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This study aimed to explore the epidemic, clinical characteristics, and molecular

and virulence attributes of Klebsiella pneumoniae serotype K54 (K54-Kp). A

retrospective study was conducted on 328 strains of Klebsiella pneumoniae

screened in a Chinese hospital from January 2016 to December 2019. The

virulence genes and antibiotic resistance genes (ARGs) were detected by PCR,

and a drug sensitivity test was adopted to detect drug resistance. Multilocus

sequence typing (MLST) and PFGE were performed to determine the clonal

correlation between isolates. Biofilm formation assay, serum complement-

mediated killing, and Galleria mellonella infection were used to characterize

the virulence potential. Our results showed that thirty strains of K54-Kp were

screened from 328 strains of bacteria, with an annual detection rate of 2.29%.

K54-Kp had a high resistance rate to antibiotics commonly used in the clinic, and

patients with hepatobiliary diseases were prone to K54-Kp infection. MLST typing

showed 10 sequence typing, mainly ST29 (11/30), which concentrated in the B2

cluster. K54-Kp primarily carried virulence genes of aerobactin, silS, allS, wcaG,

wabG, and mrkD, among which the terW gene was closely related to ST29

(p<0.05). The strains infected by the bloodstream had strong biofilm formation

ability (p<0.05). Most strains were sensitive to serum. Still, the virulence of pLVPK-

like virulence plasmid in ST29-K54 Klebsiella pneumoniae was lower than that of

ST11 type and NTUH-K2044 in the Galleria mellonella model. Therefore, these

findings supply a foundation to roundly comprehend K54-Kp, and clinicians

should strengthen supervision and attention.
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Introduction

As the principal cause of hospital-acquired pneumoniae leading

to multiple organ failure and even death, Klebsiella pneumoniae

(Kp) has become an increasingly common and highly concerned

pathogen in recent years (Patel et al., 2014; Russo and Marr, 2019).

With the emergence of invasive and metastatic diseases and

challenging clinical management caused by multi-drug resistance

(MDR), people have gradually realized that Klebsiella pneumoniae

with high virulence (HvKP) induces the infection even though

MDR occurs based on hypervirulence (Karampatakis et al., 2023).

This is a significant threat to patients and a difficult challenge

to doctors.

HvKp carries multiple virulence factors, including capsule,

lipopolysaccharide, and PLVKP-like virulence plasmid (rmpA,

rmpA2, iutA, terW, and silS), resulting in high mortality in mice

(Liu et al., 2020; Li et al., 2021). As the main virulence factor of Kp,

capsules have been identified as various serotypes. Ten common

serotypes belong to HvKp, including K1, K2, K5, K16, K54, K57,

and so on, and these strains are characterized by their ability to

produce capsular polysaccharide (CPS), supporting bacterial killing

and elimination from the human immune system, such as

complement and neutrophils (Hsu et al., 2016; Su et al., 2020).

The predominant strains of HvKP are K1 and K2, with K57

following closely. Conversely, the occurrence of K54 is

infrequently reported worldwide, especially in China.

Furthermore, HvKP is usually hypervirulent. K1-Kp can delay the

apoptosis of human neutrophils, and K2-Kp has a strong

antiserum-killing ability in mouse models with LD50 ≤ 103 CFU

(Lee et al., 2017; Wang et al., 2021). K57-Kp has a solid antiserum-

killing ability (Wei et al., 2021). Turton’s study has indicated that

the virulence of the K54-Kp strain ST29 is parallel to that of the

ST86 strain, with high virulence belonging to K2-Kp (Turton et al.,

2018). Previous studies on K54-Kp are only some case reports

(Chuang et al., 2013; Iwasaki et al., 2017). Due to the limited

number of cases, a comprehensive understanding of the

epidemiology, clinical characteristics, and molecular and virulence

features of K54-Kp remains elusive.

