2022). However, the European Society

of Paediatric Gastroenterology and Hepatology later updated the

guidelines. They considered that the existing evidence was insufficient

to support the routine use of single or compound probiotic strains in

treating H. pylori to reduce adverse reactions and improve the

eradication rate (Jones et al., 2017). Therefore, probiotics are

mainly used as an adjunct to H. pylori eradication therapy, and

only a few reports are available for using probiotics as a single

treatment for H. pylori infection, and further investigations

are warranted.

The applications of certain probiotics, such as lactobacilli, fecal

bacteria, Bifidobacterium spp., Saccharomyces spp., and Bacillus

licheniformis, to assist in H. pylori eradication have been

incorporated into H. pylori treatment guidelines (Shi et al., 2019).

These probiotics attenuate the gastrointestinal adverse effects of
02
H. pylori eradication therapy, but whether they can improve H.

pylori eradication rates is controversial (Liu et al., 2018). Meta-

analyses on the efficacy of multiple probiotic strains in treating H.

pylori have shown the most significant effects with lactobacilli (Lu

et al., 2016; McFarland et al., 2016). In related studies of using

lactobacilli for treating H. pylori infection, certain lactobacilli such

as Lactobacillus acidophilus, Lacticaseibacillus rhamnosus,

Lactiplantibacillus plantarum, Lacticaseibacillus paracasei,

Limosilactobacillus reuteri and Lactobacillus delbrueckii subsp.

bulgaricus can effectively manage H. pylori infection (Zhao et al.,

2018; Chen et al., 2019; Yoon et al., 2019; Asgari et al., 2020; Lin

et al., 2020; Dargenio et al., 2021) but underlying mechanisms are

not well explained. However, it has been speculated that lactobacilli

interfere with the adhesion of H. pylori to the mucosa and down-

regulate the immune and inflammatory mediators (Keikha and

Karbalaei, 2021).

In this study, six lactobacilli strains with good acid, bile salt, and

digestive enzyme resistance, combined with good mucosal adhesion

were used in screening experiments to identify probiotics that

inhibit the adhesion and inflammatory response to H. pylori. We

tested the selected probiotics in the H. pylori infected AGS cell line

and mouse models. The results of the cell model experiments

provided a basis for probiotic strain selection for the eradication

of H. pylori in the mouse model.
2 Materials and methods

2.1 Bacterial strains, cell lines and animals

H. pylori P12 and H. pylori P12-GFP strains were provided by

the Max Planck Institute for Infection Biology and H. pylori SS1

(ATCC 43504) (Lee et al., 1997) was provided by the University of

Western Australia (UWA), Australia. H. pylori strains were

cultured on Columbia agar containing 7% sterile defibrinated

sheep blood (Bianzhen, Nanjing, China), 20mg/ml vancomycin

(Meilunbio, Dalian, China), 10mg/ml polymyxin (Meilunbio),

10mg/ml amphotericin B (Meilunbio), 10mg/ml trimethoprim

(Sigma, St. Louis, USA), then placed in an incubator containing

5% O2 and 10% CO2, cultured at 37°C, subcultured once every three

days, and used for the experiment after subculture. The tested

lactobacilli were provided by Danisco China (Shanghai, China):
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1196084
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Shen et al. 10.3389/fcimb.2023.1196084
Lactobacillus acidophilus NCFM (ATCC 7003969), L. acidophilus

La-14 (ATCC SD5212), Lactiplantibacillus plantarum Lp-115

(ATCC SD5209), Lacticaseibacillus paracasei Lpc-37 (ATCC

SD5275), Lacticaseibacillus rhamnosus Lr-32 (ATCC SD5217) and

L. rhamnosus GG (ATCC 53103). After the Gram Staining Kit

(Solarbio, Beijing, China) was used to identify the bacterial

morphology, the lactobacilli were cultured anaerobically in MRS

broth (Solarbio) at 37 °C 48 hours and then subcultured (Figure S1).

The human gastric adenocarcinoma cell line (AGS) was

purchased from the Institute of Biochemistry and Cell Biology of

the Chinese Academy of Sciences (Shanghai, China) and cultured in

RPMI 1640 medium (Thermo Fisher, Waltham, MA, USA)

supplemented with 10% fetal bovine serum at 37°C and 5% CO2

in a humidified incubator.

