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Acute immune responses in
zebrafish and evasive behavior of
a parasite – who is winning?
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The protozoan parasite Ichthyophthirius multifiliis is an economically important

parasite for the aquaculture- and ornamental fish industry. The parasite is

abundant worldwide and infects the skin, gills and fins of freshwater fish

species. For approximately the last fifty years the innate and protective

immune mechanisms induced by I. multifiliis have been in focus in different

fish hosts. By utilizing transgenic zebrafish, new tools to investigate this have

emerged. The aim of this study was therefore to elucidate early immune

responses in zebrafish larvae by using gene expression and in vivo imaging of

neutrophil and macrophage behavior during infection. For the first time,

zebrafish larvae were infected with the parasite and infection dynamics,

parasite size and host-parasite interactions were investigated. Results showed

that the larvae responded with mild inflammation and that the 12 compared to 5

days post fertilization larvae were significantly less susceptible. It was

furthermore observed that neutrophils and macrophages were attracted to the

parasites and that neutrophils reacted with neutrophil extracellular traps (NETs)

when fighting the parasite. The parasite was rotating vigorously, presumably to

impede the neutrophils and macrophages from attaching to it but on rare

occasions, neutrophils and macrophages were able to kill the parasite. Based

on these observations, we concluded that the parasite uses the rotation as an

immune evasive strategy and that the zebrafish larvae respond with high activity

from neutrophils and macrophages locally but systemically only with

mild inflammation.
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Introduction

Ichthyophthirius multifiliis is a protozoan ciliated parasite that

infects almost all freshwater fish species worldwide and causes white

spot disease with high morbidity and mortality (Jørgensen, 2017).

The disease is a major problem both for the aquaculture- and the

ornamental fish industry with enclosed systems that contain a high

density of fish as it causes severe economic losses for the farmers

and significant suffering for the fish (Dickerson and Findly, 2014).

Thus, research within immunological responses of the host and

parasite behavior is a relevant field in relation to development of

prophylactic measures and safe control methodologies. In nature,

the parasite and the fish are co-existing. Fish density is much lower

compared to fish production systems and white spot disease is a

frequent condition with low intensity not harming the fish

significantly. Whether fish experience a high or low level of

infection, an intriguing host-parasite relationship is taking place

and deserves attention.

The parasite has four life stages consisting of the infectious free-

swimming theronts, the parasitizing trophonts, the free-swimming

tomonts and the pre-theronts called tomites. Within 24 h at 15°C,

the theronts must find a suitable host and as soon as the theronts

penetrate the skin, fins and gills of the host fish they will settle above

the basal lamina and be covered by at least one cell layer of host

tissue (Ewing et al., 1985; Ventura and Paperna, 1985).

Subsequently, they transform into trophonts (the transformation

stage between theront and trophont is, in this paper, termed early

trophont) and start feeding on host materials after some hours

(Matthews, 2005). This parasitizing stage is, as the rest of the life

cycle, dependent on temperature and will last longer at lower

temperatures (Aihua and Buchmann, 2001). When the trophont

is mature, it will exit the host and become a free-swimming tomont.

The tomont will settle on bottom substrates and become encysted in

gelatinous material (Matthews, 2005). Within this so-called

tomocyst, tomites will develop by binary fission and following a

maturation period, become theronts that will exit the cyst and

search for new hosts (Matthews, 2005). One tomocyst can produce

between 50-1000 new theronts and the infection pressure can

quickly become very intense (Hines and Spira, 1974; Dickerson

and Clark, 1998; Matthews, 2005; Jørgensen, 2017).

Zebrafish have become a very popular model species for a

number of reasons, previously described in numerous articles and

reviews (Dooley and Zon, 2000; Traver et al., 2003; Lieschke and

Currie, 2007; Sullivan and Kim, 2008; Shive, 2013; Brugman, 2016;

Bradford et al., 2017; Cayuela et al., 2018; Saleem and Kannan, 2018;

Carnovali et al., 2019; Bhagat et al., 2020; Jorgensen, 2020; Choi

et al., 2021). Larvae only possess innate immune responses for the

first four weeks of life, whereas adult zebrafish have both innate and

adaptive immune mechanisms (Novoa et al., 2006). In previous

studies, adult zebrafish have been shown to be more resistant

towards I. multifiliis compared to most other fish species (Cherry,

2003; Jorgensen, 2016a), opening up an opportunity for

investigating mechanisms of natural protection. To elucidate the

innate responses in this natural protection, we chose to infect

zebrafish larvae. The host-parasite relationship has until now only

been studied in adult zebrafish where it was shown that two day old
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parasites are able to ingest and kill immune cells, which are

approaching and attacking the parasite (Jorgensen, 2016b;

Jorgensen et al., 2018). It was furthermore documented how

trophonts continuously rotate and move around under the

epidermis of the host fish (Jorgensen, 2016b).

