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Numerous studies have demonstrated that gut microbiota plays an important

role in the development and treatment of different cardiovascular diseases,

including hypertension, heart failure, myocardial infarction, arrhythmia, and

atherosclerosis. Furthermore, evidence from recent studies has shown that gut

microbiota contributes to the development of myocarditis. Myocarditis is an

inflammatory disease that often results in myocardial damage. Myocarditis is a

common cause of sudden cardiac death in young adults. The incidence of

myocarditis and its associated dilated cardiomyopathy has been increasing

yearly. Myocarditis has gained significant attention on social media due to its

association with both COVID-19 and COVID-19 vaccinations. However, the

current therapeutic options for myocarditis are limited. In addition, little is

known about the potential therapeutic targets of myocarditis. In this study, we

review (1) the evidence on the gut-heart axis, (2) the crosslink between gut

microbiota and the immune system, (3) the association between myocarditis and

the immune system, (4) the impact of gut microbiota and its metabolites on

myocarditis, (5) current strategies for modulating gut microbiota, (6) challenges

and future directions for targeted gut microbiota in the treatment of myocarditis.

The approach of targeting the gut microbiota in myocarditis is still in its infancy,

and this is the study to explore the gut microbiota-immune system-myocarditis

axis. Our findings are expected to pave the way for the use of gut microbiota as a

potential therapeutic target in the treatment of myocarditis.
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1 Introduction

Myocarditis is an inflammatory disease, characterized by the

infiltration of inflammatory cells and deterioration of cardiac

function (Richardson et al., 1996; Leuschner et al., 2015).

Inflammation of the heart was first described in 1749, and the

term myocarditis was coined in 1837. Furthermore, in 1980, the

World Health Organization/International Society and Federation of

Cardiology Task Force proposed a way of differentiating

myocarditis from other myocardial diseases (Richardson et al.,

1996). Myocarditis has multifaceted etiology, including infectious

causes such as viral, bacterial, fungal, and parasitic infections, and

non-infectious causes such as drug, autoimmune, and allergic

reactions, amyloidosis, thyrotoxicosis, and genetic predisposition

(Wiltshire et al., 2011; Basso, 2022). The clinical manifestations of

myocarditis can vary from asymptomatic or subclinical/clinical

symptoms to sudden death due to the damage of cardiomyocytes,

inflammatory reaction, and myocardial fibrosis. Therefore,

myocarditis poses a significant threat to the health and well-being

of patients (D’Ambrosio and D’Ambrosio, 2001; Ammirati

et al., 2020).

According to a previous study, cases of myocarditis have been

associated with coronavirus disease 2019 (COVID-19) and COVID-

19 vaccination (Inciardi et al., 2020; Heymans et al., 2022). The

underlying mechanisms of myocarditis related to COVID-19 are

believed to involve both direct harm caused by the virus itself and

cardiac damage resulting from the host’s immune reaction

(Siripanthong et al., 2020). Consequently, the management of

myocarditis is an attractive area for research (Heymans et al.,

2022). The primary management goals of myocarditis include

alleviating biventricular load, ensuring adequate systemic and

coronary perfusion, and reducing venous congestion. The

management goals aim to minimize the risk of multiorgan

dysfunction and accelerate recovery, transplantation, or the use of

durable assist devices (Basso, 2022). Myocarditis represents a diverse

group of diseases with distinct immunophenotypes. Despite extensive

research and an improved understanding of the pathogenesis of

myocarditis, translating knowledge into effective therapeutic

strategies remains a challenge (Heymans et al., 2016). The typical

management of myocarditis includes drug therapy, mechanical

circulatory support, and management of complications and co-

morbidities (Cooper, 2009). In addition, the management of

myocarditis also includes vitamins and nutritional support. Drug

therapy is the most used treatment modality for myocarditis.

However, some drug therapies are ineffective and associated with

severe side effects. On the other hand, mechanical circulatory support

is a costly intervention and is not suitable for all patients. Moreover,

immune modulation is a novel treatment approach that requires

further research (Basso, 2022). Some potential strategies being

explored include the use of probiotics, prebiotics, and synbiotics to

modulate the gut microbiota, as well as fecal microbiota

transplantation (FMT) to restore a healthy microbial balance

(Schneiderhan et al., 2016; Hu et al., 2019; Wargo, 2020; Fan and

Pedersen, 2021). These approaches aim to improve the overall gut

health and immune response, which may have a positive impact on
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myocarditis treatment outcomes. It is important to note that more

research is needed to establish the efficacy and safety of these

strategies in the context of myocarditis.

The summary of the clinical characteristics and treatment

strategies for myocarditis is compiled in Figure 1 (Trachtenberg

and Hare, 2017; Błyszczuk and Błyszczuk, 2019; Leone et al., 2019;

Cooper, 2021; Basso, 2022; Ammirati et al., 2023). In clinical

practice, it is essential to tailor diagnostic or therapeutic

approaches to individual patients, taking into account their

specific circumstances and conditions. Although myocarditis has

been recognized for two centuries, the available therapeutic

regimens are limited (Krejci et al., 2016; Spallarossa et al., 2020).

Therefore, there is a need for continued research into the

pathogenesis and treatment of myocarditis to identify new

therapeutic targets and cost-effective agents.

In recent years, the human gut microbiota has gained significant

attention, with metagenomic studies enhancing our understanding

of its diverse species and potential applications in health (Gomaa

and Gomaa, 2020). The human gut microbiota contains

approximately 39 trillion microorganisms and about 150 times

more microbial genes (3.3x10^6) than human genes (Collins and

Patterson, 2020). The large intestines have the highest microbial

density, with about 100 billion bacterial cells per gram of wet stool

(Sender et al., 2016). Furthermore, the gut microbiome is highly

complex, with its composition varying widely between individuals.

The gut microbiome comprises more than 1000 species, including

bacteria, archaea, viruses, and fungi (Sekirov et al., 2010).

Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria

form the most dominant bacterial phyla of the gut microbiome

(Yan et al., 2022). Gut bacteria are mainly categorized into

symbiotic, opportunistic, and pathogenic bacteria. Symbiotic

bacteria interact with each other and with the host in a symbiotic

manner. They maintain gut homeostasis and contribute to overall

health (Cummings, 1983). The gut microbiome participates in

various functions, including nutrient absorption, immune system

regulation, and biological antagonism (Adak and Khan, 2019).

However, dysbiosis of the gut microbiome has been associated

with various diseases (Hou et al., 2022). The composition of the gut

microbiome is affected by various factors, including genetics, diet,

medication, and environment. Diet is among the most significant

factors influencing the gut microbiome (Duda-Chodak et al., 2015;

Singh et al., 2017; Klement and Pazienza, 2019). A high-fiber diet

and plant-based foods can promote the growth of beneficial bacteria

in the gut microbiome, while high-fat and high-sugar diets have

been linked to dysbiosis (Koh et al., 2016; Nagai et al., 2016; Hills

et al., 2019).

Previous studies have shown that the gut microbiota contributes

to the occurrence and development of various cardiovascular

diseases (CVDs) (Witkowski et al., 2020), including hypertension

(Yang et al., 2018; Verhaar et al., 2020), atherosclerosis (Zhu et al.,

2020), heart failure (HF) (Zhang et al., 2021b), arrhythmias

(Oniszczuk et al., 2021), and diabetic cardiomyopathy (Bastin and

Andreelli, 2020; Yuan et al., 2022). Moreover, recent studies

revealed that gut microbiota was also associated with myocarditis

(Gil-Cruz et al., 2019; Hu et al., 2019; Mandelbaum et al., 2020;
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1191936
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2023.1191936
Piccioni et al., 2021; Luo et al., 2022; Ozkan, 2022). Furthermore,

gut microbiota modulation through dietary interventions,

probiotics, drugs, or fecal microbiota transplantation, has shown

promising results in various conditions, including inflammatory

bowel disease (Li et al., 2021b), colorectal cancer (Feng et al., 2015;

Wong and Yu, 2019; de Souza et al., 2022), liver diseases (Bajaj,

2019; Albillos et al., 2020), obesity (Duca et al., 2013; Gomes et al.,

2018), diabetes (Qin et al., 2012; Komaroff, 2017; Hung et al., 2021),

arthritis (Scher et al., 2013; Xu et al., 2022), osteoporosis (Lahiri

et al., 2019; Di et al., 2021), CVDs (Ko et al., 2019; Bai et al., 2021),

and neurological disorders (Varesi et al., 2022).

