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As a highly conserved, multifunctional protein with multiple domains, p62/

SQSTM1 plays a crucial role in several essential cellular activities, particularly

selective autophagy. Recent research has shown that p62 is crucial in eradicating

intracellular bacteria by xenophagy, a selective autophagic process that identifies

and eliminates such microorganisms. This review highlights the various roles of

p62 in intracellular bacterial infections, including both direct and indirect,

antibacterial and infection-promoting aspects, and xenophagy-dependent and

independent functions, as documented in published literature. Additionally, the

potential applications of synthetic drugs targeting the p62-mediated xenophagy

mechanism and unresolved questions about p62’s roles in bacterial infections

are also discussed.

KEYWORDS
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1 Introduction

Despite the progress achieved with the development and use of antibiotics and

vaccines, the mortality rates associated with infectious diseases remains high. Moreover,

antibiotic resistance amongst pathogenic microorganisms has emerged as an alarming

global challenge (Rex et al., 2017; Abbara et al., 2022). Intracellular bacterial infections have

long been a severe threat to public health. Unlike extracellular microbes that often result in

acute infections, intracellular bacteria have the tendency to cause chronic or persistent

infections. This type of bacterial infection can remain latent in the host for life, presenting

an ongoing threat to the health of the individual (Grant and Hung, 2013). Consequently,

research into the mechanisms of intracellular bacterial infection and the host’s defense

against such invaders has become a crucial and trending topic in basic biomedical research.

The p62/SQSTM1 protein, a multifunctional protein with a molecular weight of 62-

kDa, is found in the cytoplasm in scattered dots or aggregates and can be transported

between the cytoplasm and nucleus (Zhang and Costa, 2021). Initially discovered in 1995

for its ability to specifically bind with the src homology 2 domain of p56lck, regulated by
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phosphorylation of Ser-59 in a phosphotyrosine-independent way,

p62 has since been implicated in the pathogenesis of

cardiometabolic disease, neurodegenerative disease, malignant

tumors, and infectious diseases (Park et al., 1995; Seto et al., 2013;

Jeong et al., 2019; Ma et al., 2019; Tang et al., 2021). Additionally,

studies have shown that p62 plays a crucial role in xenophagy, a

type of selective autophagy that targets intracellular pathogenic

microbes and enables their elimination (Knodler and Celli, 2011).

This article delves into the role of p62 protein, specifically its

involvement in p62-mediated xenophagy, in the infection of

various intracellular bacteria like Salmonella enterica serovar

Typhimurium and Legionella pneumophila. In this review, we

highlight the current understanding of the mechanisms

underlying intracellular bacterial infections and how our innate

immune system functions in response to such pathogens (Table 1).
2 Microstructure and general role of
p62 in selective autophagy

Comprised of 440 amino acids, p62 is composed of six domains

from the N-terminal to C-terminal, including the Phox and Bem1

(PB1) domain (104 amino acids), ZZ-type zinc finger (ZZ) domain

(36 amino acids), TRAF6-binding (TB) domain (27 amino acids),
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LC3-interacting region (LIR) (22 amino acids), Keap1-interacting

region (KIR) (6 amino acids), and ubiquitin-associated (UBA)

domain (49 amino acids) (Pankiv et al., 2007; Gal et al., 2009;

Jiang et al., 2009; Jain et al., 2010; Zhang and Costa, 2021). Notably,

p62 has been shown to play a significantly increasing role in

multiple intracellular bacterial infections through its involvement

in xenophagy against bacteria. The mechanisms behind microbial

pathogenesis involve the active invasion of pathogens into host cells

or their passive uptake via phagocytosis. Once inside, pathogen-

associated molecular patterns such as bacterial surface

lipopolysaccharide (LPS) or viral nucleic acid products can alter

signaling pathways like nuclear factor kappa B (NF-kB) and

mitogen-activated protein kinase, eventually leading to the

formation of pre-autophagosomal structures (PAS) facilitated by

the endoplasmic reticulum and the Golgi apparatus (Jounai et al.,

2007; Xu et al., 2007). Host cells then mark the microbes for

destruction by ubiquitination, which generates specific “eat me”

signals and enables selective autophagy (Boyle and Randow, 2013).

Subsequently, Ser 403 of the UBA domain (aa 391-436) in p62

undergoes phosphorylation by Tank Binding Kinase 1(TBK1),

enabling the recruitment of p62 to ubiquitin-coated microbes and

initiating its self-oligomerization (Matsumoto et al., 2011; Pilli et al.,

2012). During selective autophagy, self-oligomerization of p62 plays

a crucial role in delivering ubiquitinated cargos to the autophagy
TABLE 1 Roles of p62 in intracellular bacterial infection.