The early naïve responses (responses from fish that encounter

the pathogen for the first time) towards especially heavy infections

with I. multifiliis in adult or juvenile fish include inflammatory

responses (Ewing and Kocan, 1992; Cross, 1994; Gonzalez et al.,

2007a; Jorgensen et al., 2018; Syahputra et al., 2019) and activation

of the adaptive arm of the immune system (Dickerson and Findly,

2017; Jorgensen et al., 2018; Syahputra et al., 2019). It has been

described how leucocytes get attracted to the parasite but are unable

to harm it (Ventura and Paperna, 1985; Cross and Matthews, 1993;

Cross, 1994). The parasite is, on the contrary, able to harm or

neutralize the cells (Ewing et al., 1985; Ewing and Kocan, 1992;

Jorgensen, 2016b). Leucocytes such as macrophages, neutrophils,

basophils and eosinophils are known to be major players in the

acute immune response (Ventura and Paperna, 1985; Cross and

Matthews, 1993; Jorgensen, 2016b). Macrophages are important

effector cells in inflammation, tissue repair and regeneration

(Bohaud et al., 2021). They are phagocytic cells important for the

host defense against pathogens but also function like a vacuum

cleaner clearing up apoptotic cell debris during development and

inflammation. They connect the innate and the adaptive arm of the

immune system and regulate immune responses (Mosser and

Edwards, 2008; Renshaw and Trede, 2012; Bohaud et al., 2021).

Neutrophils are mostly found in tissues, not in the blood, and

represent the majority of leucocytes in zebrafish larvae from two

days of age (Deng et al., 2011; Renshaw and Trede, 2012). These

cells are also phagocytic, kill pathogens and repair wounds

(Renshaw et al., 2006). Both neutrophils and macrophages have

pattern recognition receptors (PRRs) that recognize pathogen

associated molecular patterns (PAMPs) and damage associated

molecular patterns (DAMPs), originating from pathogens and

tissue damage, respectively (Alvarez-Pellitero, 2008; Li et al.,

2017). Using a fluorescent neutrophil reporter line Tg(MPX:

eGFP)i114 it was demonstrated that neutrophils were actively

involved in both the innate and adaptive response against the

parasite in adult fish. In the same study, gene expression analyses

revealed that a classical proinflammatory and a Th2-like response

were induced in immunized zebrafish (Jorgensen et al., 2018). I.

multifiliis-induced tissue damage and the pathogen itself will

activate cells bearing PRRs, which may initiate inflammation and

an acute phase response. This, however, does not resolve the disease

in most fish species (Ewing et al., 1985; Cross, 1994; Jorgensen,

2016a; Jorgensen, 2016b; Jorgensen et al., 2018) even though many

parasites are killed or die immediately upon entry (Ventura and

Paperna, 1985). Infections with few parasites induce a very limited

local response securing compatibility between the host and the

parasite and both species will survive (Ventura and Paperna, 1985).

In this study, we have for the first time infected zebrafish larvae

with I. multifiliis to elucidate the acute innate immune response and

investigate the host-parasite relationship. Several experiments were

conducted to analyze: 1) infection dynamics of the parasite in 5 and

12 days post fertilization (dpf) larvae; 2) size of the parasite in larvae
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(5 dpf) and juvenile fish (28 dpf); 3) the inflammatory profile of 5

and 12 dpf larvae; 4) behavior of neutrophils and macrophages in

the response against I. multifiliis in 5 and 12 dpf larvae at 5 hours

post infection (hpi); 5) real-time imaging of host-parasite

relationships in 5 and 12 dpf larvae at 5 hpi.
Materials and methods

To our knowledge, this is the first time zebrafish larvae have been

experimentally infected with I. multifiliis. Therefore, some basic

investigations were conducted, including size measurements of the

growing parasite and estimation of infection levels. These findings

complement the in-depth complex immunological and host-parasite

studies. Furthermore, three different age groups of zebrafish (5, 12

and 28 dpf) were used to include the early-, middle- and late stage of

innate immune responses. Not all investigations were conducted on

all age groups due to limited availability of the parasites.

We followed all ethical considerations described in the

associated license 2021-15-0201-00951 obtained from the Animal

Experiments Inspectorate under the Danish Ministry of

Environment and Food.
Infection with I. multifiliis

Due to ethical considerations, it is not allowed to keep the I.

multifiliis infection in the laboratory. Therefore we needed to obtain

the parasite from a pet shop prior to each experiment and

consequently used a different isolate with distinctive infection

pattern in different experiments. Fish were euthanized with an

overdose of the anesthetic tricaine methanesulfonate (MS222,

Sigma-Aldrich). Subsequent steps were conducted at 26-27°C.