Fifty male C57BL/6 mice, Specific Pathogen Free (SPF), four

weeks old, were purchased from Zhejiang Vital River Laboratory

Animal Technology Co. Ltd. (Zhejiang, China). All the animals

were housed under standard conditions (SPF grade animal room

with individually ventilated cages; temperature range from 23°C to

25°C, humidity range from 50% to 60%, 12/12 hours light/dark

cycle, food and water were provided ad libitum). The experimental

steps and ethics were approved by the ethics committee of the Fifth

Affiliated Hospital of Zhengzhou University (KY2022002).
2.2 Cytokine profiles quantification
by ELISA

After infection, the culture medium was collected by

centrifugation at 12000x rpm for 5 min to remove cell debris and

bacteria and collect the supernatant. The concentration of

interleukin (IL)-8 and tumor necrosis factor (TNF)-a were

detected by human IL-8 ELISA Kit (Elabscience, Wuhan, China)

and human TNF-a ELISA Kit (Elabscience, Houston, TX, USA)

respectively, by following the guidelines of the manufacturer. All

experiments were performed in triplicate.
2.3 H. pylori and lactobacilli co-infection
model in vitro

H. pylori P12 and lactobacilli were cultured overnight in BHI

(Thermo Fisher) andMRS broth. After centrifugation at 5000 x rpm

for 8 min and 4000 x rpm for 5 min, the supernatant was discarded,

and bacteria were harvested and resuspended in 1 ml serum-free

RPMI 1640 medium.

Overnight cultured AGS cells were co-incubated with lactobacilli

(multiplicity of infection (MOI) = 100) and H. pylori P12 (MOI =

100) for 6h. After the incubation period, the supernatant was

harvested for ELISA and cells were harvested for RNA isolation.
2.4 Adhesion of H. pylori on AGS cell

AGS cells were cultured in two 12 well plates and incubated

with lactobacilli (MOI = 100) and H. pylori P12-GFP (MOI = 100)
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for 6h. At the end of incubation, one plate of the cells was washed

thrice with PBS and photographed by fluorescence and white light.

A urease detection reagent was prepared by adding concentrated

hydrochloric acid into the PBS (pH=7.4) to adjust the solution to

pH=6.8. Urea (Solarbio) and phenol red (Solarbio) were weighed

and added to reach concentrations of 110mmol/L and 10mg/L,

respectively, and then dissolved by vigorously shaking. To the other

12well plates, 1 ml urease detection reagent was added. After 1-7

hours of reaction, 80ml medium was withdrawn to record the

absorbance value at 540nm(Shmuely et al., 2004; Rokka et al.,

2008; Tharmalingam et al., 2014; Yang et al., 2020).
2.5 Quantitative reverse transcription
PCR (qRT-PCR)

AGS cells and mouse gastric mucosal tissue were lysed with

RNAiso plus (TaKaRa, Kyoto, Japan), and gastric mucosal tissue

needed to be assisted by an ultrasonic crusher. According to the

manufacturer’s instructions, cDNA was converted using the

ReverTra Ace qPCR RT Kit (TOYOBO, Shanghai, China). qRT-

PCR was performed using 2×ChamQUniversal SYBR qPCRMaster

Mix (Vazyme, Nanjing, China) in a Roche Lightcycler480II system

based on the manufacturer’s recommendations. Primer sequences

were designed in NCBI Primer-BLAST (Table 1). The relative gene

expression was determined using the 2-DDCt method. All

experiments were repeated thrice.
2.6 Establishing the model of H. pylori
infection and lactobacilli intervention
in mice

SPF C57BL/6 mice (male 4 weeks old) were obtained from

Zhejiang Vital River Laboratory Animal Technology Co., Ltd.