Bacterial
strain

Mechanisms in bacterial infection Functions in bacterial
survival

Reference

Mycobacterium
tuberculosis

Mediates xenophagy Inhibits bacterial survival (Chai et al., 2019; Berton et al., 2022)

Mycobacterium
tuberculosis

Facilitating generation of neo-antimicrobial
peptides from cytosolic proteins

Inhibits bacterial survival (Lobato-Marquez et al., 2019)

Salmonella Mediates xenophagy Inhibits bacterial survival (Cemma et al., 2011; Mesquita et al., 2012;
Heath et al., 2016; Otten et al., 2021)

Salmonella Activates Nrf2-Keap1 pathway Inhibits bacterial survival (Ishimura et al., 2014)

Acinetobacter
baumannii

Mediates xenophagy Inhibits bacterial survival (Wang et al., 2016)

Legionella
pneumophila

Mediates xenophagy Inhibits bacterial survival (Omotade and Roy, 2020)

streptococcus
pneumoniae

Mediates xenophagy Inhibits bacterial survival (Shizukuishi et al., 2020)

Rickettsia parkeri Mediates xenophagy Inhibits bacterial survival (Borgo et al., 2022)

Coxiella burnetiid Activates Nrf2-Keap1 pathway No significant impact on
bacterial survival observed

(Winchell et al., 2018)

Shigella flexneri Mediates xenophagy targeting Shigella entrapped in septin cages Inhibits proliferation of bacteria
entrapped in septin cages

(Mostowy et al., 2011)

Shigella flexneri Promotes the metabolic activity of intracellular Shigella not
entrapped in septin cages

Promots proliferation of bacteria
not entrapped in septin cages

(Lobato-Marquez et al., 2019)

Listeria Mediates xenophagy Inhibits bacterial survival (Mostowy et al., 2011)

Burkholderia
cenocepacia

Inhibits BECN1’ function and other autophagy adapter-mediated
xenophagy in △F508 macrophages

Promotes bacterial survival (Abdulrahman et al., 2013)

Chlamydia
trachomatis

Mediates xenophagy Inhibits microbial survival (Wang et al., 2021)
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pathway, a process driven by the PB1 domain (Nakamura et al.,

2010). The UBA domain in p62 then recognizes and binds to the

ubiquitin coat of microbes, while the LIR of p62 interacts with LC3

tagged on the phagophore (PG) originating from PAS. The process

is facilitated by the direct binding of N-terminal degrons to the ZZ

domain of p62 (Cha-Molstad et al., 2017). Therefore, the microbe is

specifically targeted and gradually enveloped by PG via bridging of

p62, which leads to the formation of autophagosome. Ultimately,

the autophagosome is fused with the lysosome to form the

autolysosome in which the microbes are degraded and destroyed

by acid hydrolase (Shen et al., 2021; Tripathi-Giesgen et al., 2021).

In addition, the TB domain of p62 interacts with TRAF6, leading to

the activation of NF-kB signaling pathway which induces further

autophagy activation (Min et al., 2018). The domain architecture of

p62, functions of each domain, and simplified mechanisms of p62-

mediated xenophagy targeting bacteria are summarized in Figure 1.

The posttranslational modification of p62 is critical in the

process of xenophagy targeting invaders. A study demonstrated

that during Mycobacterium tuberculosis (Mtb) infection, human

protein phosphatase Mg2+/Mn2+-dependent 1A (PPM1A) inhibit

xenophagy via directly dephosphorylating p62 on S403, resulting in

impairment of antibacterial effect of host cells. And treatment with a

selective PPM1A inhibitor can inhibit the intracellular survival of

Mtb in macrophages and in the lungs of infected mice (Berton

et al., 2022).

In addition to phosphorylation, ubiquitination of p62 has

recently been confirmed to participate in xenophagy against

intracellular bacteria. RNF166, a family member of E3 ligases, was
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found indispensable for recruitment of p62 to Salmonella upon