In recent years, the role of the gut microbiome in health and

diseases has attracted significant research attention. However,

animal studies and clinical trials evaluating the relationship

between myocarditis and gut microbiota are limited (Hu et al.,

2019). Therefore, this study reviews (1) the evidence on gut-heart

axis, (2) the association between gut microbiota and the immune

system, (3) the association between myocarditis and the immune

system, (4) the association between gut microbiota and myocarditis,

(5) current strategies for modulating gut microbiota, (6) challenges

and future directions for targeted gut microbiota in the treatment of

myocarditis. This study provides novel ideas for myocarditis

treatment and references for future research.
2 Gut-heart axis: effect of gut
microbiota on cardiovascular diseases

The gut microbiome regulates human health. Recent studies

indicate that dysbiosis of the gut microbiota is thought to be cause
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of most CVDs, including coronary heart disease, hypertension, and

heart failure (Lippi et al., 2017; Jia et al., 2019). Gut microbiota

dysbiosis can also induce an inflammatory response and affect the

metabolism of bile acids (BAs), short-chain fatty acids (SCFAs),

trimethylamine-N-oxide (TMAO) and other bioactive molecules,

resulting in systemic inflammation and endothelial dysfunction.

These changes, in turn, promote the development of atherosclerotic

plaques and increase the risk of thrombosis and cardiovascular

events (Liu et al., 2020b). The role of the gut-heart axis in

cardiovascular health and the relationship between the gut

microbiome and CVDs are presented in the subsequent sections

and Figure 2.
2.1 Coronary heart disease and
atherosclerosis

Coronary heart disease (CHD) is a condition in which the

arteries cannot supply adequate oxygenated blood to the heart.

Most cases of CHD are caused by the blockage of coronary arteries

due to either atherosclerosis, thrombosis, or a combination of both

(Ulbricht and Southgate, 1991).

The effects of gut microbiota in CHD are due to alterations in

their composition and metabolites. One previous study enrolling 29

CHD inpatients and 35 healthy volunteers showed the proportion

of phylum Bacteroidetes (56.12%) was lower, whereas that of the

phylum Firmicutes was higher (37.06%) in the CHD patients than

that of the healthy controls (60.92% and 32.06%, P <0.05) (Cui et al.,

2017). Elsewhere, a similar observation was obtained (Emoto et al.,

2017). Furthermore, a case-control study revealed that lower
FIGURE 1

Myocarditis: Classifications, clinical presentations, accessory examinations, treatments, and prognosis. ACS, acute coronary syndrome; CMR,
cardiovascular magnetic resonance; CTA, coronary computed tomography angiography; DC, dilated cardiomyopathy; DR, digital radiography; ECG,
electrocardiogram; ECMO, extracorporeal membrane oxygenation; EMB, endomyocardial biopsy; FDG-PET, Fluorodeoxyglucose-positron emission
tomography; GI, gastrointestinal; HF, heart failure; IABP, intra-aortic balloon pump; ICI, immune checkpoint inhibitors; IHC, immunohistochemistry;
ICM, inflammatory cardiomyopathy; LVCD, left ventricular assist device; NP, nasopharyngeal; PCI, percutaneous coronary intervention; RNV,
radionuclide ventriculography; SLE, systemic lupus erythematosus; UCG, ultrasound cardiography; WBC, white blood cell.
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Lactobacillus levels are associated with an increased likelihood of

severe coronary atherosclerotic lesions and myocardial necrosis as

well as a poorer prognosis for patients with the acute coronary

syndrome (ACS), particularly those with ST-segment elevation

myocardial infarction (Gao et al., 2021). A previous study showed

that Faecalibacterium was the dominant microorganism in the

healthy control group, whereas Escherichia-Shigella and

Enterococcus were enriched in the coronary artery disease group

(Zhu et al., 2018). Furthermore, Yang et al. showed that

hydroxyurea effectively treated atherosclerosis, reduced serum

cholesterol levels, modified the gut microbiota at various levels,

and affected cholesterol absorption by decreasing Niemann-Pick

C1-like 1 in the epithelial cells of small intestines of apolipoprotein

E knockout ApoE(-/-) mice fed on a high-fat diet (Yang et al.,

2022b). In addition, the severity of myocardial infarction in rats is

associated with intestinal microbial metabolites (Lam et al., 2016).

The gut microbiome can also affect lipid metabolism. Certain

bacteria in the gut microbiome can metabolize BAs, thereby

affecting lipid metabolism. On the other hand, dysbiosis can alter

the production of BAs, causing changes in lipid metabolism and

increasing the risk of atherosclerosis (Jonsson and Bäckhed, 2017).

The gut microbiome can affect the development and progression of

atherosclerosis and CHD in various ways. Firstly, inflammatory

responses can exacerbate plaque development or cause plaque

rupture. Secondly, cholesterol and lipids metabolism by the gut

microbiota can influence the development of atherosclerotic

plaques. Thirdly, diet and gut microbial metabolites, including

TMAO and SCFAs, can have various effects on atherosclerosis

(Jonsson and Bäckhed, 2017; Liu et al., 2020a).
2.2 Hypertension

Hypertension is one of the most prevalent risk factors for CVDs

across the globe. Furthermore, hypertension arises due to a complex

interplay of genetic and environmental factors (Li et al., 2021a;
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Zhou et al., 2021). Globally, hypertension and pre-hypertension

account for 8.5 million deaths annually due to stroke, ischemic

heart disease, other vascular disorders, and kidney diseases. The

prevalence of hypertension among individuals aged 30-79 years

doubled from 648 million people to 1278 million people between

1990 and 2019 (Zhou et al., 2021).

Unlike healthy controls, patients with hypertension show

microbial diversity and a shift in microbial composition. In

addition, the number of species associated with hypertension

shows a stronger correlation with disease severity. Li et al. found

that pre-hypertensive and hypertensive patients had significantly

reduced microbial richness and diversity. They also exhibited

distinct metagenomic composition characterized by an

overgrowth of disease-associated bacteria and a decrease in

healthy-associated bacteria. Additionally, these patients exhibited

a Prevotella-dominated gut enterotype and disease-linked microbial

function, in contrast to the healthy control group (Li et al., 2017).

Surprisingly, the microbiome characteristics of the pre-hypertensive

group were similar to those observed in the hypertensive group. In

addition, a previous study enrolling 60 patients with primary

hypertension and 60 gender-, age-, and body-weight-matched

healthy controls revealed that opportunistic pathogenic bacteria

such as Klebsiella spp., Streptococcus spp., and Parabacteroides

merdae were frequently found in the gut microbiome of

hypertensive individuals. In contrast, beneficial bacteria

producing SCFAs, such as Roseburia spp. and Faecalibacterium

prausnitzii, were more abundant in the control group. Short-chain

fatty acids-producing bacteria can modulate blood pressure by

promoting vasodilation. In terms of microbial function, the gut

microbiome of hypertensive individuals exhibited higher

membrane transport, lipopolysaccharide (LPS) biosynthesis, and

steroid degradation. However, the healthy controls showed higher

metabolism of amino acids, cofactors, and vitamins (Yan et al.,

2017). Furthermore, dysbiosis of the gut microbiome in rat models

of hypertension can directly influence systolic blood pressure.

Therefore, modulation of the gut microbiota can be exploited as a
FIGURE 2

Gut-Heart axis: The relationship between gut microbiota and cardiovascular diseases. SCFAs, short-chain fatty acids; TMA, trimethylamine; TMAO,
TMA-N-oxide.
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novel therapeutic approach for managing hypertension (Durgan

et al., 2016; Adnan et al., 2017). Australian researchers recently

published a review article, summarizing the latest research findings

on the role of gut microbiota and their metabolic byproducts in host

blood pressure regulation mechanisms. Gut microbiota imbalances

can affect blood pressure regulation via host gene pathways,

vascular function, and the autonomic nervous system. Enteric

bacterial metabolites, including SCFAs and indole-3-lactic acid,

are beneficial, whereas TMAO is harmful to blood pressure.

Regulating gut microbiota through diet or fecal microbiota

transplantation (FMT) may serve as a potential therapeutic

strategy for blood pressure reduction. Moreover, the article

discussed the prospects, challenges, and difficulties of using gut

bacteria for blood pressure control in clinical applications

(O’Donnell et al., 2023).
2.3 Heart failure

Heart failure is a complex clinical syndrome characterized by

dyspnea and fatigue due to its inability to efficiently fill or eject

blood from the heart. Heart failure can progress to pulmonary or

splanchnic congestion and peripheral edema. It can be categorized

into four types, including heart failure with preserved ejection

fraction (HFpEF), heart failure with mildly reduced ejection

fraction (HFmrEF), heart failure with reduced ejection fraction

(HFrEF), and heart failure with improved ejection fraction

(HFimpEF). HF is a leading cause of morbidity and mortality

across the globe. The 2022 guideline offers patient-centric

recommendations for healthcare professionals to prevent,

diagnose, and manage patients with heart failure (Heidenreich

et al., 2022).

Alteration of gut microbiota composition and microbial

metabolite shifts, especially those derived from dietary nutrients

increase the risk of HF. Tang et al. reported that impaired intestinal

barrier function and bowel wall edema in HF patients might

promote local and systemic inflammation, as well as bacterial

translocation (Tang et al., 2019b). In addition, the inflammation

and immune response linked to intestinal barrier impairment and

bacterial translocation can exacerbate heart failure (Jia et al., 2019).