(Zhejiang, China) and fed on Laboratory Rodent Diet 5001. The

mice were randomly divided into 5 groups (Uninfected, H. pylori

SS1, H. pylori SS1+L. acidophilus NCFM, H. pylori SS1+L.

plantarum Lp-115, H. pylori SS1+L. acidophilus NCFM and L.

plantarum Lp-115) of 10 individuals each after one week of

adaptation. The control group was gavaged with PBS, and the

experimental groups were gavaged with H. pylori SS1 (1*109 CFU,

0.2ml/piece) only or combined with the corresponding lactobacilli

(1*109 CFU, 0.2ml/piece) (1:1) or together (1:1:1) once every other

day for 6 weeks (Figure 1A).
2.7 Rapid urease test (RUT)

Mouse gastric mucosa was analyzed for urease activity using the

rapid urease Kit (Sanqiang, Fujian, China) as instructed by the

manufacturer. The color change was determined, when the solution

turns pink or red, the urease test is positive; when it remains yellow,

the urease test is negative.
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2.8 Hematoxylin-eosin (HE) staining and
immunohistochemistry (IHC)

Gastric tissues were fixed with 4% paraformaldehyde,

embedded in paraffin, cut into 4mm sections, and stained by HE

and immunohistochemical methods. The Chronic gastritis

histological grade scale was used to evaluate the samples (Fang

et al., 2018). Five histological changes were graded: H. pylori,

chronic inflammation, activity, atrophy, and intestinal metaplasia.

Each histological change was classified into one of four grades:

none, mild, moderate, and severe. According to the new Sydney

system, the degree of inflammation and lymphocyte infiltration of

gastric tissue after H. pylori infection were evaluated (Kim et al.,

2020; Maluf et al., 2020). Immunohistochemistry for H. pylori was

performed using a Rabbit anti-H. pylori polyclonal antibody (Cell

Marque) (ZSGB, Beijing, China), and the colonies of H. pylori in

mouse gastric mucosa were identified.
2.9 Statistics

All statistical analyses were performed using GraphPad Prism 9

software. During the processing of experimental data, the values

whose deviation from the average value of the same group of data

exceeded three times the standard deviation were considered
Frontiers in Cellular and Infection Microbiology 04
outliers and eliminated. We performed one-way ANOVA on raw

and lg-converted data to compare the multi groups. The Bonferroni

and Tukey tests were conducted to calculate the statistical

significance among the groups. P-value < 0.05 was considered

significant for all statistical analyses.
3 Results

3.1 Six lactobacilli strains inhibit the
adhesion of H. pylori with AGS cells

To compare the effect of the six selected lactobacilli interfering

with H. pylori adhesion, AGS cells were co-infected with H. pylori

P12-GFP and the six lactobacilli strains (MOI=100) respectively for

6 hours. After infection, cells and GFP-positive H. pylori were

measured under fluorescence microscopy. Upon comparative

observation under fluoroscopy, the amount of GFP-positive

H. pylori in the lactobacilli groups was less than in the H. pylori

only infected group. Furthermore, the morphology of AGS cells was

relatively normal in the L. acidophilus NCFM and L. plantarum

Lp-115 treated cells compared with the other lactobacilli treated

cells, indicating less cell stress on the AGS cells compared with other

lactobacilli strains (Figure 2A).
TABLE 1 Primers for the quantification of inflammatory factors in AGS cells and mouse gastric tissue.

Species Gene Primer Nucleotide Sequence(5’-3’)

Human TNF Forward CCCAGGGACCTCTCTCTAATCA

TNF Reverse GCTACAGGCTTGTCACTCGG

Cxcl8 Forward ACTGAGAGTGATTGAGAGTGGAC

Cxcl8 Reverse AACCCTCTGCACCCAGTTTTC

GAPDH Forward GGTATCGTGGAAGGACTCATGAC

GAPDH Reverse ATGCCAGTGAGCTTCCCGTTCAG

Mouse ureA Forward GCTGGTGCGATTGGCTTTA

ureA Reverse GGATAGCGACTTGCACATCGT

ureB Forward GCCCACTTCTACAGAACCGACATAC

ureB Reverse AGGCGATAACGACAACTTCAGGATC

Il10 Forward CCAGGGAGATCCTTTGATGA

Il10 Reverse AACTGGCCACAGTTTTCAGG

Il4 Forward GGTCTCAACCCCCAGCTAGT

Il4 Reverse GCCGATGATCTCTCTCAAGTGAT

Ifng Forward CAGGCCATCAGCAACAACATAAGC

Ifng Reverse AGCTGGTGGACCACTCGGATG

Cxcl15 Forward CGGCAATGAAGCTTCTGTAT

Cxcl15 Reverse CCTTGAAACTCTTTGCCTCA

GAPDH Forward GCTGAGTATGTCGTGGAG

GAPDH Reverse TCTTCTGAGTGGCAGTGAT
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To further quantify the inhibition effect between different