Furthermore, our initial research indicated that K54-Kp

possesses a remarkable ability to form biofilms, piquing our

interest in this study. Hence, through clinical data, drug

susceptibility profiles, PCR amplification of virulence and

resistance genes, and virulence phenotype experiments, we aim to

systematically uncover the clinical and microbial attributes,

molecular and virulence characteristics, and the specific molecular

traits of this population.
Materials and methods

Sample collection and susceptibility
identification

A total of 328 Kp strains isolated from the First Affiliated

Hospital of Nanchang University in Nanchang City, Jiangxi
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Province, China, were screened between January 2016 and

December 2019. Kp was identified using an automated VITEK-II

compact system (bioMerieux, Marcy I’Etoile, France). Thirty of the

strains were identified as K54-Kp by polymerase chain reaction

(PCR). Retrospectively acquired clinical information on the

aforementioned experimental strains of K54-kp comprised

demographic information, laboratory indicators, traumatic and

primary surgery, treatment with antibiotics, and prognosis.

Likewise, medical data on 30 non-K54-KP strains with K54-kP-

like sex and age distributions was gathered. The VITEK-2

automated platform (bioMe’rieux, Marcy l’Etoile, France) was

used to test the susceptibility of the K. pneumoniae clinical

isolates to clinically often used antimicrobial agents in accordance

with the manufacturer’s recommendations. Antimicrobial

susceptibility tests were conducted using microdilution and were

interpreted based on the guidelines provided by the 2020 Clinical

and Laboratory Standards Institute (CLSI). The antimicrobials

evaluated included ampicillin/sulbactam, piperacillin/tazobactam,

cefazolin, ceftazidime, ceftriaxone, cefepime, amikacin, gentamicin,

levofloxacin, imipenem, meropenem, cotrimoxazole, tigecycline,

and polymyxin(ug/ml,TargetMOI, America).

Salmonella H9812 was detected by pulsed-field gel

electrophoresis (PFGE). NTUH-k2044 and ATCC 700603 were

used for virulence tests.
String test

A string test was conducted on a single, freshly-grown colony

that had been cultured on an agar plate overnight at 37°C, as

described by (Eisenmenger et al., 2021). The inoculation loop was

pulled out more than twice. A traction length greater than 5 mm on

the sticky loop was considered indicative of a positive hypermucous

phenotype (HM).
Quantification of CPS

The uronic acid-containing CPS content of K54-Kp stains was

quantified according to the previously described m-hydroxyphenyl

colorimetric method (Mojica and Biofouling, 2010). In simpler

terms, a sample from the overnight bacterial culture was taken

and resuspended in 0.5 mL of water. This was then vortexed with

1.2 mL of a sodium tetraborate-concentrated sulfuric acid solution

in an ice-water bath. The mixture was boiled for 5 minutes, after

which 20 µL of 0.15% 3-hydroxybiphenol solution was added. Next,

200 µL of this mixture was transferred to a 96-well plate, and its

absorbance was measured at 540 nm. Concurrently, six additional

EP tubes were prepared. Each tube received 500 µL of water and

glucuronic acid solution. The same procedure that was applied to

the bacterial sample was repeated for these tubes to create a

standard curve. To determine the polysaccharide content, the OD

value of the tested strain was plugged into the formula derived from

the standard curve, divided by the strain’s concentration. This

measurement was performed in triplicate.
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PCR detection

The DNA of the strains was extracted by boiling method, and

the virulence genes and drug resistance genes were amplified by

PCR. The following virulence-related genes and antibiotic

resistance genes (ARGs) were detected by PCR using the

previously designed primers (Guo et al., 2017; Yu et al., 2018;

Chen et al., 2022): rmpA, rmpA2, aerobactin, iutA, iucA, iroN,

wabG, wcaG, mrkD, allS, silS, and terW, extended-spectrum b-
lactamase (ESBL) genes (SHV, CTX-M, and TEM), and

carbapenem genes (KPC, NDM, VIM, and OXA-48). The

sequences of primers used in this study are summarized in Table S1.
Multilocus sequence typing