Moreover, Zhang et al. showed that TMAO was involved in the

pathological processes of HF and could act as a marker for

identifying patients at risk of disease progression. In addition,

they reviewed the gut–TMAO–HF axis as a new target for HF

treatment (Zhang et al., 2021b). Romano et al. investigated the

relationship between the gut microbiota-derived metabolite

phenylacetylgutamine (PAGln) and HF. Clinical and mechanistic

analyses reveal a dose-dependent association between circulating

PAGln levels and HF presence and severity. PAGln directly

promotes HF-relevant phenotypes, including decreased

cardiomyocyte sarcomere contraction and elevated B-type

natriuretic peptide gene express ion in both cultured

cardiomyoblasts and murine atrial tissue. The findings suggest

that regulating the gut microbiome, particularly PAGln

production, may represent a potential therapeutic target for

modulating HF (Romano et al., 2023). This together suggests that
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innovative therapeutic approaches that target gut microbial

metabolic pathways or metabolites and modify the gut microbiota

composition could be effective in reducing CVDs susceptibility and

preventing the progression of HF.
2.4 Other CVDs

In recent years, numerous studies have investigated gut

microbiota as a therapeutic target for CVDs prevention and

management. For example, a previous study demonstrated that

Bacteroides fragilis could prevent aging-related atrial fibrillation

(AF) in rats through regulatory T cells (Tregs) mediated regulation

of inflammation. Specifically, Bacteroides fragilis promotes the

proliferation and function of Tregs as well as reduces inflammatory

responses, thus decreasing the incidence of AF (Zhang et al., 2022).

These findings provide novel insights for developing new drugs to

prevent or treat AF. Furthermore, a clinical study showed that SCFAs

could alleviate the development of AF through G protein-coupled

receptor 43/NOD-like receptor family pyrin domain containing 3

(GPR43/NLRP3) signal pathways (Zuo et al., 2022). Moreover, the

potential of probiotics, prebiotics, and FMT in modulating gut

microbial composition and promoting cardiovascular health has

been extensively studied (Oniszczuk et al., 2021). However, further

studies are needed to reveal microbial mechanisms with diagnostic

and therapeutic implications in CVDs (Walker et al., 2021).

Furthermore, a previous study showed that hydroxyurea could

prevent diabetic cardiomyopathy by inhibiting inflammation and

cell apoptosis (Zhou and Lu, 2022). Inflammation is implicated in

CVDs. In addition, dysbiosis has been linked to increased

inflammation. A few gut microbiota, particularly Gram-negative

bacteria, produce LPS, which activate the immune system and

promote inflammatory responses (Yoo et al., 2020).

In summary, the gut-heart axis represents a complex network of

interactions involving the gut microbiota, their metabolites, and the

cardiovascular system. Myocarditis, an important cardiovascular

disease, has gained significant attention in recent years. The

emergence of the gut-heart axis concept might imply a potential

connection between the gut microbiota and myocarditis. By delving

into the role of the gutmicrobiota inmyocarditis, wemay discover new

opportunities for prevention, diagnosis, and treatment, ultimately

enhancing the prognosis and quality of life for those affected.
3 Gut microbiota and the
immune system

The immune system is divided into innate and acquired

immunity. Innate immunity refers to the immune response

present at birth that can produce an effective response to

pathogens without previous antigen exposure (Janeway et al.,

2001). Components of the innate immune system include: the

skin and mucosal barriers, macrophages, natural killer (NK) cells,

and the complement system. On the other hand, acquired/adaptive

immunity is developed after previous exposure to pathogens or

vaccinations. The components of the adaptive immune system
frontiersin.org
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include B lymphocytes and T lymphocytes (Janeway et al., 2001). B

cells secrete antibodies that can specifically bind to and neutralize

pathogens. Furthermore, T cells have different subtypes, including

helper T cells and cytotoxic T cells. T cells recognize and attack the

surface antigens of infected cells and coordinate the immune

response (Parkin et al., 2001). The immune system can help the

body to fight infections and can induce inflammation. Cytokines are

a class of small proteins with broad biological activity that are

synthesized and secreted by immune cells upon stimulation. They

maintain the stability of the body’s immune system and regulate the

occurrence of pathological processes. Cytokines are classified into

pro-inflammatory and anti-inflammatory cytokines based on their

effects on inflammation. Anti-inflammatory cytokines include Th2

type cytokines (IL-4, IL-5, IL-10). Pro-inflammatory cytokines

include Th1 type cytokines (IFN-g, IL-2, IL-12p70); IL-1b; IL-6,
IL-8, TNF-a; and Th17 type (IL-17) (Fajgenbaum and June, 2020).

Understanding the gut microflora, associations among the

microbiome and inflammasomes, the immune system, the role of

gut microbiota metabolites, and gut permeability may lead to the

development of preventive strategies for CVDs (Noor et al., 2021).
3.1 Gut-immune system crosslink

Gutmicrobiota is involved in the regulation of host immunity. For

example, Lactobacilli and Bifidobacteria improve the host immune

function (Vlasova et al., 2016). Furthermore, the gut microbiota

stimulate the training and development of the host immune system

and the occurrence of cellular immunity, enabling the host’s innate
Frontiers in Cellular and Infection Microbiology 06
immune system to distinguish between pathogenic and symbiotic

bacteria (Wu and Wu, 2012; Ursell et al., 2014; Yoo et al., 2020). In

addition, the gutmicrobiota colonizes, and proliferates in the intestinal

mucosa, forming a layer that protects the host from invasion by foreign

pathogens. In addition, gut microbiota can compete with harmful

bacteria for nutrients, thereby inhibiting their growth and generating

antibacterial substances that suppress the proliferation of pathogens

(Belkaid et al., 2014).

Gut microbiota primarily affects the disease process through

endogenous metabolites produced by gut microbiota and changes

in the composition of gut microbiota. About 70~80% of the human

immune cells are found in the gut, and dysbiosis of the gut

microbiota is related to alterations in the immune system.

Emerging evidence has focused on the role of the gut microbiota

in regulating the immune response to viral infections and has

shown that the gut microbiota can influence the activity of

immune cells, including T cells and dendritic cells (Mizutani

et al., 2022). Specifically, some gut microbiota produces

metabolites that modulate the activity of immune cells and the

production of pro-inflammatory cytokines, thus promoting the

development of myocardial inflammation. Figure 3 shows the

possible relationship between gut microbiota and their

metabolites, immune system, and myocarditis.
3.2 Gut microbiota composition

Gut bacteria can be classified into six primary phyla based on

their genetic and physiological characteristics, including Firmicutes,
FIGURE 3

A schematic overview of the possible relationships between gut microbiota, and its metabolites, immune system, and myocarditis. BCAAs, branched-
chain amino acids; GPR, G protein-coupled receptor; LPS, lipopolysaccharide; SBAs, secondary bile acids; SCFAs, short-chain fatty acids; TMAO,
trimethylamine-N-oxide; TLR4, toll-like receptor 4; FXR, farnesoid X receptor, GPBAR1/TGR5, G protein-coupled bile acid receptor 1; PXR, pregnane
X receptor; S1PR2, sphingosine 1-phosphate receptor 2.
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Bacteroides, Actinobacteria, Proteobacteria, Fusobacteria,

Verrucomicrobia, and some other phyla. Firmicutes, Bacteroides,

Actinobacteria, and Proteobacteria, account for over 90% of the gut

microbiota (Yan et al., 2022). (1) The phylum Firmicutes includes

several common gut bacteria, such as Lactobacillus, Streptococcus,

and Clostridium. Some Firmicutes species improve gut barrier

function and enhance immunity (Rinninella et al., 2019). (2) The

phylum Bacteroidetes include several bacteria that produce SCFAs,

such as Bacteroides fragilis. Short-chain fatty acids have anti-

inflammatory effects on the gut and promote immune

homeostasis (Fabersani et al . , 2021). (3) The phylum

Proteobacteria includes several pathogenic bacteria, including

Escherichia coli and Salmonella, which can cause gastrointestinal

infections. However, some Proteobacteria, such as Akkermansia

muciniphila, have beneficial effects on gut health, including

promoting the growth of beneficial bacteria and reducing

inflammation (Larsen et a l . , 2015) . (4) The phylum

Actinobacteria includes numerous beneficial gut bacteria, such as

Bifidobacterium and Collinsella, which modulate the immune

system, improve gut barrier function, and reduce inflammation

(Barka et al., 2016).
3.3 Gut microbiota metabolites

Gut microbiota-dependent metabolites act as a bridge that

connects the dynamic equilibrium between the host and the gut

microbiota (Schoeler et al., 2019). The gut microbiota generates

numerous small-molecule metabolites during microbial food

digestion, playing a vital role in communication between host

cells and gut bacteria (Ursell et al., 2014). The metabolites could

have beneficial or harmful effects. Over the past decade, more than

300 endogenous metabolites of gut bacteria, including SCFAs, BAs,

monoamines, biogenic amines, indole derivatives, phenols,

vitamins, branched-chain amino acids (BCAAs), and lipids, have

been discovered through non-targeted and targeted metabolomic

analyses. Among them, extensive studies have been conducted on

the primary endogenous metabolites, including, SCFAs, BAs,

BCAAs, and TMAO (monoamines). These metabolites play

significant roles in various physiopathologic processes.