Following euthanization, the fish were immediately transferred to

sterile-filtered (Minisart®Syringe Filter, pore size 0.45 mm) facility

water where the parasites exited the fish, settled on bottom surfaces

and within the next 24 hours infective theronts appeared. The

concentration of theronts was determined by counting 5

subsamples of 10 µL water and calculating the average theront

density. The infection was conducted with a calculated amount of

water with theronts to obtain the predetermined infection level,

which was added directly to relevant wells.
Fish

In the experiment 5, 12, and 28 dpf larvae were used of an AB

wildtype strain and a double transgenic line obtained by breeding Tg

(MPX : GFP)i114 (Renshaw et al., 2006) and Tg(Mpeg:mCherry-

CAAX)sh378/+ (Ellett et al., 2011). Water conditions in the facility

were: pH 7.5, conductivity approximately 800 µS, water temperature

27°C and 10% of the water was exchanged every day and replaced

with de-ionized water running through an RO installation.
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Experimental design

The I. multifiliis infection lasted maximally 72 h and within this

period all sampling was conducted. We chose to collect samples for

qPCR and imaging within the first 8 hours of infection because we

have previously observed that the larvae sometimes are able to expel

the parasites within approximately 7.5 hours.
Determining the infection level

To estimate the level of infection an experiment was set up as

seen in Supplementary Figure 1A.

Four 6-well plates were used for the experiments. All 24 wells

contained 10 WT zebrafish larvae in 5 mL sterile filtered facility

water and the experiment was performed in triplicate. Each well was

inoculated with a determined concentration of theronts and 24 h

after infection all larvae were anaesthetized in 150 mg/L MS222,

and the parasites, which successfully had infected the larvae, were

counted. This setup was used both for 5 and 12 dpf larvae. Triplicate

data was analyzed using a Kruskal-Wallis test in GraphPad Prism 9

(GraphPad Software, LLC) and if no significant difference was

evident the data was pooled. The difference between the data for

5 and 12 dpf larvae was analyzed using a non-parametric Student’s

t-test (p<0.05).
Measuring the size of I. multifiliis

To estimate the increase in size of the parasite and correlating

this to age of the fish we infected 5 dpf larvae with 50, 100 and 300

theronts/larva and 28 dpf zebrafish with 1000 theronts/fish. Images

were obtained 5, 24, 48 and 72 h following infection. At 72 h almost

all parasites had left the fish. Five-day old larvae were embedded as

described in the Imaging section and euthanized following imaging.

The 28 dpffish were euthanized in an overdose of MS222 and bright

field images were obtained as soon as the fish became immobile.

The Zen lite software (Zeiss) was used to measure the size of the

parasites. First the scalebar was implemented to the images and

subsequently, a line drawing tool was used to precisely measure the

diameter of the parasite. Data was analyzed using a linear regression

test in GraphPad Prism 9.
qPCR

To conduct qPCR for larvae at both 5 and 12 dpf in triplicate the

experiment was set up as shown in Supplementary Figure 1B. We

used four 6-well plates and placed 10 WT larvae in each of 18 wells

in 5 mL sterile filtered facility water. Half of the wells contained

uninfected larvae serving as time point controls and the other half

contained infected larvae (50 theronts/larva). All 10 fish in each well
frontiersin.org
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were sampled at 2, 5 and 8 hpi. When sampling, MS222 was added

to each well until larvae were anaesthetized. Subsequently, larvae

were collected and placed in Eppendorf tubes. Here they were given

an overdose of MS222 (500 mg/L) and after one minute the fluid

was removed and 200 µL RNAlater (Sigma-Aldrich) was added.

Tubes were kept at 4°C for 24 h and subsequently at -20°C until

further processing. cDNA was generated and qPCR reactions

conducted as described in Marana et al., 2022 (Marana et al.,

2022). The panel of genes investigated for this experiment can be

found in Supplementary Table 1. An average of three housekeeping

genes (b-actin, elf-a and rpl13) was used. Fold change was

calculated according to Livak and Schmittgen (2001). Data was

analyzed using a Student’s t-test assuming a Gaussian distribution,

comparing each age group to the time point control.
Imaging

For imaging, a standard procedure for sample preparation and

embedding was used. Briefly, 5 and 12 dpf larvae were anaesthetized

in 150 mg/L MS222 5 hpi and subsequently transferred to dishes

(WillCo-dish) with thin glass bottoms suited for microscopy. Here

the water and MS222 was removed, and larvae were embedded in

40°C low melting point agarose as follows: a heated low melting

point agarose (Sigmal Aldrich) was added to the anaesthetized

larvae. The low melting point gel consists of 89.2% sterile filtered

fish facility water, 10% 1.75g/L MS222 and 0.8% low melting point

agarose (Sigma-Aldrich). The larvae in the gel were aligned to the

bottom of the glass bottomed petri dish. The gel with larvae was

allowed to solidify for 20 minutes and was subsequently covered in

sterile filtered facility water containing 150 mg/L MS222 to keep the

larvae anaesthetized. Afterwards, images were obtained either by a

stereo fluorescence microscope (Zeiss V8) or by confocal laser

scanning microscopy (Leica Stellaris 8, Leica Microsystems). For

both microscopes, settings detecting green fluorescent protein

(GFP) (excitation and emission peaks at 488 nm and 510 nm)

and mCherry (excitation and emission peaks at 587 nm and 610

nm) as well as for the acquisition of bright field images were used.