MLST typing was conducted on all strains as per the protocol

described by Chen et al. (Chen et al., 2022). Seven housekeeping

genes of Kp (gapA, infB, mdh, pgi, rpoB, phoE, and tonB) were

sourced from the PubMLST website (https://bigsdb.pasteur.fr/

klebsiella/) for amplification and sequencing purposes. Alleles and

STs were designated using the Kp MLST database (http://

bigsdb.web.pasteur.fr/klebsiella/klebsiella.html). The sequences for

the housekeeping gene primers are detailed in Table S2.
PFGE

To assess the homology among K54-Kp strains, PFGE was

carried out on all strains. Following the protocol described in

previous literature, all isolates were digested with XbaI at 37°C for

12 hours (Chen et al., 2022). The PFGE dendrogram was analyzed

using NTSYS software to ascertain the relatedness of these isolates.

Genetic relatedness was interpreted using a cluster cutoff line set at

85% similarity.
S1-PFGE and southern blot hybridization

To further investigate whether the virulence and drug-

resistance genes were situated on the plasmid and to determine

their fragment sizes, we treated the entire chromosomal DNA of the

K54-Kp strain with S1 nuclease (Takara, Otsu, Japan) and

subsequently transferred the DNA fragments onto a nylon

membrane. To ascertain if the two genes were present on the

same plasmid, indicating a fusion plasmid, we hybridized with

digoxin-labeled rmpA2 and KPC-specific probes. The fragments

were then detected using an NBT/BCIP color detection kit (Roche,

Mannheim, Germany) as described by Xu et al. (Xu et al., 2019).
Biofilm formation assay

The crystal violet method was used to measure biofilm at 37°C

as previously described (Su et al., 2020), and the absorbance was
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determined at a wavelength of 540 nm.We used the average value of

the broth control group plus three times the standard deviation (x ±

3s) as the negative control value (Ac). The test data were classified

explicitly as strongly positive (+++: 4×Ac<A), positive (++: 2×Ac<A

≤ 4×Ac), weakly positive (+: Ac<A ≤ 2×Ac), and negative (-: A≤Ac).
Serum killing assay

Serum killing assay was performed as described previously (Liu

et al., 2017). Briefly, serum was separated from healthy people,

packaged, and stored at -80°C. Each strain was tested at least three

times. The results were expressed as microbial counts, and the

responses regarding viable counts were graded from 1 to 6. A strain

was defined as serum sensitive (S) at grades 1–2, intermediately (I)

susceptible at grades 3–4, and resistant (R) at grades 5–6.
Galleria mellonella infection models

The virulence level of the strain was determined by using 300

mg of robust milk yellow Galleria mellonella larvae purchased from

Tianjin Huiyu De Biotechnology Company. As mentioned above

(Stiel et al., 2021), 3 mL of bacteria cultured in the logarithmic

growth phase were centrifuged and precipitated, and 108 CFU/mL

of bacterial suspensions were prepared after PBS resuspension

precipitation. Next, 10 L (1×106CFU) of the above bacterial

suspension was injected into the Galleria mellonella and

incubated in an incubator at 37°C for 72 h, and the death was

recorded every 12 h. Three parallel experiments were performed.

Finally, a survival curve was drawn to show the death of Galleria

mellonella larvae.
Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics

Software (ver 24.0) and GraphPad Prism Software (ver 9.0). Data

were presented as medians and quartiles or means ± standard

deviation. Differences between patient data were analyzed by Chi-

square tests or Fisher’s exact test. All tests were two-tailed, and a p-

value <0.05 was considered statistically significant.
Results

Clinical characteristics and antimicrobial
susceptibility of K54-Kp strains

From 2016 to 2019, 30 strains of K54-Kp were detected out of

328 strains of Kp collected in our hospital. The total detection rate

was 9.14%, and the average annual detection rate was 2.29%,

including 5.8% (4/68)in 2016, 7.6% (5/65) in 2017, 10.8% (9/90)

in 2018, and 11.4%(12/105)in 2019. The correlation between the

location of clinical departments, the sources of the specimens, and
frontiersin.org
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the annual prevalence of K54-Kp is depicted in Figure 1. The ICU

ward was the primary source of the K54-Kp detection rate’s

progressive rise. In addition, we also analyzed the differences in

clinical characteristics between K54-Kp patients and non-K54-Kp

patients. Upon comparing clinical data, there was no significant

difference in general data, invasive procedures, medication, and

prognosis between K54-KP and non-K54-KP groups (p>0.05).