Furthermore, lipopolysaccharides, produced by Gram-negative

bacteria, have also attracted attention for their effect on the host

through metabolism-independent signaling pathways(Yang et al.,

2021). This highlights the importance of understanding the

complex interactions between these metabolites and their

potential roles in human health and disease (Li et al., 2018b;

Wang et al., 2018).Therefore, this section presents the effect of

gut microbial metabolites on the host from the perspective of the

immune system.

3.3.1 Short-chain fatty acids
Short-chain fatty acids (SCFAs), or volatile fatty acids, are a

class of low-molecular organic fatty acids with approximately two to

six carbon atoms. Short-chain fatty acids arise from the

fermentation of dietary fiber by microorganisms in the colon
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(Chen et al., 2020). Short-chain fatty acids mainly include acetic

acid, propionic acid, butyric acid, isobutyric acid, valeric acid,

isovaleric acid, caproic acid, and isocaproic acid. The major

metabolic products include SCFAs acetate (C(2)), propionate (C

(3)) and butyrate (C(4)) (Schwiertz et al., 2010; Vinolo et al., 2011).

The type and amount of SCFAs depend on the composition and

fermentative ability of the gut microbiota, digestion time, host-

microbe metabolic flux, and the fiber content of the host food

(Parada Venegas et al., 2019; Deleu et al., 2021). Short-chain fatty

acids are absorbed by the intestine primarily through

monocarboxylate transporters 1 (MCT1) and 4 (MCT4) (Kirat

et al., 2006; Sivaprakasam et al., 2017). The SCFAs promote cell

growth, improve intestinal function, and influence cardiovascular

metabolism. In addition, SCFAs act as mediators of the immune

response and promote the production of anti-inflammatory

cytokines by peripheral blood monocytes (Asarat et al., 2016).

Depletion of gut microbiota by antibiotics decreased immune cell

composition and impaired repair after myocardial infarction, while

supplementation with SCFAs or Lactobacillus probiotics restored

these effects. This highlights the importance of gut microbiota-

derived SCFAs in modulating pathological outcomes after

myocardial infarction and potentially impacting human health

and disease as a whole (Tang et al., 2019a).

Short-chain fatty acids regulate the effector functions of CD8+ T

cells by activating the G protein-coupled receptor 41(GPR41)

(Vinolo et al., 2011). In addition, SCFAs can activate GPR43 or

the free fatty acid receptor (FFAR 2) in peripheral adipose tissue,

thereby regulating insulin sensitivity, promoting glucagon-like

peptide 1 (GLP-1) release from stimulated L cells and regulating

inflammation (Priyadarshini et al., 2016). One study proposed that

SCFAs exert their effects on leukocytes and endothelial cells via two

known mechanisms, i.e., activating GPR41 and GPR43 and

inhibiting the histone deacetylase (HDAC) activity (Vinolo et al.,

2011). Butyric acid and propionic acid inhibit HDAC activity, LPS-

induced secretion of inflammatory mediators by macrophages, and

macrophage reactivity, as well as exert anti-inflammation effects in

mice (Li et al., 2018a; Yao et al., 2022). In addition, acetic acid

induces immunoglobulin A (IgA) production in the intestines of

mice and maintains a relatively stable immune system (Mei et al.,

2022). However, excessive production of acetic acid can induce

colitis (Sharon and Stenson, 1985; Uraz et al., 2013). Furthermore,

butyric acid can attenuate inflammation by reducing macrophage

adhesion and migration (Smith et al., 1998), hence reducing the

production of IL-6 and IL-12, and increasing IL-10 (Park et al.,

2022). Moreover, butyric acid and propionic acid produced by the

gut microbiota can promote the differentiation of peripheral Tregs

and maintain immune homeostasis (Kim et al., 2014; Asarat

et al., 2016).

Taken together, SCFAs modulate the immune system and

alleviate inflammation.

3.3.2 Bile acids
Bile acids (BAs) promote the emulsification of fats, thus

increasing the surface area for pancreatic lipase and improving the

solubility of lipids by forming mixed micelles (Amara et al., 2019).
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Bile acids facilitate the absorption of lipids in the small intestine.

Clinical studies and animal experiments have shown that BAs,

particularly secondary BAs (SBAs) generated during bacterial

metabolism of BAs, can influence intestinal inflammation

(Schirmer et al., 2019; Cai et al., 2022). The related gut microbiota

mainly comprises Lactic acid bacteria, Enterobacteriaceae, and

Enterococci bacteria, which can deconjugate BAs from taurine or

glycine to produce deoxycholic acid (DCA) and lithocholic

acid (LCA).

Bile acids are important signaling molecules, which regulate

host metabolism and energy homeostasis, and affect innate

immunity (Hang et al., 2019; Han et al., 2022). One recent study

revealed that gut microbiota and LCA could regulate the host

immune response by directly altering the balance between Th17

and Tregs (Hang et al., 2019). Previous studies have shown that

SBAs could exert pro-inflammatory effects at high concentrations

(Hang et al., 2019; Han et al., 2022). Digoxin was identified as the

first Th17 cytostatic agent that binds to the retinoic acid-related

orphan receptor-gamma-t (RORgT) (Karaś et al., 2018). After

digoxin identification, other structurally related cholesterol

derivatives have been identified as modulators of RORgT. Bile
acids are cholesterol metabolites present in the intestine. Bile

acids control Th17 by targeting RORgT activity (Song et al.,

2020). BAs can inhibit macrophage function by activating BA

receptors and promoting the differentiation of Tregs. The BAs

receptors include nuclear receptors such as the farnesoid X

receptor (FXR), the G protein-coupled bile acid receptor 1

(GPBAR1/TGR5), pregnane X receptor (PXR), sphingosine 1-

phosphate receptor 2 (S1PR2), and other membrane receptors

(Wang et al., 2011; Hu et al., 2022; Yao et al., 2022). By activating

these receptors, BAs inhibit the overgrowth of intestinal bacteria,

thus protecting against visceral infection.

Taken together, BAs may have pro-inflammatory or anti-

inflammatory effects, depending on the type and concentration of

bile acids.

3.3.3 Branched-chain amino acids
Branched-chain amino acids (BCAAs) have an aliphatic side

chain and a branch (a central carbon atom bound to three or more

additional carbon atoms). Leucine, isoleucine, and valine are three

naturally occurring proteinogenic BCAAs (Lynch et al., 2014).

These amino acids cannot be synthesized in animals. However,

they are synthesized in bacteria, plants, and fungi (Neinast et al.,

2019). The metabolism of BCAAs involves several complex

enzymatic reactions. Furthermore, branched-chain amino acids

affect cellular metabolism.

A previous study revealed that dietary supplementation of

BCAAs in middle-aged mice is associated with increased

mitochondrial formation and bioenergetics as well as reduced

ROS production, which could prevent aging and promote survival

(D’Antona et al., 2010). Furthermore, BCAAs may inhibit fibrosis

by decreasing apoptosis, caspase-3 activity, and oxidative stress in

mice (Takegoshi et al., 2017). In addition, BCAAs enhance the

immune response of NK cells (Matsumoto et al., 2009) and liver-

associated lymphocytes (Kajiwara et al., 1998; Takegoshi et al.,
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2017). A previous study investigated the potential role of BCAAs in

reducing inflammation and improving immune function in athletes

and individuals undergoing physical stress. BCAAs serve as

signaling molecules. For example, BCAAs can activate the

mammalian/mechanistic target of rapamycin complex 1

(mTORC1) (Mann et al., 2021). Previous studies revealed that

supplementation of BCAAs reduced inflammation and oxidative

stress in athletes, thereby improving their immune function and

reducing infection risk (Matsumoto et al., 2009; Kim et al., 2012).

However, high plasma levels of BCAAs are associated with

inflammation, insulin resistance, and metabolic syndrome (Yoon

and Yoon, 2016).

Taken together, the role of BCAAs on inflammation depends on

the BCAAs concentration and the individual’s health status.

3.3.4 Trimethylamine-N-Oxide
Trimethylamine-N-Oxide (TMAO) is an intestinal-derived

flora-related metabolite synthesized in the liver. It is derived from

trimethylamine (TMA), metabolized by the gut microbiota. Some

gut microbiota produces trimethylamine lyase, an enzyme that

converts dietary choline, betaine, carnitine, and TMA- structured

food into TMA (Cho and Caudill, 2017). For example, some

bacteria belonging to the phylum Firmicutes, including certain

species within the Clostridia class and the Enterococcus genus, as

well as the Desulfovibrio genus from the phylum Proteobacteria, can

produce enzymes like choline TMA-lyase, which is involved in the

generation of trimethylamine. Trimethylamine is transported to the

liver via portal circulation, where it is oxidized by flavin

monooxygenases 3 (FMO3) to produce TMAO (Liu et al., 2020b).