lactobacilli, we used a urease activity assay for the co-infection

plate and recorded the absorbance at 540nm. The absorbance values

of the six intervention groups were decreased to different degrees

from 1 to 7 hours compared with that of the H. pylori infected

group. For further quantification analysis, the absorbance values at

each group’s 7h time point were taken into a bar chart for statistical
Frontiers in Cellular and Infection Microbiology
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analysis. The absorbance values of the seventh hour were

statistically analyzed. The data suggest that samples of

L. acidophilus NCFM, L. acidophilus La-14, L. plantarum Lp-115

and L. rhamnosus GG had significant differences compared

with samples of H. pylori (P<0.05), indicating that these four

lactobacilli strains can effectively reduce the colonization of

H. pylori (Figure 2B).
B

C

A

FIGURE 1

Lactobacillus acidophilus NCFM and Lactiplantibacillus plantarum Lp-115 suppress Helicobacter pylori adhesion in mice. (A) Mice were fed with
H. pylori SS1 only or with L. acidophilus NCFM and/or L. plantarum Lp-115 for 6 weeks. (B) The colonization of H. pylori was identified by immune
histochemistry. Uninfected group; H. pylori group; H. pylori+ NCFM group; H. pylori + Lp-115 group; H. pylori +NCFM+Lp-115 group. (C) The
colonization of H. pylori was identified by the expression of ureA and ureB by qRT-PCR. Mice were coinfected with H. pylori SS1 and L. acidophilus
NCFM and/or L. plantarum Lp-115. The mRNA levels of ureA and ureB were determined as described. Each experiment result shows the mean ±
standard deviation of three independent experiments. * (P< 0.05); **(P<0.01); ***(P<0.001); ns, not significant.
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3.2 Six probiotic strains inhibit H. pylori
induced inflammation in AGS cells

To compare the inhibitory effect between the six probiotic

strains, we performed a co-infection model of H. pylori and the

strains (MOI=100) in AGS cell culture for 6 hours. We analyzed the

mRNA and protein levels of IL-8 (Cxcl8) and TNF-a (TNF) to

determine whether these probiotic strains transcriptionally regulate

the inflammatory markers. The expression of these markers is

commonly altered upon H. pylori infection. Expression of Cxcl8

and TNF mRNA with all six probiotic strains was significantly

reduced compared with the H. pylori infected group (P<0.001). In
Frontiers in Cellular and Infection Microbiology 06
Cxcl8, Lp-115 showed significant difference than other probiotics

except NCFM, while pattern of NCFM was significantly lower than

La-14 and Lpc-37 (P<0.01). The comparison of other probiotics

including La-14, Lpc-37, Lr32 and GG did not show any significant

difference (P>0.01). In TNF, only Lpc-37 was found to have

significant difference than other probiotics in the group

(P<0.01) (Figure 3A).

Consistent with the mRNA results, IL-8 and TNF-a in the cell

supernatant were significantly decreased in the probiotic treatments

compared with the H. pylori-infected group (P<0.001). In IL-8,

NCFM was significantly lower than La-14, while Lp-115 showed

significant difference than the La-14 and Lpc-37 (P<0.01). In
B

A

FIGURE 2

Six lactobacilli strains inhibit the adherence of Helicobacter pylori to AGS cells. (A) Fluorescence microscope images showing the colonization of H.
pylori P12-GFP on AGS cells alone or upon intervention with six lactobacilli: Lactobacillus acidophilus NCFM, L. acidophilus La-14, Lactiplantibacillus
plantarum Lp-115, Lacticaseibacillus paracasei Lpc-37, Lacticaseibacillus rhamnosus Lr-32 and L. rhamnosus GG). (B) Urease activity assay shows
interference with the colonization of H. pylori P12-GFP on AGS cells in 1-7 hours by the six tested probiotic strains. *(P<0.05); **(P<0.01), compared
to H. pylori. ns, not significant.
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TNF-a, the inhibitory effect of the six selected probiotic strains did

not show significant differences (Figure 3B). Combined with the

anti-adhesion results, L. acidophilus NCFM and L. plantarum Lp-

115 had a good effect and less cell stress. Therefore, L. acidophilus

NCFM and L. plantarum Lp-115 were further selected for

validation in the H. pylori infected mouse model.
3.3 L. acidophilus NCFM and L. plantarum
Lp-115 suppress H. pylori colonization
in mice