However, univariate analysis revealed that patients with

hepatobiliary diseases were more susceptible to K54-Kp infection

(p<0.05) (Table 1).

The resistance rate of K54-Kp to cephalosporins, carbapenems,

b-lactamases, and quinolones was increased yearly, with the most

significant increase detected in 2018-2019 (Figure 2). In contrast, it

was susceptible in 2016-2017. The compounds sulfamethoxazole,

tobramycin, and polymyxin showed an upward trend in 2016-2018
Frontiers in Cellular and Infection Microbiology 04
and decreased significantly in 2018-2019. They were all sensitive to

tigecycline in 2016-2019.
The results of the string test and
quantification of CPS

Analysis revealed that 11 strains (36.67%) tested positive and

displayed an HMKP phenotype, with all of them carrying the

rmpA/rmpA2 genes (Figure 3A). The string test indicated that

36.67% (11 out of 30) of the K54-KP strains tested positive for the

HMKP phenotype, and each of these strains contained the rmpA/

rmpA2 genes, which are regulators of the mucous phenotype.

Notably, some strains possessed the rmpA/rmpA2 gene but did

not exhibit the HMKP phenotype. These mucous phenotypic
A B

FIGURE 1

Distribution of strain K54-Kp by department and year (A) and by specimen and year (B).
TABLE 1 Comparison of clinical infection characteristics between K54-Kp and non-K54-Kp patients.

Item K54-Kp
n=30

Non-K54-Kp
n=30

P

Male (%) 23 (76.70) 24 (80.00) 1.000

Female (%) 7 (23.33) 6 (20.00) 1.000

Stay in ICU (%) 15 (50.00) 22 (73.30) 0.110

Age (year) 60.40±13.14 58.07±14.89 0.522

Hospitalization days before infection (day) 13.87±19.66 11.67±11.26 0.231

Transfer to the department (%) 5 (16.67) 5 (16.67) 1.000

Leukocytosis 15 (50) 16 (53.33) 1.000

Neutrophilia 15 (50) 18 (60) 0.604

Underlying disease

Chronic pulmonary disease (%) 1 (3.33) 1 (3.33) 1.000

Cardiovascular disease (%) 13 (43.33) 14 (46.67) 1.000

Hepatobiliary diseases (%) 7 (23.30) 0 0.011

Chronic nephropathy (%) 1 (3.33) 1 (3.33) 1.000

Diabetes mellitus (%) 7 (23.30) 5 (16.67) 0.748

Nervous system diseases (%) 4 (13.30) 4 (13.30) 1.000

(Continued)
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regulatory genes can influence capsule production. As anticipated,

the CPS production of K54-KP was significantly lower than that of

NTUH-K2044, but it was higher than ATCC700603 (Figure 3B). In

comparison, there was no significant difference in CPS content

between ST29 and non-ST29 strains (p>0.05).
Frontiers in Cellular and Infection Microbiology 05
Epidemiological features