Trimethylamine-N-Oxide promotes monocyte adhesion,

increases macrophage infiltration, and promotes foam cell

production. It has been shown that TMAO can inhibit the

cellular activity of antioxidant enzymes, including superoxide

dismutase (SOD) and catalase (CAT), causing a reduction in the

antioxidant activity of cells (He et al., 2021). Similarly, TMAO

promotes the production of reactive oxygen species (ROS), thus

exacerbating oxidative stress (Querio et al., 2019). Animal studies

have shown that TMAO induces vascular inflammation by

activating the sirtuin 3 -superoxide dismutase 2- mitochondrial

ROS (SIRT3‐SOD2‐mtROS) and stimulating in vitro and in vivo

formation of the NLRP3 inflammasome (Chen et al., 2017). In

addition, TMAO can induce vascular inflammation by activating

the mitogen-activated protein kinase (MAPK) and nuclear factor

kappa-B (NF-kB) signaling pathways (Seldin et al., 2016). TMAO

also activates the inflammatory response by inducing the expression

of IL-6, cyclooxygenase-2 (COX-2), endothelial selectin, and

intercellular cell adhesion molecule-1 (ICAM-1), which enhances

macrophage adhesion through protein kinase C (PKC) and NF-kB
signaling pathway. Furthermore, high serum levels of TMAO can

increase the production of tumor necrosis factor-a (TNF⁃a)
through the NF⁃kB signaling pathway. A recent study

demonstrated that silencing of FMO3 was associated with

decreased production of TMAO(Schiattarella et al., 2017). TMAO

has also been shown to trigger adipose tissue inflammation (Yang

et al., 2021).
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Taken together, TMAO has pro-inflammatory effects.

3.3.5 Lipopolysaccharides
Endotoxins/LPS are a complex of lipids and polysaccharides.

They are structural components of the outer membrane of Gram-

negative bacteria such as Pectinatus. In addition, LPS determines

the diversity of bacterial antigens. During bacterial pathogenesis,

lipopolysaccharides trigger inflammation by activating the Toll-like

receptor 4 (TLR4) in immune cells and other cell types, including

adipocytes and hepatocytes (Neves et al., 2013; Schoeler et al., 2019).

As activators of innate immune responses, LPS have a non-

negligible role in human immune responses (Neves et al., 2013).

Interactions between LPS and Toll-like receptor 4 (TLR4) on

surfaces of immune cells such as macrophages and dendritic cells

induces a cascade of signaling events that produce of pro-

inflammatory cytokines, such as TNF-a, IL-1b, NF-kB, and IL-6.

These cytokines play a crucial role in the recruitment and activation

of other immune cells, including neutrophils and NK cells, to sites

of infection (Medzhitov and Medzhitov, 2007). Besides activating

the innate immune system, LPS influences adaptive immune

responses. They improve the antigen-presenting abilities of

dendritic cells, which are crucial for initiating and shaping

adaptive immune responses. The LPS can also promote T cells

activation (CD4+ helper and CD8+ cytotoxic T cells) against the

pathogen (Hoebe et al., 2004). In addition, LPS is useful in modeling

inflammation-related diseases, including sepsis and myocarditis by

activating the NF-кB signaling pathway (Wang et al., 2019b).

Gut microbiota-produced metabolites, including SCFAs, BAs,

BCAAs, TMAO, and LPS can affect the immune system and

contribute to development of inflammatory diseases. Additional

studies should focus on elucidating the mechanisms underlying

these associations and exploring the potential therapeutic

interventions targeting these metabolites.
4 Myocarditis and the immune system

The role of inflammation in the progression of CVDs has

attracted considerable attention. In pathogenesis, IL-1b, IL-6, TNF-
a, and interferon-gamma (IFN-g) are associated with heart

inflammation while IL-10, TGFb, and others are linked to the

resolution of inflammation and heart tissue repair. IL-10 mitigates

inflammation in the cardiovascular system and exerts protective

effects by interacting with SMAD2, p53, HuR, miR-375, and miR-

21 pathways (Goswami et al., 2021). Myocarditis is an inflammatory

disease that affects myocardium health, and the extent of damage

depends on the nature of the pathogen and associated inflammatory

responses. Myocarditis is characterized by immune responses specific

to the heart and is categorized based on the clinical and

histopathological features (Figure 1) (Heymans et al., 2016).

Experimental mice models have shown the significance of immune

cells in myocarditis development (Swirski et al., 2018). The

proinflammatory cytokine, IL-1, is crucial in the development of
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myocardial inflammation (Cavalli et al., 2016). IL-a activates the

‘inflammasome,’ leading to the infiltration of inflammatory cells,

processing and release of active IL-1b (Toldo et al., 2014). IL-1b, a
highly studied member of the IL-1 cytokine family, is primarily

influenced by the functioning of the NLRP3 inflammasome in

inflammation (Abbate et al., 2020). This section focuses on two

types of myocarditis: Viral myocarditis and autoimmunemyocarditis.
4.1 Viral myocarditis

Viral myocarditis is a significant cause of heart failure and

dilated cardiomyopathy. Viral infection of the myocardium can

lead to myocardial cell necrosis. The pathological and

physiological mechanisms of viral myocarditis have been

investigated using murine models of enterovirus infection,

especially coxsackievirus B3 (CVB3) (Lin et al., 2021). The

CVB3 cardiomyophilic strain virus (CVB3m) and the CVB3

non-cardiomyophilic strain virus (CVB3o) are variants of the

CVB3 standard strain, which can be adapted for different research

objectives to achieve the required pathology of myocarditis in

specific tissue types (Błyszczuk, 2019).

Viral entry into the myocardium results in three kinds of

responses. The acute phase is characterized by viral entry and

replication, the subacute phase is characterized by inflammatory

cell infiltration, and the chronic phase is characterized by cardiac

remodeling. Myocardial injury includes direct injury mediated by

viral infections and indirect injury due to secondary immune

responses (Henke et al., 1995). The molecular mechanisms

underlying injury were described in detail in a review published

in 2016. Targeting these virus-encoded proteases may inhibit viral

replication and viral direct damage to the myocardium (Fung

et al., 2016). The adaptive immune responses begin after the acute

and subacute phases of myocarditis (Lin et al., 2021). Opavsky

et al. established gene knockout mice CD4(-/-), CD8(-/-), both co-

receptors (CD4(-/-) CD8(-/-)), or T cells receptor beta chain (TCR

beta (-/-)) to investigate the impact of T cell subsets on host

susceptibility to CVB3 myocarditis. They found that myocarditis

severity in the CD4 knockout group, CD4 and CD8 knockout

group, and TCR beta knockout group was lighter than that in the

CD8 knockout group. Moreover, IFN-g levels were elevated while

TNF-alevels were suppressed in CD4 and CD8 knockout mice

models (Opavsky et al., 1999). Chemokines are a class of small

cytokines or signaling proteins secreted by cells. They can induce

nearby responsive cells to directionally migrate towards the source

of chemokines. A transgenic study involving mice models revealed

that CXC chemokine ligand 10 (CXCL10) was upregulated in the

early stages of myocardium infection and inhibited viral

replication in the early CVB3 infection stages by recruiting NK

cells and promoting IFN-g expressions. However, in the late

infection stages, it did not stimulate the antiviral effects to

improve the survival rates of mice (Yuan et al., 2009). Male

mice with CVB3-induced myocarditis had myocardial
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infiltrating macrophages expressing increased markers, including

inducible nitric oxide synthase, IL-12, TNF-a, and CD16/32,

which are associated with classically activated macrophages

(M1) (Li et al., 2009).
4.2 Autoimmune myocarditis

Mice models are important in studies on autoimmune diseases

(Lincez et al., 2011). Experimental autoimmune myocarditis mice

models distinguish between autoimmune phases of viral

myocarditis from the acute infection phase of CVB in genetically

modified mice (Blyszczuk et al., 2008). Disease severity is classified

based on the infiltration extent of inflammatory cells during the

peak of inflammation. This model can also be used for other types

of myocarditis (Błyszczuk, 2019).

Neu et al. reported that autoimmune myocarditis is often

indirectly associated with a viral infection. One possible

contributing factor is the release or exposure of cardiac myosin

after viral-mediated myocyte damage, which induces autoimmune

responses and myocardial inflammation (Neu et al., 1987). Pdcd1-/-

Ctla4+/- mice spontaneously develop fulminant myocarditis.