To further validate whether L. acidophilus NCFM and L.

plantarum Lp-115 alone or in combination can counteract H.

pylori colonization and attenuate gastric inflammation in vivo,

C57BL/6 mice were infected with H. pylori SS1 and co-
Frontiers in Cellular and Infection Microbiology 07
administered L. acidophilus NCFM and L. plantarum Lp-115

with for 6 weeks (Figure 1A). After co-administration the mice

were euthanized, and the gastric tissues were assessed for H. pylori

infection by the rapid urease test (Figure S2). TheH. pylori adhesion

on gastric tissues was then analyzed by immunohistochemistry

(IHC) assays (Figure 1B), which showed that L. acidophilus

NCFM and/or L. plantarum Lp-115 intervention groups had

comparably less H. pylori adhesion than the H. pylori infected

group. To further validate the H. pylori colonization in different

groups, the mRNA expression of ureA and ureB was tested from

gastric tissues of all groups (Figure 1C), which showed that L.

acidophilus NCFM and/or L. plantarum Lp-115 intervention

groups had less expression of ureA and ureB compared with H.

pylori infected group (P<0.001). These results show that L.

acidophilus NCFM and L. plantarum Lp-115 alone or combined

can reduce H. pylori colonization on gastric mucosa in mice.
B

A

FIGURE 3

Inhibitory effects of the six probiotic strains on Helicobacter pylori-induced inflammation in AGS cell line. AGS cells were co-infected with the
probiotic strains: Lactobacillus acidophilus NCFM, L. acidophilus La-14, Lactiplantibacillus plantarum Lp-115, Lacticaseibacillus paracasei Lpc-37,
Lacticaseibacillus rhamnosus Lr-32 and L. rhamnosus GG and H. pylori P12 at a multiplicity of infection (MOI) 100 for 6 hours. (A) The mRNA levels
of Cxcl8 and TNF the cells and (B) the protein concentrations of IL-8 and TNF-a in the supernatant. The results of each experiment are shown as
mean ± standard deviation of three independent experiments. *(P<0.05); **(P<0.01); ***(P<0.001); ****p<0.0001; ns, not significant.
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3.4 L. acidophilus NCFM and L. plantarum
Lp-115 suppress H. pylori induced
inflammation in mice

To further investigate whether L. acidophilus NCFM and L.

plantarum Lp-115 can attenuate H. pylori colonization and gastric

inflammation in vivo, gastric tissues from the five study groups were

analyzed by Hematoxylin-Eosin staining (HE stain). Compared

with the uninfected group, the gastric lamina propria of mice in

the H. pylori infected group showed more lymphocyte, plasma cell,

and neutrophil infiltration in the active phase. Incidentally, the mice

also had local thinning of the mucosal layer, reduction of the glands

propria, and thickening of the muscularis mucosae (Figure 4A).

Compared with the H. pylori group, the inflammatory cells

infiltrating the lamina propria of the gastric mucosa in the H.

pylori + NCFM group, H. pylori + Lp-115 group, and H. pylori

+NCFM+Lp-115 group were reduced to different degrees, which

indicated that L. acidophilus NCFM and L. plantarum Lp-115 could

ameliorate the H. pylori induced gastric inflammation (Figure 4A).