In MLST typing, K54-Kp isolates spread widely. A total of 10

STs were detected, and 36.6% (11/30) of them belonged to ST29,

which was the main ST. Other STs included ST11 (7/30, 23.3%),
TABLE 1 Continued

Item K54-Kp
n=30

Non-K54-Kp
n=30

P

Hematological diseases (%) 0 0 1.000

Tumor diseases (%) 3 (10.00) 0 0.237

Invasive operation

Mechanical ventilation (%) 13 (43.33) 17 (56.67) 0.439

Tracheal intubation (%) 9 (30.00) 15 (50.00) 0.187

Tracheotomy (%) 10 (33.33) 11 (36.67) 1.000

Central venous catheterization (%) 16 (53.33) 18 (60.00) 0.602

Drainage (%) 18 (60.00) 12 (40.00) 0.121

Nasogastric tube (%) 15 (50.00) 14 (46.67) 0.796

Ureter (%) 24 (80.00) 22 (73.30) 0.542

Operation and traumatic operation (%) 10 (33.33) 12 (40.00) 0.592

Empirical antibiotics received

Cephalosporin (%) 7 (23.30) 9 (30.00) 0.770

Quinolone (%) 4 (13.30) 3 (10.00) 1.000

Carbapenems (%) 10 (33.33) 14 (46.67) 0.429

b-lactamase inhibitor (%) 16 (53.33) 20 (66.67) 0.429

Aminoglycoside (%) 7 (23.30) 3 (10.00) 0.299

Glycopeptide (%) 3 (10.00) 7 (23.33) 0.299

prognosis (Good %) 14 (46.67) 18 (60.00) 0.301
FIGURE 2

Antibiotic resistance rate of K54-Kp strains.
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ST156 (4/30, 13.3%), ST4959 (2/30, 6.7%), ST23 (1/30, 3.3%),

ST105 (1/30, 3.3%), ST485 (1/30, 3.3%), ST685 (1/30, 3.3%),

ST3200 (1/30, 3.3%), and ST4382 (1/30, 3.3%) (Figure 4).

The PFGE-based fingerprints of the K54-Kp isolates displayed

eight different clusters (named A-H) using a similarity cutoff value

of 85% (Figure 4), including cluster A (23.3%), cluster B (36.7%),

cluster C (3.33%), cluster D (13.3%), cluster E (6.7%), cluster F

(3.33%), cluster G (3.33%), and cluster H (3.33%). ST11 strains of

K54-Kp were primarily distributed in cluster A, and ST29 stains

were in cluster B2.
Molecular genetic characteristics of K54-
Kp strains

To describe the molecular characteristics of K54-Kp, we

examined the distribution of related virulence and drug-resistance

genes. In the present study, the expressions of aerobactin, silS, allS,

wcaG, wabG, and mrkD genes all exceeded 80%, among which

wabG and mrkD genes existed in all strains (Figure 5). The
Frontiers in Cellular and Infection Microbiology 06
proportions of other genes of icuA, iroN, allS, and peg-344 were

36.67%, 66.67%, 90%, and 70%, respectively. Compared with non-

ST29 K54-Kp, the terW gene was closely related to ST29 (p<0.05)

(Table 2). Moreover, the distribution of drug-resistance genes was

shown in Table 3 (Behzadi et al., 2020). Among all the strains,

8strainsharbored the blaKPC and blaNDM, and 8strainscarried the

rmpA2 and KPC genes.
S1-PFGE and southern blot

In prior research, eight strains are identified to carry both the

rmpA2 and KPC genes. To ascertain whether these genes were

located on plasmids and to determine their fragment sizes, we

conducted S1-PFGE and a southern blot, as illustrated in Figure 6.

The S1-PFGE results demonstrated that all strains harbored

between 2 to 4 plasmids of varying sizes, ranging from 54.7 kb to

244.4 kb. The southern blot pinpointed the locations of the rmpA2

and KPC genes within the K54-KP strains. Both the rmpA2 and

KPC genes were detected in the Kp16(ST29-K54) and Kp10(ST11-
FIGURE 4

Clonal analysis of k54-Kp strains.
A B

FIGURE 3

Positive result of a String test (A). Quantification of CPS production of different Kp strains (B). CPS, capsular polysaccharide. *p<0.05.
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K54) strains. However, they resided on separate plasmids,

suggesting that these two strains contained at least two distinct

plasmids, rather than a single fusion plasmid.
Biofilm formation

The biofilm formation ability of the K54-Kp strains differed

greatly, but the overall ability was strong. The value of A540 ranged

from 0.150 to 2.253, with a median of 0.384. Moreover, 27 (90%)
Frontiers in Cellular and Infection Microbiology 07
strains could produce biofilm, with an average value of 0.603 ±

0.522 and a negative control range of 0.105-0.279, while three (10%)

strains were negative. Among the biofilm-forming strains, three

strains (3/27, 11.1%) were strongly positive, 14 strains (14/27,

51.9%) were positive, and 10 strains (10/27, 37.0%) were weakly

positive. There was little difference in biofilm formation between

ST29 and non-ST29 strains (p>0.05). Interestingly, we found that

90.9%(10/11) of the strains in bloodstream infection samples could

form a biofilm, significantly different from those non-bloodstream

infections (p=0.034) (Figures 5, 7A).
TABLE 2 Comparison of virulence genes between ST29 and non-ST29 type of K54-Kp.