Therefore, Axelrod et al. performed single-cell sequencing and

single-cell TCR sequencing of immune cells infiltrating these

myocarditis tissues and found that CD8+ T cells were significantly

increased in number and showed clonal expansions. Myocarditis did

not developwhenCD8+T cells were removed from thesemice.When

CD4+ T cells were the only ones to be removed, myocarditis

incidences did not change. When CD8+ T cells from Pdcd1-/-

Ctla4+/- mice were adoptively transferred to Rag1-/- mice, the

recipient mice developed myocarditis after two months. Therefore,

CD8+ T cells are highly involved in fulminant myocarditis

development (Axelrod et al., 2022). A recent study also found that

macrophage migration is a significant histopathological feature of

myocarditis, indicating that macrophages are potential therapeutic

targets for this disease (Toita et al., 2021).
5 Gut microbiota and myocarditis,
inflammatory cardiomyopathy

In previous discussions, we highlighted the strong associations

between gut microbiota and the immune system. Furthermore, we

elucidated the role of the immune system in myocarditis

development. In this section, we assess the relationship between

gut microbiota and myocarditis.

It has been demonstrated that FMT, a method used to restore

gut microbial homeostasis, can improve myocardial damage in

myocarditis mice (Hu et al., 2019). Zhang et al. investigated the

significance of GLP-1 receptor agonists in alleviating autoimmune

myocarditis by modulating gut microbiota (ZhangWenyong, 2019).

In spontaneous autoimmune myocarditis mice, gut microbiota

promotes disease and interacts with MYH6-specific CD4+ T cells.

Cruz et al. found that commensal Bacteroides produce an MYH6

mimic, b-galactosidase, which can lead to the activation of
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cross-reactive Th17 cells, ultimately causing inflammatory

cardiomyopathy in individuals with a genetic susceptibility to this

condition. Antibiotics reduce inflammation and prevent death in

these mice. Acute myocarditis patients have increased anti-

Bacteroides IgG and cross-reactive T cell activation (Gil-Cruz

et al., 2019). These findings provide a better understanding of the

mechanisms underlying the interaction between the microbiome

and the immune system in autoimmune diseases. In the meanwhile,

these findings also offer fresh insights into potential strategies for

preventing and treating inflammatory cardiomyopathy.

Additionally, the European Heart Journal reported Cruz et al’s

study. The study focused on the largely unknown processes that

cause myocarditis, revealing that gut bacteria composition

promotes the development of myocarditis and inflammatory

cardiomyopathy. These findings provide valuable insights into the

role of gut microbiota in myocarditis, paving the way for future

research and potential treatments targeting the gut-heart axis

(Ozkan, 2022). Immune checkpoint inhibitors (ICIs) have

revolutionized cancer treatment but can also initiate autoimmune

diseases, including cardiomyopathy. Although antibiotics may

counteract cardiomyopathy by eliminating cross-reacting bacteria,

they could also impede ICI efficacy, as gut bacteria play a crucial role

in ICI efficacy. A more targeted approach, including phage therapy,

could be considered to specifically eradicate immune-mimicking

gut commensals without compromising immunotherapy outcomes

(Mandelbaum et al., 2020). Han et al. performed HeLa cellular

experiments and revealed that gut microbiota metabolites-BAs can

inhibit viral replication and attenuate endoplasmic reticulum stress-

induced cell death (Han et al., 2018). Barin et al. revealed that

enteric microorganisms play a role in determining the susceptibility

of mice to the model of experimental autoimmune myocarditis

(EAM) and its sequela, inflammatory dilated cardiomyopathy

(Barin et al., 2017). Myopericarditis is an inflammatory heart

condition involving the pericardium and myocardium, which has

been linked to gut microbiota and its metabolites. Piccioni et al.

explored the role of gut microbiota in myopericarditis, particularly

in relation to the cardiovascular implications of COVID-19,

suggesting that microbiota modulation may be a novel approach

for preventing or treating inflammatory cardiomyopathies (Piccioni

et al., 2021). One study investigated the causal relationship between

gut microbiota, their metabolites, and heart failure and its risk

factors using Mendelian randomization analysis. Genetic

predictions revealed that with every 1-unit increase in Shigella

concentration, the relative risk for myocarditis increases by

38.1%. These findings may guide future microbiome-based

interventions in clinical trials (Luo et al., 2022).

In summary, gut microbiota dysbiosis may be implicated in

myocarditis pathogenesis. Targeting gut microbiota provides novel

clinically relevant strategies for myocarditis treatment. The

mechanisms by which gut microbiota promote myocarditis are

complex and involve dysregulation of the immune system,

inflammation, endothelial dysfunction, and metabolism. By

revealing the role of gut microbiota in the development and

progression of myocarditis, we can gain insight into the disease’s

pathophysiology and devise new therapeutic strategies.
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6 Current strategies for modulating
gut microbiota

The current strategies for modulating gut microbiota include

fecal microbiota transplantation (FMT), live biotherapeutic

productions (LBPs), probiotics, prebiotics, symbiotics, dietary

interventions, gut microbiota enzyme inhibition, and microbial-

drug interactions (Figure 4) (Schneiderhan et al., 2016; Adak and

Khan, 2019; Wargo, 2020).
6.1 Fecal microbiota transplantation

FMT, a natural microbial ecosystem in feces, involves the

transfer of fecal material from a healthy donor to a recipient to

restore a healthy gut microbiota composition and functions (Wang

et al., 2019a). Infant colonization by a specific microbial

community, largely originating from the mother, is a natural

process that rapidly occurs after birth and is influenced by the

delivery mode (Fuentes and de Vos, 2016). As early as the 4th

century BC, Chinese medical books recorded the use of fecal

preparations to treat gastrointestinal diseases (Wargo, 2020).

FMT can effectively treat recurrent Clostridioides difficile

infections, and there is a growing interest in the use of FMT in

other diseases, including inflammatory bowel disease and metabolic

syndromes (Davidovics et al., 2019). The success rate of FMT relies

on the composition of the recipient’s microbiome and the interplay

between the microbiomes of the donor and recipient at both

taxonomic and functional levels (Kazemian et al., 2020). FMT can

provide a diverse range of microbial communities which play an

important role in restoring functional redundancy of gut

microbiota. However, there exist limitations in terms of

reproducibility, whereas factors including safety, donor/recipient
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considerations, dosing, and administration route should be taken

into account when considering FMT. Studies on the use of FMT,

specifically in the context of myocarditis, are limited (Hu et al.,

2019). Further, the safety and efficacy of FMT in myocarditis

treatment should be investigated.
6.2 Live biotherapeutic productions,
probiotics, and synbiotics

1) The LBPs are a type of therapeutic agent comprising many

live microorganisms, typically bacteria, ingested or applied to the

body for disease prevention and treatment (Charbonneau et al.,

2020). They are also referred to as “live biotherapeutics” or “live

biotherapeutic agents” (Dhansekaran and Sankaranarayanan,

2021). They differ from probiotics or prebiotics in that they are

specifically designed to deliver a therapeutic effect (Dreher-Lesnick

et al., 2017; Charbonneau et al., 2020). They are produced under

strict manufacturing processes to ensure the viability and efficacy of

bacteria when administered to the patient. Some clinical trials are

assessing the efficacy of this strategy of regulating gut microbiota in

cancer immunotherapy (Wargo, 2020). The potential of LBPs to

treat various conditions, including gastrointestinal, metabolic, and

immune system disorders is being investigated. A previous review

outlined the factors to be considered during the design and

development of genetically engineered LBPs to ensure compliance

with regulatory standards and gain acceptance from patients

(Charbonneau et al., 2020).

2) Antibiotics are drugs that can kill or inhibit the growth of

bacteria. Excess or improper use of antibiotics can lead to gut

microbiota dysbiosis (Gough, 2022). Probiotic supplementation is a

treatment approach that can promote gut microbiota recovery.

Probiotics are live microorganisms such as Bifidobacterium,

Saccharomyces, Lactic acid bacteria, Lactobacillus acidophilus,

Actinomycetes, and Lactobacillus rhamnosus with health benefits

upon consumption (Hill et al., 2014). Probiotic supplementation

reduces myocardial hypertrophy and heart failure following

myocardial infarction in rat models (Gan et al., 2014). Intestinal

stem cell regeneration was accelerated by Lactobacillus rhamnosus

GG, which promoted colonic barrier recovery in septic mice (Chen

et al., 2023). In vitro, anti-inflammatory activities of probiotic

supernatants are unique, since they can modulate interleukin 1b
(IL-1b), IL-6, TNF-a, and IL-10 production in human macrophages

in distinct approaches (De Marco et al., 2018). Probiotic

supplementation is considered safe for individuals with functional

immune systems (Vallianou et al., 2020). Still, they may induce

immune responses, require cold storage, and cannot be used with

antibiotics (Suez et al., 2019).

3) Symbiotics are combinations of probiotics and prebiotics

with synergistic effects on gut microbiota composition and function.

They are developed to address the potential challenges associated

with probiotics survival in the gastrointestinal tract (Rioux et al.,

2005). Consumption of yogurt and fruits may have combined

health benefits due to their potential prebiotic and probiotic

effects (Fernandez and Marette, 2017).
FIGURE 4

Strategies for regulating gut microbiota based on animal,
bioinformatics, and clinical research. GM, gut microbiota; FMT, fecal
microbiota transplantation; LBPs, live biotherapeutic productions.
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6.3 Prebiotics, postbiotics, and
dietary interventions

1) Prebiotics are nondigestible food ingredients that selectively

stimulate the growth and activities of beneficial gut microbiota. They

primarily consist of bifidogenic, non-digestible oligosaccharides, such

as inulin, its hydrolysis product oligofructose, and (trans)

galactooligosaccharides (de Vrese and Schrezenmeir, 2008).