infection via directly ubiquitinating p62 at K91 and K189 in a K29-

and K33-linked manner, which inhibits bacterial replication

through xenophagy but without altering host cell’s autophagic

flux (Heath et al., 2016). Notably, studies have revealed that

during Salmonella infection, the E3 ligase RNF213 may contribute

to the formation of a bacterial ubiquitin coat by directly

ubiquitinating bacterial LPS. Moreover, RNF213 has been shown

to facilitate the recruitment of ubiquitin-dependent autophagy

adaptors such as p62 to Salmonella and promote subsequent

antibacterial xenophagy. These findings suggest that non-

proteinaceous substances may also undergo ubiquitylation and

recognition in p62-mediated antibacterial xenophagy (Otten

et al., 2021).
3 The role of p62 in xenophagy
against intracellular bacteria

3.1 The mechanisms of bacterial
proteins involved in p62-mediated
xenophagy

There are some typical bacterial proteins involved in host cell’s

p62-mediated xenophagy (Table 2). As cell surface protein of Mtb,

Rv1468c was found to recruit ubiquitin and bind with polyubiquitin

via its UBA domain upon Mtb’s infection in macrophages, which

promotes p62-mediated xenophagy targeting Mtb (Chai et al.,
B

A

FIGURE 1

The xenophagy adaptor p62/SQSTM1 (A) Domain architecture and anti-bacterial functions. (B) Mechanisms in linking the bacteria to a growing
phagophore (domains other than the LIR and UBA in the p62 protein are contained within the red region where the word p62 is located).
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2019). Meanwhile, researchers also found that deletion of Rv1468c

in Mtb reduces colocalizations of Mtb with LC3 and autophagy

targeting to Mtb and promotes bacterial intracellular survival.

It is reported that Acinetobacter baumannii could utilize its

virulent protein to trigger incomplete autophagy by interfering the

fusion of autophagosomes with lysosomes to enhance its survival in

infected host cells (An et al., 2019). Meanwhile, Isochorismatase

encoded by Acinetobacter baumannii was testified to mediate the

xenophagy-induced clearance of Acinetobacter baumannii via

facilitating recruitment of autophagy adaptor p62 and NDP52 to

bacteria both in vitro and in vivo (Wang et al., 2016). However, the

specific molecular target of Isochorismatase in the physiological

process is unclear.

Although p62-mediated xenophagy plays an essential role in

host’s defense against invasive microbes, bacteria have evolved

mechanisms to avoid xenophagy through secreting a large cohort

of virulence factors called effectors. SidE, an effector protein

belonging to the SidE family, help L. pneumophila evade

xenophagy by disrupting recruitment of p62 to L. pneumophila-

containing vacuole (LCV) (Omotade and Roy, 2020). Moreover, the

study indicates that SidE’s interference with recruitment of p62 to

LCV is due to SidE’s phosphoribosyl-ubiquitination of proteins on

LCV, and this non-canonical ubiquitination disenables p62 to

efficiently recognize bacteria and initiate subsequent xenophagy.

ATG14 is an essential protein in promoting autophagosome-

endolysosome fusion in autophagy process (Diao et al., 2015).

Sayaka Shizukuishi et al. reported that during streptococcus

pneumoniae infection, CbpC, which belongs to pneumococcal cell

surface proteins, could bind to p62 and act as a decoy for autophagic

degradation of Atg14, thus suppressing host’s xenophagy targeting

intracellular pneumococci and promoting bacterial survival within

host cells (Shizukuishi et al., 2020).

SseL, a virulent protein originating from Salmonella’s type 3

secretion systems(T3SS), was demonstrated to inhibit host cell’s

xenophagy and promote Salmonella’s replication (Mesquita et al.,

2012). Mechanistically, SseL deubiquitinates autophagic substrates

targeted by p62 and induced by Salmonella, which inhibits the

recruitment of p62 and LC3 to SCV-associated aggregates.
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Belonging to obligate intracellular bacteria, Rickettsia parkeri

could evade host cell’s xenophagy and easily spread from cell to cell

(Helminiak et al., 2022). Encoded by all sequenced Rickettsia

species, patatin-like phospholipase A2 enzyme (Pat1) was found

to enable Rickettsia parkeri’s evasion of recognition by p62-

mediated xenophagy through avoidance of polyubiquitin

recruitment (Borgo et al., 2022).
3.2 The interaction between p62 and Nrf2-
Keap1 pathway in bacterial infection

The antimicrobial function of p62 is not limited to xenophagy,

but may also involve the Nrf2 (nuclear factor erythroid 2-related

factor 2)-Keap1 (kelch-like ECH-associated protein 1) pathway.

Previous studies have demonstrated that upon sequestration of p62

to Salmonella and its subsequent oligomerization, Ser351 of the KIR

domain (amino acids 346-359) is phosphorylated, leading to

recruitment of Keap1 onto p62-positive microbes. This results in

the activation of Nrf2, which translocate into the nucleus and

induces the transcription of cytoprotective genes, including

scavenger receptors and enzymes involved in the pentose

phosphate pathway to generate nicotinamide adenine dinucleotide

phosphate. The scavenger receptors increase the number of bacteria

in phagosomes, whereas the enzymes elevate the level of reactive

oxygen species in phagosomes through activation of NADPH

oxidase, both of which aid in eliminating intracellular bacteria

(Harvey et al., 2011; Bonilla et al., 2013; Ishimura et al., 2014).