Images from theZeissmicroscopeswere imported into Fiji Image J

and adjusted to optimize visualization (brightness/contrast) of

neutrophils, macrophages, and parasites. Confocal images and

videos were recorded with a HC PL APO CS2 40x/1.25 glycerol

immersion objective and laser lines at 489 nm and 587 nm and

detection settings 494 nm to 572 nm and 593 nm to 839 nm for GFP

andmCherry detection, respectively. Videoswere recorded as Z-stacks

(30 µm depth, 25 steps) and time series (4 stacks per minute). The

presented video represents a maximum intensity projection of the

three-dimensionaldata. In thefluorescence channels, themediannoise

reduction algorithm (radius 2, 2 iterations) of the imaging software

(Leica Application Suite X, Leica Microsystems) was applied.

In order to observe host-parasite interactions, images and

videos were captured to illustrate parasite behavior and immune

cell responses (i.e. neutrophils and macrophages). Four different

scenarios that were encountered at least twice are described in the

results section. Some events are rare, and their frequency cannot be

estimated with the limited data acquired in this study.
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Counting phagocytes

To estimate the neutrophil and macrophage population in 5 and

12 dpf zebrafish larvae, phagocytes were counted using images from

a stereo fluorescence microscope (Zeiss V8). The anaesthetized

larvae were embedded as described in the Imaging section. For the

neutrophil and macrophage prevalence analysis, images of the tail

region of un-infected fish were captured and the total number of

phagocytes in the 5 and 12 dpf larvae was manually counted

between the anal opening and the caudal fin using the multi

point function in Fiji Image J (Supplementary Figure 2). The

difference between the data for 5 and 12 dpf larvae was analyzed

using a Students t-test (p<0.05).

Results

Five and 12 day old zebrafish larvae were infected with I.

multifiliis to elucidate infection dynamics as well as the host

immune response and the host-parasite relat ionship.

Furthermore, the size of the parasites was followed in 5 and 28

day old fish during 72 hours of infection.
Infection dynamics

For the first time, zebrafish larvae were experimentally infected

with I. multifiliis (Figures 1, 2). Because of the small size of the larvae

and the relatively large size of the parasite, it was possible to count the

total amount of parasites on the two different age groups of zebrafish

larvae (Figure 2A). There was no significant difference between the

triplicate groups, and they were therefore pooled. Five dpf larvae

carried significantly higher parasite burdens compared to 12 dpf

larvae at infection pressures of 40 and 160 theronts/larva at 24 hpi.

All larvae exposed to higher concentrations than 320 theronts/larva

became moribund and were euthanized. The percentage of parasites

that successfully established in the skinor thefinsof thefish (Figure2B)

showed a low level of correlation to infection pressure (for 5 dpf larvae

R2 =0.25and for12dpf larvaeR2 =0.14).Approximately10%and5%of

the theronts successfully established in the 5 and 12 dpf

larvae, respectively.
Duration of infection and size of the
parasite

In the28dpffish, noparasiteswere foundat72hpi andat96hpi the

parasites that were left on the 5 dpf larvae exited the fish during the
FIGURE 1

Five day old zebrafish larva (5 mm) infected with I. multifiliis
parasites. The image was obtained 24 h after infection. White arrows
point to three out of many trophonts in the skin.
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handing process before images could be obtained. The I. multifiliis

diameter was measured to estimate the growth of the parasite on

zebrafish larvae (Figure 3). There is a positive correlation between the

size of the parasite and the time from infection (r2 = 0.85 for 5 dpf and

r2 = 0.89 for 28 dpf). Furthermore, there is no significant difference

between the size of the parasites on 5 and 28 dpf larvae.

Gene expression

A panel of immune-relevant gene expressions were analyzed

using qPCR. Most genes were not significantly regulated except for

five (Figure 4). At two hpi, the gene encoding serum amyloid A

(saa) was upregulated in the 5 dpf group; the macrophage-

expressed gene (mpeg1.2) was upregulated in the 12 dpf group;

the C-X-C motif ligand 8 (cxcl8a) was upregulated for both 5 and 12

dpf larvae whereas nfkb and c3 were downregulated for the 12 dpf

larvae. At 5 hpi, the genes for nuclear factor kappa B (nfkb), the
complement factor 3 (c3a) and saa were downregulated in the 12

dpf group. In the 5 dpf larvae saa was also downregulated at 5 hpi.

At 8 hpi, mpeg1.2 was upregulated in the 5 dpf group.
Imaging

To investigate the early role of neutrophils and macrophages in the

host response to the parasite and to investigate the parasite behavior,
Frontiers in Cellular and Infection Microbiology 05
FIGURE 3

Parasite size (diameter) related to time of infection. Dotted lines
represent linear regression. There is a positive correlation between size
and period of infection (r2=0.85 for 5 dpf and r2=0.89 for 28 dpf).
A

B

FIGURE 2

Infection data on zebrafish larvae 5 and 12 dpf infected with I.
multifiliis. (A) The parasite burden is shown in relation to infection
pressure. Survival curves (dotted lines) are associated to the right Y-
axis. (B) Percentage of infection success is shown in relation to
infection pressure. *indicates statistical difference with P<0.05 using
a Student’s t-test.
FIGURE 4

Gene expression conducted on zebrafish larvae 5 and 12 dpf infected
with I. multifiliis. The figure shows significantly regulated genes out of
a whole panel of immune-relevant genes investigated (Supplementary
Table 1). * indicates statistical significance with P<0.05.
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larvae of a double transgenic reporter line with fluorescent neutrophils

(green) and macrophages (red) were infected with I. multifiliis. Images

and videos were obtained with live fish and live parasites at 5 hpi.