Prebiotics include nutritional supplements that promote gut

microbiota proliferation. The natural sources of prebiotics include

beans, cereals, and soybean among others (Kerry et al., 2018). They

may reduce inflammatory responses and improve cardiac functions

by regulating gut microbiota. Similar to findings from studies

involving adult studies, prebiotic effects in infant nutrition results

in significant alterations in gut microbiota composition, with a

notable increase in Bifidobacteria levels in fecal matter (Roberfroid

et al., 2010).

2) Postbiotics, gaining attention as health-promoting agents, are

beneficial compounds produced through the metabolic activities of

microorganisms, particularly probiotics. These diverse substances,

including cell wall components, SCFAs, and enzymes, have various

effects on the host, such as modulating the immune system,

improving gut barrier function, and inhibiting pathogenic

bacteria growth (Żółkiewicz et al., 2020);Tsilingiri and Rescigno,

2013). As a stable and safe alternative or complement to traditional

probiotics, postbiotics show promise in maintaining and improving

human health, necessitating additional research to optimize their

production and develop effective therapies.

3) Food plays a vital role in shaping gut microbiota composition

and diversity. Dietary interventions, including the Mediterranean

diet and Dietary Approaches to Stop Hypertension diet, have

beneficial effects on gut microbiota composition and

cardiovascular health (Merra et al., 2020; Drapkina et al., 2022).

The Mediterranean diet, rich in fruits, vegetables, whole grains,

legumes, fish, and olive oil, improves gut microbiota composition,

reduces frailty and improves health status (Ghosh et al., 2020). The

Dietary Approaches to Stop Hypertension (DASH) diet, rich in

fruits, vegetables, whole grains, and low-fat dairy products, reduces

blood pressure and improves cardiovascular health (Maifeld et al.,

2021). A Western-style diet, rich in saturated fats, salt, and sugar,

reduces gut microbiota diversity which increases the prevalence of

inflammatory disease (Statovci et al., 2017). Plant-based diets, rich

in fibers, are associated with increased gut microbiota diversity and

reduced cardiovascular disease risks (Satija and Hu, 2018; Losno

et al., 2021).
6.4 Microbial-drugs interactions and gut
microbial enzyme inhibition

1) The gut microbiome plays a crucial role in mediating host-

environment interactions and exhibits a complex bidirectional

relationship with non-antibiotic drugs. This intricate interplay

involves the microbiome influencing drug efficacy and toxicity,

while simultaneously being affected by the drugs themselves, a

phenomenon known as pharmacomicrobiomics (Weersma et al.,
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2020). We review the relevant research on the interactions between

gut microbiota and cardiovascular medications. Silva et al.

discovered that statin therapy is a key covariate affecting gut

microbiome diversity by analyzing the data from 888 volunteers

in the Body Mass Index Spectrum cohort from the MetaCardis

project. In patients with ACS under statin medications, the

potentially pathogenic bacteria in the gut are reduced, with a

better prognosis. Analysis of fecal samples suggests that the gut

microbial communities of obese individuals taking cholesterol-

lowering statin medications are “healthier” than expected,

suggesting that the potential beneficial effects of statins on gut

microbiota open up new prospects for disease treatment (Vieira-

Silva et al., 2020). Yang et al. discovered a previously unrecognized

mechanism in which the human commensal bacteria, Coprococcus

comes, catabolizes ester ACE inhibitors in the gut, reducing their

antihypertensive effects. The findings revealed that gut microbiota

may play a role in the efficacy of antihypertensive medications,

which could help explain why some individuals remain resistant to

treatment (Yang et al., 2022a). Another study found that liraglutide

could treat patients with type 2 diabetes mellitus by targeting the gut

microbiota (Shang et al., 2021)

In clinical practice, traditional Chinese medicine (TCM) is orally

administered and bidirectionally interacts with the gut microbiota.

These interactions have two primary effects: (1) Enhancing effects:

TCM modulates gut microbiota composition and metabolism,

improving host health while the microbiota enhances TCM

bioavailability. (2) Inhibitory effects: Some TCM constituents can

weaken gut microbiota metabolic functions, and certain microbes

may inhibit TCM absorption and metabolism (Zhu et al., 2023). A

recent review revealed that numerous natural molecules (e.g.,

apigenin, berberine, and quercetin) and plant extracts can

effectively alleviate experimental autoimmune myocarditis. Key

anti-myocarditis mechanisms include the upregulation of Th1-type

cytokines, the elevation of Th2-type cytokines (IL-4 and IL-10),

mitigation of oxidative stress, modulation of mitogen-activated

protein kinase signaling pathways, and increased sarco-

endoplasmic reticulum Ca2+-ATPase levels (Javadi and Sahebkar,

2017). These molecules and extracts can alter the composition and

abundance of gut microbiota, suggesting that they hold great

potential as treatments that target gut microbiota.

The use of antibiotics can not only fight against pathogenic

bacteria, but also affect the intestinal symbiotic flora. Compared to

other antibiotics, the gut symbiotic bacteria are more sensitive to

macrolides and tetracyclines. Some detoxifying agents protect the

gut symbiotic bacteria from antibiotic damage (Maier et al., 2021).

Haak et al. found that a one-week course of combined broad-

spectrum antibiotics (ciprofloxacin, vancomycin, and

metronidazole) has a profound and long-lasting impact on the

gut microbiota of healthy humans, causing loss of diversity and

shifts in community composition. Although the microbiota showed

a remarkable return towards baseline after 8-31 months, the

community composition often remained altered, with the long-

term consequences remaining largely unknown (Haak et al., 2019).

2) Moreover, Mamic et al. summed up the application of gut

microbiome in heart failure and its comorbidities. They highlighted

that targeting gut microbial enzymes, which are not found in the host,
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is a promising approach to overcoming these challenges. The study

focuses on the TMAOmeta-organismal pathway and suggests that 3,3-

dimethy-1-lbutanol, a natural inhibitor of TMA lyases, may be a non-

lethal and elegant strategy to target this pathway. In mice fed a high

choline diet, administration of 3,3-dimethy-1-lbutanol resulted in

decreased circulating TMAO levels, decreased foam cell formation,

and fewer atherosclerotic plaques. Targeted inhibition of microbial

choline-TMAO conversion was also evaluated in a pressure overload

micemodel of heart failure, where it improved cardiac remodeling and

cardiac function. The study proposes that both pharmacologic

modification of the TMAO biosynthetic pathway and targeted

dietary interventions may be viable strategies for modulating the

pathogenesis and progression of heart failure. However, further

human studies are necessary to evaluate the feasibility and efficacy of

this approach (Mamic et al., 2021).

Gut microbiota dysbiosis is implicated in the pathogenesis of

many diseases. The LBPs, FMT, pre/probiotics, postbiotics,

synbiotics, and dietary interventions have the potential for disease

prevention or treatment bymodulating gut microbiota. The future of

promoting overall health and treating diseases by regulating

intestinal microorganisms is becoming clearer, and more strategies

and methods to regulate gut microbiota are known (Wargo, 2020).

The various approaches have shown promising results in animal

studies, however, their effectiveness and safety for myocarditis

treatment should be investigated further. Elucidating the

mechanisms by which gut microbiota contribute to myocarditis

pathogenesis may lead to the development of novel therapeutic

approaches targeting the gut microbiota.
7 Challenges and future direction
of targeted gut microbiota in
myocarditis treatment

Myocarditis is a serious inflammatory disease of the heart

muscles that can lead to heart failure and sudden cardiac death.

The current treatment options for myocarditis are not fully

effective, and there is a growing interest to understand the efficacy

of targeted gut microbiome therapy (Hu et al., 2019). However, this

approach has several challenges, including low efficacy of current

treatment methods and the need for personalized treatment

(Schneiderhan et al., 2016). Therefore, future research is needed

to identify new therapeutic targets. Targeted gut microbiome

therapy for myocarditis aims to restore the balance of bacteria in

the gut and reducing the production of pro-inflammatory cytokines.

However, the complex and diverse nature of the gut microbiome

presents challenges in developing targeted therapies, therefore,

studies should investigate its roles in disease development to

identify effective treatment strategies.