To further verify if NCFM and/or Lp-115 can inhibit H. pylori

induced Th1 type inflammation, the mRNA expression of Il4 (IL-4),

Cxcl15 (CXCL15), Il10 (IL-10), and Ifng (IFN-g) was measured by

qRT-PCR from mouse gastric mucosal tissue. The results showed

that NCFM and Lp-115 reduced the expression of Ifng and

promoted the expression of Il4 induced by H. pylori in C57BL/6

mice. In Il4 expression, the difference between the Lp-115 and H.

pylori groups was the most significant (P<0.001). In Cxcl15, only the

Lp-115 group was significantly different from the H. pylori group

(P<0.01); therefore, the overall anti-inflammatory effect of Lp-115

was more pronounced than that of NCFM. The expression of

Cxcl15 in the group receiving the combination of Lp-115 and

NCFM was not significantly different from that in the H. pylori

group. The expression of Il4 was lower than that in the Lp-115

group (Figure 4B), indicating that the two LAB strains had no

compound effect in improving inflammation caused by H. pylori

infection. In conclusion, NCFM and/or Lp-115 can reduce H. pylori

induced Th1 type inflammation (Ifng expression) in C57BL/6 mice

and tend to transform Th2 type inflammation (Il4 expression).
4 Discussion

Currently, quadruple therapy is the standard treatment for H.

pylori eradication, but it has drawbacks. There is an increasing

incidence of drug resistance and the misuse of antibiotics for H.

pylori eradication can cause gastrointestinal disorders,

gastrointestinal microbiota dysbiosis and other adverse effects

(Hu et al., 2017). Modulation of the gastrointestinal microecology

by microbial agents could represent a novel therapy or adjunct

therapy for the current quadruple treatment. Furthermore, previous

studies have shown that probiotics can modulate immune function,

balance normal gastrointestinal microbiota, and reduce the side

effects of antibiotics (Lu et al., 2016; Wang et al., 2017; Goderska

et al., 2018), but may also inhibit H. pylori adhesion and gastric

inflammation, suggesting beneficial effects. Although probiotics

have advantages in aiding the eradication of H. pylori infection
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during conventional therapy, potential risks still exist. For some

immunocompromised people, some strains of lactobacilli under

certain rare conditions can cause infections (Liong, 2008).

Therefore, selecting safe and suitable probiotic strains to support

H. pylori eradication and management therapy is necessary.

Previous studies have shown that selected strains of lactobacilli

can inhibit adherence of H. pylori to the gastric mucosa (Song et al.,

2019; Zuo et al., 2019). In our study, we screened six probiotic

strains and found that L. acidophilus NCFM and/or L. plantarum

Lp-115 can inhibit H. pylori adhesion in an in vitro AGS cell line

model and in vivo gastric mucosa of C57/BL6 mice, indicating

preclinical evidence of these two strains for potential clinical use.

However, the mechanisms by which NCFM and Lp-115 inhibit H.

pylori colonization remains to be explored. Some studies have

reported that probiotics’ effects are strain specific in inhibiting the

colonization of H. pylori. For example, some Lactobacillus spp. such

as L. acidophilus and L. bulgaricus have a high affinity for gastric

epithelial cells, and they can protect the gastric mucosa by blocking

or inhibiting the adhesion of H. pylori to gastric epithelial cells (de

Klerk et al., 2016; Takeda et al., 2017; Zhao et al., 2018; Song et al.,

2019). Some lactobacilli, such as L. plantarum and Ligilactobacillus

salivarius, cannot compete with H. pylori for the binding site on the

gastric mucosa but inhibit the activity of H. pylori through the

antibacterial properties of metabolites, including Lactic acid and

hydrogen peroxide (de Klerk et al., 2016; Takeda et al., 2017; Zhao

et al., 2018; Song et al., 2019). Therefore, the immune system’s

independent effects of probiotics against H. pylori infection may

include affecting H. pylori gastric adhesive colonization or

inhibiting H. pylori activity through the bacteriostatic properties

of metabolites. These effects and other specific mechanisms need to

be explored further.