Virulence gene K54-Kp(n=30) P

ST29(n=11) non-ST29(n=19)

rmpA 9 11 0.246

rmpA2 9 9 0.121

aerobactin 9 16 1.000

iutA 10 11 0.100

iucA 5 7 0.712

silS 9 15 1.000

terW 7 3 0.015

iroN 6 14 0.425

wcaG 11 15 0.268

peg-344 9 12 0.419

wabG 11 19 –

mrkD 11 19 –

allS 10 17 1.000
FIGURE 5

K54-Kp strains virulence, drug resistance gene carrying rate (%), and biofilm and serum resistance results.+++: strongly positive;++: positive; +:
weakly positive; -: negative. SR, Serum resistance.
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Serum killing resistance and Galleria
mellonella model

We showed the results of serum resistance of K54-Kp

(Figures 5, 7B, C). The serum resistance of 30 K54-Kp isolates

was between NTUH-K2044 and ATCC700603, which was

statistically significant (p<0.05In the Galleria mellonella

experiment, strains ST29 and ST11 from the K54-KP group were

selected for comparison with NTUH-K2044 and ATCC700603. A

survival curve analysis was conducted using these strains alongside

PBS, as depicted in Figure 7D. Six strains of K54-Kp had the same

virulence as NTUH-K2044, and four had lower than ATCC700603.
Discussion

Kp has attracted much attention recently due to its clinical

invasion and drug resistance. It reportedly accounts for 86% of

clinical infections, which has become the chief pathogen of

healthcare-related infections (Guo et al., 2017; Liao et al., 2022).

As a member of HvKP, K54-Kp should have some of the above-

related characteristics. Therefore, we aimed to describe its

molecular and clinical infection characteristics comprehensively.

As expected, K54-Kp was not a dominant group, with a low

prevalence rate, which was in line with the results of Liao’s (Liao

et al., 2022). Our findings indicated that fewer strains were detected
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in 2016 and 2017. However, there was a gradual increase in 2018

and 2019, suggesting that the prevalence of K54-KP strains has been

rising over the years. This trend indicates that they may become

even more widespread in the future. Furthermore, while the main

sources of the specimens in 2018 were from the neurosurgical ward

and from the ICU ward in 2019, sputum remained the dominant

specimen type. In 2018, the strains especially came from sputum in

neurosurgery wards, and in 2019, they were primarily from ICU

wards, where sputum was still the majority. K1/K2 is deemed to be

closely related to community infections(Siu et al., 2012).

In contrast, our research found that K54-Kp was more from

nosocomial infection (73.33%). Univariate analysis revealed that

patients with hepatobiliary diseases were more susceptible to K54-

KP infection. When patients with primary hepatobiliary disorders

experience a high fever accompanied by liver pain, it is essential to

consider the possibility of a liver abscess caused by K54-Kp as the

primary diagnosis. Therefore, clinicians should be vigilant and

monitor these patients closely.

The drug sensitivity results revealed a high resistance rate of

K54-Kp to common clinical antibiotics. The trend of drug

resistance increased significantly over the years, particularly

during 2017-2018, and peaked in 2018-2019. Additionally, 66.67%

of the strains in this study were classified as MDR-Kp, with CRKP

accounting for more than half of these cases. The emergence of

MDR-Kp with high drug resistance poses a significant challenge

and makes K54-Kp the next “superbacterium,” leading to greater
FIGURE 6

S1-PFGE and Southern blot images of some strains of K54-Kp. Both rmpA2 and KPC genes were detected in the Kp10 and Kp16 strain plasmid.
TABLE 3 K54-Kp drug resistance gene carrying rate.