One possible approach for targeted gut microbiome therapy is

the use of gut microbiota-related strategies, including probiotics

and FMT. Probiotics can reduce inflammation and improve

immune functions, which may be beneficial in myocarditis

treatment. FMT can help in restoring the balance of bacteria in

the gut to reduce inflammation (Hu et al., 2019). Elucidating the
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mechanisms of enterobacteria in myocarditis will inform the

development of enterobacteria-targeting drugs. However, a

limited number of studies have investigated the relationship

between enterobacteria and myocarditis. Herein, we summarize

major studies with regard to myocarditis treatment, which may

inspire further research design and direction (Table 1).
7.1 Limitations of treatment methods

The current treatment options for myocarditis are limited, and

there is a need for new approaches to improve outcomes. Targeted

gut microbiome therapy is a promising approach; however, it is still

in the early developmental stages, and more research is necessary to

determine its efficacy and safety. Several challenges and limitations

to the development of gut microbiota-targeted therapies are defined

by alternatives, such as FMT, and LBPs, as well as by the lack of a

clear mechanistic understanding of disease pathophysiology.

Another challenge is the lack of knowledge about the roles of

specific bacteria in myocarditis pathogenesis (Mandelbaum et al.,

2020). Although studies have reported that certain bacteria may be

involved in the development of this condition, it is still unclear

which bacteria are most important and how they interact with the

host immune system (Hu et al., 2019). This limits the capacity to

develop targeted therapies that can effectively treat myocarditis.
7.2 Personalized treatment and
precision medicine

One of the challenges of targeted gut microbiome therapy is the

need for personalized treatment. The gut microbiome is highly

individualized, and bacterial composition can vary widely from

person to person, therefore, a one-size-fits-all approach to

treatment is unlikely to be effective. Instead, personalized treatment

plans that take into account the specific bacteria present in each

patient’s gut microbiome are needed (Wargo, 2020). Precision

medicine approaches, such as genomics, metabolomics, and

various omics techniques can help in identifying specific bacterial

strains that are associated withmyocarditis and develop personalized

treatment plans based on these findings (Caesar et al., 2021).
7.3 Future directions and prospects

Despite the challenges of targeted gut microbiome therapy, it

holds great promise in myocarditis treatment. One direction for

future research is to identify new targets for therapy based on better

understanding of interactions between the gut microbiome and the

host immune system. Studies should aim at investigating the

etiology, pathogenesis, and gender differences of myocarditis

(Tschöpe et al., 2021).

Moreover, it’s possible to apply machine learning and artificial

intelligence to analyze gut microbiome data, which can enhance our

understanding of the connection between the gut microbiome and
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1191936
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2023.1191936
myocarditis. By adopting this innovative approach, we can identify

previously unknown therapeutic targets and create more

personalized treatment plans for individual patients (Loganathan

and Priya Doss, 2022).

There is a need for personalized treatment plans based on

specific bacteria present in each patient’s gut microbiome (Behrouzi

et al., 2019). Targeted gut microbiome therapy has the potential to

revolutionize myocarditis treatment and improve disease outcomes.

There is a need for large-scale animal and clinical trials to evaluate

the safety and efficacy of targeted gut microbiome therapy in

myocarditis treatment. Moreover, studies should also explore the
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optimal timing and duration of treatment and assess the long-term

effects of this therapy on patient outcomes.
8 Conclusion

Myocarditis and inflammatory cardiomyopathy present

considerable threats to human life and well-being by causing

inflammation and damage to the heart muscle, potentially

resulting in severe complications including heart failure,

arrhythmias, and even sudden cardiac death. Nonetheless,
TABLE 1 Exploration of the treatment of myocarditis in previous studies.

Interventions Classification Research
design

Targets Results References

Nanoparticle-
encapsulated
siRNA

Acute
autoimmune
myocarditis

Human studies;
In vivo, and in
vitro, A/J mice
model

CCR2 ↓ Ly6Chigh monocytes (Leuschner et al.,
2015)

PSL-G Experimental
autoimmune
myocarditis

In vivo and in
vitro, A/J mice
model

Macrophages ↓ Pro-inflammatory cytokines (e.g., IL-1a,
IL-6, and TNF-a);
↑ Anti-inflammatory cytokine IL-10;
↑ Macrophage polarization: from the pro-
inflammatory M1 phenotype to the anti-
inflammatory M2 phenotype

(Toita et al., 2021)

Silencing of
microRNA-30a-
5p

Viral
myocarditis

In vivo and in
vitro, BALB/c
mice model

SOCS1 ↓ M1 polarization of macrophages; (Zhang et al., 2021a)

Anakinra Fulminant
myocarditis

In vivo, patient IL-1 receptor ↓ Circulating neutrophils (Cavalli et al., 2016)

Fructus Amomi
Cardamomi
Extract

CVB3
myocarditis

In vivo and in
vitro, mice
model

Undisclosed ↓ Enterovirus replication;
↓Myocarditis damage

(Lee et al., 2016)

Lithium
chloride

CVB3
myocarditis

In vivo and in
vitro, mice
model

Undisclosed ↓Virus-triggered inflammatory responses;
↓CVB3 replication

(Zhao et al., 2020)

Zinc finger
antiviral protein

CVB3
myocarditis

In vivo and in
vitro, BALB/c
mice model

Viral RNA ↓ Viral replication
↓Cardiac inflammatory cytokine production

(Li et al., 2015)

Tripartite motif-
containing 21

CVB3
myocarditis

In vivo and in
vitro,BALB/c
mice model

Mitochondrial antiviral signaling
protein

↓CVB3 replication
↑IFN-b

(Zhang et al., 2012;
Liu et al., 2018; Xue
et al., 2018)

FMT Experimental
autoimmune
myocarditis

In vivo, male
BALB/c mice

Gut microbiota Rebalancing the microbiota composition;
↓Inflammatory infiltration

(Hu et al., 2019)

Liraglutide Experimental
autoimmune
myocarditis

In vivo, male
BALB/c mice

Gut microbiota and immuse
system

↓TNF-a、IL-1b、MCP-1 (Zhang Wenyong,
2019)

Leonurine LPS-induced
myocarditis

In vivo and in
vitro, C57BL/6
mice

NF-кB signaling pathway ↑Cardiac function
↓Cardiomyocyte apoptosis

(Wang et al., 2019b)

Myricetin Experimental
autoimmune
myocarditis

In vivo and in
vitro, male
BALB/c mice

The autoimmune response
specific to myocardium and the
expression of MCP-1

↓Serum anti-cardiac myosin antibody, IgG,
IgM levels, and the Th17 cells.
↓MCP-1, phospho (p)-p65, p-c-Jun and
Act1/TRAF6/TAK1
↑Tregs

(Nie et al., 2023)
CCR2, chemokine (C-C motif) receptor 2; PSL-G, phosphatidylserine liposomes conjugated with protein G; CVB3, coxsackievirus B3; FMT, fecal microbiota transplantation; IFN, interferon; Ig,
immunoglobulin; IL, interleukin; M1, M1 phenotype macrophages; MCP-1, monocyte chemoattractant protein-1; Th17 cells, T helper 17 cells; TNF, tumor necrosis factor; Tregs, regulatory T
cells; SOCS1, suppressor of cytokine signaling 1; si-RNA, small interfering RNA.
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treatment options for myocarditis remain limited and research

efforts face substantial challenges. The gut microbiota is a critical

player in the regulation of immune responses and the maintenance

of cardiovascular health. Gut microbiota dysbiosis is implicated in

myocarditis development and progression, therefore, gut

microbiota modulation may have potential therapeutic effects for

this disease. Targeting the gut microbiota through interventions

such as drugs, probiotics, prebiotics, symbiotics, antibiotics, FMT,

and diet represent promising strategies for myocarditis treatment.

Additional investigations are essential to understand the underlying

mechanisms through which imbalances in gut microbiota promote

myocarditis development. The findings will enable the

identification of optimal strategies for targeting gut microbiota in

the treatment and management of myocarditis.
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Glossary

ACS acute coronary syndrome

AF atrial fibrillation

ApoE apolipoprotein E

BAs bile acids

BCAAs branched-chain amino acids

CAT catalase

CVDs cardiovascular diseases

COVID-19 coronavirus disease 2019

CHD coronary heart disease

COX-2 cyclooxygenase-2

DCA deoxycholic acid

DASH Dietary Approaches to Stop Hypertension

FMT fecal microbiota transplantation

FMO3 monooxygenases 3

FXR farnesoid X receptor

GPR G protein-coupled receptor

GM gut microbiota

HF heart failure

HDAC histone deacetylase

LCA lithocholic acid

Ig immunoglobulin

IL interleukin

IFN interferon

LPS lipopolysaccharide

LBPs live biotherapeutic productions

mTORC1 mammalian/mechanistic target of rapamycin complex 1

MCT monocarboxylate transporters

MYH6 myosin heavy chain 6

NK natural killer

NLRP3 NOD-like receptor family pyrin domain containing 3

PXR pregnane X receptor

PKC protein kinase C

RORgT retinoic acid-related orphan receptor-gamma-t

ROS reactive oxygen species

SCFAs short-chain fatty acids

S1PR2 sphingosine 1-phosphate receptor 2

SOD superoxide dismutase

TMAO trimethylamine-N-oxide

Tregs regulatory T cells

(Continued)
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TNF tumor necrosis factor

TLR4 toll-like receptor 4

TCM traditional Chinese medicine
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