H. pylori infection induces inflammation of gastric mucosa and

expression of cytokines such as TNF-a or chemokines like CXCL8

(also known as IL-8) (Panpetch et al., 2016; Zhao et al., 2020; Tang

et al., 2021). Previous studies have shown that L. rhamnosus

GMNL-74 and L. acidophilus GMNL-185 reduce H. pylori

induced gastric inflammation (Chen et al., 2019; Song et al.,

2019). In the current study, we are showing for the first that L.

acidophilus NCFM and/or L. plantarum Lp-115 inhibit H. pylori

P12 induced IL-8 and TNF-a expression in vitro, which is

consistent with previous studies analyzed other L. acidophilus

strains (Ryan et al., 2009; Hwang et al., 2012). Previous studies

have shown that H. pylori SS1 can induce T-helper cell type 1 (Th1)

driven inflammation in C57BL/6 mice and that lactobacilli can

suppress this response and may thus be involved in modulating

Th1/Th2 balance (Boltin, 2016; Asgari et al., 2018; Asgari et al.,

2020). In the H. pylori SS1 infected C57BL/6 mouse model, our

study also confirmed that L. acidophilus NCFM and/or L.

plantarum Lp-115 could inhibit Ifng but increase Il4 expression,

consistent with the previous report that L. acidophilus can turn H.

pylori induced Th1 type inflammation into Th2 type inflammation

in C57BL/6mice(Boltin, 2016). Helper T cells (Th1, Th2) are

essential factors in immunity and the main effector molecules of

Th1 are IFN-g and IL-12, but IL-8 (CXCL15 in mice) may also

contribute to the inflammation. The primary effector molecule of

Th2 mediated inflammation is IL-4, whereas IL-10 may contribute
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to inhibiting Th2 responses. The two kinds of helper T-cells regulate

and inhibit each other by secreting different factors to maintain the

balance of the Th1 and Th2 (Schmitt and Ueno, 2015; Jafarzadeh

et al., 2018; Saravia et al., 2019). Previous studies demonstrated that

lactobacilli strains could balance the Th1/Th2 immune response.

Certain L. plantarum strains can maintain normal intestinal

immune function by stimulating the secretion of cytokines and

regulating the Th1/Th2 balance (Xie et al., 2015; Boltin, 2016; Meng
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et al., 2019). Conversely, one study showed that L. rhamnosus GG

could increase the number of CD4+ T lymphocytes, assist in

differentiating Th cells and enhance Th1 immune responses (Shi

et al., 2020). In this study, the intervention of L. acidophilus NCFM

and L. plantarum Lp-115 might alleviateH. pylori infection induced

host inflammatory response by down regulating local Th1 immune

response in the gastric mucosa (inhibiting proinflammatory factor

IFN-g) while promoting Th2 response to produce the anti-Th1
B

A

FIGURE 4

Lactobacillus acidophilus NCFM and Lactiplantibacillus plantarum Lp-115 suppress Helicobacter pylori inflammation in mice. (A) The inflammation
of H. pylori was identified by HE. Uninfected group; H. pylori group; H. pylori+ NCFM group; H. pylori + Lp-115 group; H. pylori +NCFM+Lp-115
group. (B) The mRNA expression level of Il4, Cxcl15, Il10, and Ifng in each group. ns(P≥0.05); *(P<0.05); **(P<0.01); ***(P<0.001); ****(P<0.0001);
ns, not significant.
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cytokine IL-4. Thus, L. acidophilusNCFM and L. plantarum Lp-115

may play an essential role in promoting the differentiation of T cells

into Th2 cells to balance H. pylori induced Th1 inflammation.

Although the focus of the study was not safety related, it shows

that while the tested strains have different efficacy, they are not

negatively affecting the AGS cell line or the H. pylori infected mice,

which is in line with earlier reports (Daniel et al., 2006; Morovic

et al., 2017). Thus, their choice of probiotic strain and rational

application must be seriously considered. Based on the classification

of risk factors posed by individuals, the safest, most effective, and

most affordable lactobacilli to manage H. pylori infection should be

selected for further investigation.

In conclusion, probiotic health benefits are strain-specific; thus,

data specific for strain and health benefits should be investigated.

After screening several strains, we chose two safe lactobacilli

candidate strains: L. acidophilus NCFM and L. plantarum Lp-115,

which inhibit H. pylori adhesion and host inflammatory responses

in cell line and mouse models.H. pylori has a high infection rate and

high prevalence of drug resistance worldwide. The current study

presented a unique value in managing H. pylori in vitro and in vivo.

The clinical intervention study with the two probiotic strains or

their combination is warranted.
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