Four different host-parasite interactions were observed (but not

quantified) during imaging of 5 and 12 dpf infected larvae, and

these data are used to support interpretation of the infection

dynamics, the phagocyte count and the gene expression data:
Fron
1) Phagocytes surrounded the parasites but had limited effect

(Figure 5). In at least 5 images of different parasites this

scenario was observed and most of the time both

neutrophils and macrophages were near the parasite but

sometimes only one of the cell types was present.

2) The parasites were able to go unnoticed by the phagocytes

(Figure 6). This scenario was observed on at least 5 images of

different parasites and often unnoticed parasites were located

in the fin.

3) Phagocytes were able to kill the parasites (Supplementary

Video 1). This situation was observed at least twice but only

videorecorded once.

4) Parasites left the interstitial space especially when surrounded

bymany phagocytes. This was observed at least three times. It

was however, also observed that parasites sometimes left the

interstitial space without being surrounded by phagocytes.
The rim of the interstitial space hosting the parasite was often

covered byneutrophils andmacrophages (Figure 5), but the parasitewas

at the same time still rotating and active (Supplementary Video 2). This

particular parasite was followed for 8 h and the situation never changed.
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In some cases when multiple parasites had infected the larvae

(Figure 6), only some parasites were attracting phagocytes. The

parasites were alive when images were obtained (Supplementary

Video 3).

Using confocal microscopy, high resolution video recordings

were captured illustrating phagocyte cell behavior when these cells

were interacting with the parasites (Supplementary Video 1). This

particular video shows how neutrophils and macrophages attack

one parasite. During the sequence a neutrophil dies and green

fluorescence from the dead cell is distributed in the interstitial

space. Neutrophil extracellular trap (NET) formation was

furthermore visible by balloon like structures (indicated in the

video) for one neutrophil. An overview image of the parasite

location in the larva is provided in Supplementary Figure 3.
Phagocyte count

To estimate if 12 dpf zebrafish larvae had a larger population of

phagocytes, the cells were counted in 5 and 12 dpf larvae. Even

though the 12 dpf larvae had a higher mean number of both

neutrophils and macrophages, no significant difference between

the phagocyte numbers was evident (Supplementary Figure 4).
Discussion

For the first time, zebrafish larvae were experimentally infected

with I. multifiliis (Figure 1). Apart from the availability of various

transgenic lines that enable immunological investigations, the use
FIGURE 5

Live imaging of the head of a five-day old zebrafish five hours after infection with I. multifiliis. A parasite is found on the ventral side (arrow) of the
fish. (A) Green fluorescent neutrophils, (B) red fluorescent macrophages, (C) white light illumination, (D) A merge of (A–C). Videorecording of this
parasite rotating is found in Supplementary Video 2.
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ofzebrafish larvae is also of great value because of the species’

relative resistance to I. multifiliis infection. We conducted basic

investigations on infection success and growth of the parasite in

very young fish to evaluate the suitability of the zebrafish larvae

model to study the host-parasite relationship. Using larvae younger

than four weeks furthermore facilitated investigations of host innate

response since the adaptive arm of the immune system only

becomes functional from 4-6 weeks (Novoa et al., 2006).
Infection dynamics

Five and 12 dpf larvae were able to receive an infection with I.

multifiliis of up to approximately 320 theronts/larva without

becoming moribund (Figure 2). Therefore, infection establishment

in these two different age groups was investigated. Because a

difference in infection success between the two age groups was

evident (Figure 2A), the level of infection was not only a question

of the infectivity performance of the theronts, but also a question of

how severely the host responds to infection. The percentage of

successful establishments of the parasites in the host’s skin

(Figure 2B) did not change with a rising infection pressure (from

10-320 theronts/larva). The infection success is, therefore, only

dependent on the compatibility between the host and parasite and

not on short term stress possibly induced by infection pressure. The

one-week older group of larvae (12 dpf) was more resistant towards

the parasite (Figure 2A), indicating that the innate immune response

or other factors at this life stage are more harmful for the parasite.

Several infection trials were conducted for this investigation with
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varying infection success between the isolates. This led us to conclude

that infection severity relies heavily on the parasite isolate of I.

multifiliis. Virulence factors for this parasite still need to be described.