Carbapenemase genes ESBL genes

blaKPC 20 (66.67%) blaSHV 30 (100%)

blaNDM 8 (26.67%) blaTEM 14 (46.7%)

blaVIM 8 (26.67%) blaCTX-M 24 (80%)

blaOXA-48 0
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clinical drug resistance and more complicated management

(Algammal et al., 2023). Moreover, morbidity and mortality rates

are expected to rise considerably.

The string test is a widely used approach to identify strains with

HM. In the present study, only 36.7% of strains were positive, while

all of them contained the rmpA/rmpA2 gene, which could facilitate

the production of CPS and perform a high-viscosity phenotype.

However, certain strains that carried the mentioned genes did not

exhibit high viscosity characteristics, indicating that solely relying

on the string test results is insufficient to determine whether a strain

is HvKP (Sheng et al., 2022). Additionally, genes such as iutA, terW,

and silS also collectively contribute to the high-viscosity phenotype

of HvKp (Li R. et al., 2020). The positive rate of the string test

aligned with the results from the quantification of CPS, which is

indicative of Kp virulence. When compared to NTUH-K2044, the

CPS content of the K54-Kp isolate was found to be lower. This

observation was unexpected for us, especially considering that

wabG and wcaG, which code for lipopolysaccharide, had high

prevalence rates (100% and 86.7%, respectively). These genes can

jointly regulate capsule formation with rmpA (Zheng et al., 2018).

Much like the rmpA mutant, capsule production is potentially

linked to the CPS promoter. Furthermore, removing rmpA results

in reduced promoter expression (Cheng et al., 2010), though the

specific underlying mechanism requires further investigation.

MLST is a molecular typing tool used to trace the origin of

bacteria owing to its good repeatability and high resolution. The

well-known K1-Kp is ST23, K2-Kp mainly includes ST65 and ST86,

and K57-Kp is ST412(Liu et al., 2021; Nakamura et al., 2021; Shao

et al., 2021). At present, domestic and foreign literature reports on

K54-Kp are mostly ST29. In our present study, ST29 was still
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dominant, mainly from blood specimens (7/11), which was rarely

reported in the previous literature. Afterward, PFGE results showed

that ST29 K54-Kp was concentrated in the B2 cluster, mainly

distributed in neurosurgery in 2018, pointing out that there might

be a clonal transmission of K5-Kp isolates in our hospital.

Numerous virulence genes, including pLVPK-like virulence

genes (rmpA, rmpA2, iucA, iutA, iroN, etc.), occurred in K54-Kp

strains. WabG, mrkD, aerobactin, and wcaG were the most, while

the terW gene chiefly existed in ST29(p=0.015). Moreover, Alka

Hasani has also found that the wcaG gene, associated with capsular

polysaccharide synthesis, significantly correlates with K54-Kp

isolates (p= 0.001) (Hasani et al., 2020). K54-Kp also took along

diverse drug-resistance genes. The detection of drug-resistance

genes agreed with the results of drug sensitivity, which sustains

the argument that multiple drug-resistance genes jointly involved

the drug-resistance characteristics of bacteria (Su et al., 2020). As a

pivotal gene of carbapenem resistance, KPC enzymes were the most

prevalent. Remarkably, we did not detect any K54 strains producing

the OXA-48 gene. OXA-48, a class D carbapenemase enzyme, is

regarded as the predominant carbapenemase gene in hvKp strains

in Europe, whereas the KPC gene takes precedence in China (Liapis

et al., 2014). The primary Kp strain carrying the OXA-48 gene is

identified as the CG101 (ST 101) type in 38 out of 2,298 cases, as

cited by Palmieri M et al. (Palmieri et al., 2020). The absence of the

blaOXA-48 gene in our findings might be attributed to the

geographical distribution trends of OXA-48 (Pitout et al., 2019).