To investigate duration of the infection in zebrafish larvae and

the increase of parasite size, the infection was conducted in 5 and 28

dpf larvae. The parasites stayed one to two days longer on the 5 dpf

larvae demonstrating that the older fish created a more hostile

environment around the parasite forcing it to exit prematurely. The

size of the infective stage of the parasite is dependent on abiotic

factors such as temperature and pH and with increasing

temperatures and lower pH it is known that the theronts decrease

in size (Aihua and Buchmann, 2001; Tange et al., 2020). In the

zebrafish larvae, the trophonts (feeding stage) reached a much

smaller size compared to what has been observed in other fish

species (Matthews, 2005). It is possible that the size of trophonts is

also affected by temperature, which may explain the relatively small

size of these trophonts but more likely, the size is a result of the

zebrafish larvae being a less compatible host for the parasite creating

an unfavorable environment. The size of the parasites was similar

across the two age groups implying that as long as the parasites are

in the fish they are not impeded from eating.

During the parasitic stage the parasite is continuously growing

and is ingesting a constantly increasing amount offish material. It is

known from a previous study that the parasite ingests active

neutrophils (Jorgensen, 2016b) and neutralizes them but several

studies have also demonstrated breakdown of leucocytes in the

interstitial space (Ewing et al., 1985; Cross, 1994). In Supplementary

Video 1 a neutrophil death is real-time documented taking place in

or around the interstitial space hosting the parasite. Whether or not

the cell death is induced by the parasite remains to be demonstrated.
FIGURE 6

A twelve-day old zebrafish larva, five hours after infection with I. multifiliis. Three parasites are found on the ventral side (arrows and arrow heads)
between the anal opening and the tail fin of the fish. (A) Green fluorescent neutrophils, (B) red fluorescent macrophages, (C) white light illumination,
(D) A merge of (A–C, E) overview of image area marked with a white rectangle on a whole larva. A videorecording of these parasites rotating is
found in Supplementary Video 3. Parasites surrounded by phagocytes are shown with arrow heads and a parasite appearing undetected by the
immune system is indicated by an arrow.
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It is also possible that the phagocyte’s oxidative defense

mechanisms damage host’s own cells. Nonetheless, the response

must be tightly regulated to avoid too much local self-damage.
Gene expression

Gene expression analyses showed that the macrophage-expressed

gene mpeg1.2 specific for macrophages (Benard et al., 2015) was

upregulated in the 5 and 12 dpf larvae (Figure 4). Additionally,

imaging analyses documented activation of macrophages supporting

at least a locally induced activation (Figures 5, 6). Macrophages and

neutrophils have a close collaboration and the two groups of cells

chemically communicate (e.g. chemoattractants) to regulate the

response (Bouchery and Harris, 2019). Mpeg1.2 has been shown to

be induced by infection and functions in a pore-forming membrane

complex associated with host defense (Benard et al., 2015). The 12 dpf

larvae had not, however, a significantly higher numbers of

neutrophils and macrophages when the populations were estimated

(Supplementary Figure 4). The phagocytes may, on the other hand be

more efficient at this stage. Before 5 dpf, only IRF8-dependent

macrophages are produced but in larvae/juveniles older than 5-6

days, IRF8-independent macrophages are also developed from the

kidney (Shiau et al., 2015). The latter cell type may be functionally

different from IRF8 dependent cells (Qi et al., 2009) and perhaps

represent a subset more effective in natural protection against I.

multifiliis in older zebrafish. This is speculative and other factors may

as well play a role, requiring further investigations. It is, however,

known from mammals that different phenotypes of macrophages

exist (Xue et al., 2014). In mammals it has been found that IRF8-

silenced monocyte-derived macrophages display an M2 (healing)

phenotype (Ototake et al., 2021) and that IRF8 inhibition negatively

impacts M1 (inflammatory) macrophage mediators but not M2

mediators (Guo et al., 2017). It is also possible that since IRF8-

independent macrophages are produced more in the head region

compared to the tail region (Shiau et al., 2015), increase in the total

number of macrophages was not detectable in the tail region.

Phagocytes do, none the less, play an important role in protection

against I. multifiliis in locally affected microenvironments, which was

documented with images and videos (Figures 5, 6; Supplementary

Video 1).

Differentially expressed genes revealed a very early response

including an upregulation of the gene encoding the proinflammatory

chemokine Cxcl8, which is known to recruit neutrophils to the

affected site through chemotactic stimuli (van der Aa et al., 2010;

van der Vaart et al., 2012). Imaging supported that the larvae are

responding with neutrophil activation in infected microenvironments

(Figures 5, 6; Supplementary Video 1) and in a few cases, neutrophils

and macrophages managed to kill single parasites (Supplementary

Video 1). Both PAMPs from the parasite and DAMPs from the

infection site activate the immune cells. It has been described that

NETs are utilized during neutrophil swarming in zebrafish, but

whether the observed clusters around the parasites are swarms,

remains to be determined (Isles et al., 2021). In this study, for the

first time, NETs as a response to I. multifiliis early infection has

been documented.
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The apolipoprotein SAA, which is involved in the acute phase

response and more specifically involved in the inflammatory

process and acting as chemoattractant (Gonzalez et al.,; Kania

et al., 2014), has been shown to be highly upregulated in both

carp, rainbow trout and zebrafish infected with I. multifiliis

(Gonzalez et al.,; Jorgensen et al., 2008; Jorgensen et al., 2018). In

this study, a minor upregulation of saa in the 5 dpf larvae,

immediately after infection, may indicate a role for SAA in the

acute response towards infection. The gene is, however,

downregulated at 5 hpi for both 5 and 12 dpf larvae indicating

that the contribution of this acute phase protein is transient.

Nfkb plays an important part in the development (Correa et al.,

2004) and in the regulation of inflammatory and immune responses

(Saleh et al., 2019). It is activated by the proinflammatory cytokines

Il1b and Tnfa and is also associated with the innate immune cell

inflammatory response (Nivon et al., 2012; Shih et al., 2015). The

downregulation observed here could indicate restriction of the

immune and inflammatory responses to limit self-damage to

the host. With a limited response during a mild infection the host

and parasite become compatible and the parasite can co-exist in the

fish host (Ventura and Paperna, 1985). Zhao et al., 2013 on the

other hand found upregulation of TAK1 from 6 and 12 h in spleen

and skin respectively in 50 g grass carp infected with I. multifiliis,

which downstream activates the nfkb pathway (Zhao et al., 2013).

Our sampling could be too early to detect an activation of the nfkb
pathway or as, mentioned by Ventura and Paperna 1985: the carp

species is, compared to other fish species infected with I. multifiliis,

the only one reacting with an intense cellular infiltration of the

epithelial layer during the early stage of infection (Ventura and

Paperna, 1985).

A general trend was, that the larvae reacted with mild

proinflammatory responses at 2 and 8 hpi and for 4 out of 5

genes a neutral- or downregulation at 5 hpi. We suggest that the 2

hpi response is due to mechanical damage, attempts to penetrate

and penetration of the epithelium by the parasites. At 5 hpi most

parasites that were able to enter the fish may have settled in the

interstitial space and may immunosuppress immune responses. At

8 hpi the larvae may react to some of the early trophonts. Many

genes did not significantly change expression pattern and in this

setup, it is possible that the local responses at infection sites

drowned in the global expression.
The host-parasite relationship

Numerous observations of I. multifiliis infections in zebrafish

larvae have provided us with theories on immune evasive behavior.

One thing is clear – as long as the parasites are alive, they rotate and

they rotate even faster when they are small and vulnerable (Dehai

et al., 2000). Immune cells are most of the time prevented from

interacting with the rotating parasite. Phagocytes struggled to get

inside the interstitial space created by the parasite and neutrophils

responded with NETs formation. From our timelapse observations,

it appears that phagocytes move around the parasite, but their

movement is much slower than the rotation of the early trophonts,

hindering successful attachment and attack. Previously, it was
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believed that the rotation was a feeding strategy and a physical

mechanism to keep an open space around the parasite (Dickerson

and Dawe, 1995; Dehai et al., 2000). We propose that the rotation

strategy of the parasite also is a major immune evasive strategy. It

has been described howmyxozoan parasites use a similar strategy to

avoid host responses (Hartigan et al., 2016). Antibodies can bind to

cilia and may stop the rotation, explaining why adaptive immunity

with a high production of specific antibodies is efficient against

these parasites (Clark et al., 1996; Jorgensen et al., 2011; Xu et al.,

2013; Xu et al., 2016). When immune cells or other factors such as

immunoglobulins manage to kill the parasite, the rotation stops

(obviously) (Supplementary Video 1). We have only observed

killing of parasites within the first 5-7 h of infection before the

early trophont starts eating. When the mouth of the trophont is

developed and it is capable of feeding, it can ingest and neutralize

immune cells (Ventura and Paperna, 1985; Olsen et al., 2011;

Jorgensen, 2016b). This has led us to believe that a severe battle

between I. multifiliis and the zebrafish host, determining how severe

the infection will become, lies in the early phase of infection before

the early trophonts transform into feeding trophonts. It has been

described that zebrafish appear more resistant towards the parasite

than other species of fish (Jorgensen, 2016a), and here we document

that phagocytes play a role in natural protection in zebrafish.

Single parasites create an interstitial space and secrete proteases

and proteins involved in proteolytic and phagocytic activities

during invasion, growth and development to destroy host tissue

and immunosuppress the host locally (Jousson et al., 2007; Saleh

et al., 2021). It has also been shown that the immunogenic GPI-

anchored immobilization antigens originating from the parasite

cilia and cell membrane are found in the surroundings of the

parasite (Dickerson and Findly, 2014). This could act as a

possible decoy mechanism where the host immune response is

lured away from the real danger. Combined with its rotation, the

parasite appears relatively safe in the interstitial space establishing

host-parasite compatibility. If the early trophont leaves the

interstitial space, a more severe response is triggered in the host

tissue and the parasite becomes vulnerable to the host immune

system, as described in the work by Ventura and Paperna in 1985

(Ventura and Paperna, 1985). It appears as if both the parasite and

the host try to limit the reaction during mild infections, which

would be the most beneficial situation in the wild. Heavier

infections increase the immune responses and the subsequent

protection level, indicating that the host responds according to

the overall danger the parasite represents. Heavy infections,

experienced in enclosed fish production systems, will cause too

much damage to the susceptible hosts. The fish get exhausted and

succumb to the disease and, at the same time, the parasite will not

be able to continue its life cycle and dies. In this situation, the

parasite and host are incompatible.