Furthermore, Kp strains producing the OXA-48 gene typically

exhibit a lower resistance level to drugs compared to those with

the KPC and ESBLs genes. However, in China, there’s a higher

prevalence of resistance to meropenem and imipenem.
A B

DC

FIGURE 7

Comparison of biofilm blood flow infection group (group A) and non-blood flow infection group (group B). *p<0.05 (A). Serum resistance test results
of K54-KP (B, C). “S” means sensitive, “I” means intermediately, and “R” means resistant. Survival curve of Galleria mellonella infection (D). Kp1 was
ST11-K54, Kp17 was ST29-K54.
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A notable observation was the coexistence of virulence and

resistance genes. The hybridization data from S1-PFGE and

southern blot revealed distinct molecular weights for the virulent

and drug-resistant plasmids in the K54-Kp strains. We sought to

discern if the plasmids containing both the rmpA2 and KPC genes

were identical. Southern blot results indicated that while these

strains housed heterozygous plasmids carrying both virulence and

drug resistance genes, no fusion plasmid was present. According to

Xie et al. (Xie et al., 2020), such heterozygous plasmids might

encode both hazardous and resistant traits by amalgamating

structural sections from two separate plasmids. Li et al. (Li D.

et al., 2020) have detailed that two homologous regions encoding

the mobile element shared by the plasmid and the Group II intron

reverse transcriptase can recombine to form the Kp hybrid plasmid.

Biofilms serve as a formidable defense mechanism for sessile

bacteria. Strains of K54-Kp involved in bloodstream infections are

predisposed to biofilm formation, which results in enhanced

virulence. Given that MDR-Kp strains can potentially form

biofilms, we delved into their drug susceptibility profiles for

deeper insights (James et al., 2019). Our findings revealed that

while most strains were susceptible to carbapenem antibiotics, they

demonstrated resistance to extended-spectrum b-lactam antibiotics.

Notably, there was a significant propensity for ESBLs-Kp to form

biofilms in bloodstream infections (P<0.05). The heightened

biofilm-forming ability among K54-Kp strains derived from

sources causing bloodstream infections not only facilitates the

spread of resistance genes among bacteria but also augments the

adaptability and survival of K54-Kp in hostile environments. In

serum complement-mediated killing experiments, only 16.7% of the

strains showed resistance to serum complement, all of which were

resistant to carbapenem in sputum. In contrast to MDR bacteria,

which typically have great adaptability or low virulence,

carbapenem-sensit ive strains display no resistance to

complement-mediated death (Hennequin and Robin, 2016).

The virulence of ST29-K54Kp was lower than that of ST11 type

and NTUH-K2044 in the Galleria mellonella model, contrary to

Shao’s research(Shao C. et al., 2022). To further clarify, we analyzed

further analysis the virulence genes carried by ST29-K54. The ST29-

K54 was discovered to be more dominant in carrying the rmpA2,

wcaG, and aerobactin genes (p<0.05), as opposed to the rmpA, iutA,

and iroN genes. This finding could indicate that the strain’s gene-

environment inhibited or hindered the expression of virulence

genes, and the detailed mechanism requires further investigation.

Additionally, in the Galleria mellonella model, the strains with

positive biofilm development ability and serum resistance did not

exhibit correspondingly high pathogenicity, which may also be

associated with environmental factors of the strains, as well as the

patient’s primary diseases, the number of complications, and the

standard antibiotic treatment.
Conclusion

In conclusion, our study described the overall situation of K54-

Kp in a Chinese-affiliated hospital. To our knowledge, this is the
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first systematic report of K54-Kp. K54-Kp showed a gradually

increasing detection rate, highly invasive and pathogenic, and

high biofilm formation ability of bloodstream infection strains.

Furthermore, the prevalence of MDR-K54 Kp and the

development of resistance mechanisms are triggering a global

crisis. Therefore, supervision and attention should be

strengthened in medical work. However, there are certain

restrictions. To begin with, the quantity of samples should be

enhanced so as to more extensively and completely depict the

K54-KP characteristics. In addition, WGS sequencing need to be

conducted with the aim to comprehend the strain’s genomic data

when exploring the covert transmission of virulence plasmid in

ST29-K54 kp. In-depth research should also be conducted on the

mechanism of covert transmission of virulence plasmids, including

whether or not it is connected to the expression of the genes

contained by these plasmids (detection of plasmid copy number).
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