The innate immune response of the host is similar between

mechanical injury and I. multifiliis infection in the early phase

(Gonzalez et al., 2007a; Gonzalez et al., 2007b), indicating that the

response is not related to the parasite, but mainly to the mechanical

damage (DAMPs). It could, therefore, be suggested that the parasite

must quickly create an interstitial space to protect itself from the

more specific immune response. When the parasite grows, it ingests
Frontiers in Cellular and Infection Microbiology 09
host immune cells (Ventura and Paperna, 1985; Olsen et al., 2011;

Jorgensen, 2016b) and the host immune response becomes

alleviated. These more mature parasites can move around

unharmed under the host’s cell layers covering it.

To further document the role of neutrophils and macrophages

in the response against I. multifiliis future studies should include the

utilization of depletion lines (Rosowski, 2020). The parasites may be

sensitive to the compound metronidazole, which is one way to

initiate depletion, but other depletion methods should be applied as

well. Studies of the parasite virulence factors should also be

investigated to better understand the host-parasite interaction.
Conclusion

White spot disease is a major problem for freshwater aquaculture

all over the world and in this study, the immune response of the fish

host and the parasite behavior were scrutinized. We can confirm that

zebrafish larvae infectedwith I.multifiliis represent an excellentmodel

to elucidate host-parasite relationships. Older larvae (12 dpf) were

more resistant than younger larvae (5 dpf) indicating that older larvae

manage to create a more hostile environment for the parasite. It was

shown that phagocytes were often attracted to the parasite and tried to

eliminate it. In some cases, immune cells successfully killed the

parasite, notably with neutrophils utilizing NETs. The larvae reacted

with mild, whole-body inflammation but in local microenvironments

the phagocyte responses were dominating and severe. The parasite

appeared to locate itself in an interstitial space and rotate vigorously in

the early phase of infection, proposedly, as an immune evasive strategy

to hide and protect itself from attacks by the phagocytes and possibly

other factors of the host’s immune response.
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SUPPLEMENTARY TABLE 1

Gene assays used in the qPCR analyses. Sequence of primers, probes, length
of product and GenBank accession number is shown.

SUPPLEMENTARY VIDEO 1

I. multifiliis trophont surrounded by neutrophils (green, top left panel) and

macrophages (red, top right panel). A dead neutrophil and subsequent green
coloration in the interstitial space (arrows 1 and 2 respectively) and NETs

formation were observed (arrow 3). The parasite can be observed in bright
field (bottom left), the bottom right panel shows an overlay. The video shows

a timelapse recording over 20 min, at the end of which the parasite dies

(arrow 4).

SUPPLEMENTARY VIDEO 2

Live imaging of the head of a five-day old zebrafish five hours after infection

with I. multifiliis. A rotating parasite is found on the ventral side of the fish.

SUPPLEMENTARY VIDEO 3

The part towards the tail fin after the anal opening of a twelveday old zebrafish

five hours after infection with I. multifiliis. Three rotating parasites are found
on the ventral side of the fish.

SUPPLEMENTARY FIGURE 1

(A) Four 6-well plates with 10 zebrafish larvae in each of all wells. Each well

was infected with a certain concentration of the parasite I. multifiliis from 10
to 1280 theronts/larva. Twenty-four hours after infection the fish were

anaesthetized, and the parasites were counted. This setup was used both
for 5 and 12 dpf larvae. t = theronts. (B) Four 6-well plates with 10 zebrafish

larvae in each of 18 wells. Half of the wells contained uninfected larvae as time

point controls; the other half contained larvae infected with 50 I. multifiliis
theronts/larva. Sampling was conducted at 2, 5 and 8 h after infection. This

setup was used both for 5 and 12 dpf larvae. Created with Biorender.com.

SUPPLEMENTARY FIGURE 2

Phagocyte counting method. Cells were counted manually. (A) The whole
fish with a square indicating the region of interest. (B, C) Counted neutrophils

and macrophages, respectively, marked with a plus and a number. (E, F)
Neutrophils and macrophages, respectively, in the region of interest. F)
Region of interest illuminated with white light. (G) A merged image of (D–F).

SUPPLEMENTARY FIGURE 3

An overview image of the location of the parasite (arrow) in Supplementary

Video 1 in a double transgenic 5 dpf zebrafish larvae with green fluorescent

neutrophils and red fluorescent macrophages.

SUPPLEMENTARY FIGURE 4

Neutrophils and macrophages were counted in the region between the gat

and the caudal fin in 5 and 12 dpf zebrafish larvae, respectively. There was no
significant difference between the two age groups.
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