In turn, certain bacteria can exploit host Nrf2-Keap1 pathway

via modifying p62. A study showed that during Coxiella burnetiid

infection, instead of binding with pathogen-containing vacuole

directly, p62 is recruited to the vicinity of the parasitophorous

vacuole in which Coxiella burnetiid resides, which is independent of

UBA domain or LIR of p62. In addition, the levels of

phosphorylated p62(S349) were remarkably increased throughout

infection, coincident with activation of Nrf2-Keap1 pathway

(Ichimura et al., 2013; Winchell et al., 2018). However,

downregulating p62 seems to have no significant impact on
TABLE 2 Typical bacterial proteins involved in host cell’s p62-mediated xenophagy.

Bacterial
protein

Bacterial strain Mechanisms Promoting or inhibiting p62-medi-
ated xenophagy

Reference

Rv1468c Mycobacterium
tuberculosis

Mediating ubiquitin binding to mycobacterial cell
surface

Promoting (Chai et al., 2019)

Isochorismatase Acinetobacter
baumannii

Facilitating recruitment of p62 to bacteria Promoting (Wang et al.,
2016)

SidE Legionella
pneumophila

Phosphoribosyl-ubiquitinating proteins on LCV Inhibiting (Omotade and
Roy, 2020)

CbpC Streptococcus
pneumoniae

Binding with p62 and leading to autophagic
degradation of Atg14

Inhibiting (Shizukuishi et al.,
2020)

SseL Salmonella
typhimurium

Deubiquitinating substrates targeted by p62 Inhibiting (Mesquita et al.,
2012)

Pat1 Rickettsia parkeri Inhibiting host ubiquitylation machinery Inhibiting (Borgo et al.,
2022)
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bacterial growth in THP-1 cells, which indicates that p62 is not

absolutely required for certain bacterial intracellular replication and

is utilized by bacteria during their intracellular growth (Winchell

et al., 2018).
3.3 The interaction between p62 and
NDP52 through xenophagy in different
bacterial infection

p62-mediated xenophagy in intracellular bacterial infection

may be affected by another autophagy adapter NDP52. Septins, a

kind of conserved GTP-binding proteins, form cages around

intracytosolic Shigella but not Listeria to restrict bacterial

proliferation (Mostowy et al., 2010). During Shigella’s infection,

p62 and NDP52 are recruited interdependently to the Shigella-

containing septin cages and regulate each other’s xenophagic

activity (Mostowy et al., 2011).

However, when host cells are under Listeria’s invasion, p62 and

NDP52 can be recruited independently of each other. Likewise,

another research suggested that though sharing similar kinetics of

recruitment to Salmonella, p62 and NDP52 are recruited

independently of one another to target different microdomains

surrounding bacteria to facilitate xenophagy (Cemma et al., 2011).
3.4 The rare role of p62 in promoting
intracellular bacterial proliferation

In fact, p62 does not always play an antimicrobial role in all

cases of intracellular bacterial infection. Usually accompanied by

Burkholderia cenocepacia infection, cystic fibrosis (CF) is caused by

mutations in the cftr gene encoding the cystic fibrosis

transmembrane conductance regulator (CFTR), which usually

results in a deletion of phenylalanine at position 508 (△F508)

(Luciani et al., 2011). The △F508 cell’s normal processing of the

CFTR protein to the epithelial cell surface is hindered, resulting in

an aggresome-prone protein that forms intracellular aggregates

which sequester autophagy molecule beclin1 (BECN1) and

further inhibit the early stages of autophagosome formation

(Deretic, 2010; Luciani et al., 2010; Luciani et al., 2011).

Surprisingly, the researchers found that knockdown of p62 in

△F508 macrophages increased B. cepacia’s colocalization with

LC3 and inhibited the growth of bacteria, and vice versa

(Abdulrahman et al., 2013). Mechanistically, downregulation of

p62 liberated BECN1 from aggregates, allowing its redistribution in

the cytosol and recruitment by the B. cepacia-containing vacuole

and recuperating autophagy in△F508 macrophages. Furthermore,

depletion of p62 enables autophagy adapter NDP52 and NBR1 to

facilitate the delivery of B. cepacia to autophagosomes and inhibit

the bacteria’s growth.

Moreover, while p62 has been found to target intracellular S.

flexneri that are trapped in septin cages to initiate xenophagy and

curb bacterial replication, recent studies also suggest that p62 can

potentially enhance the proliferation of free S. flexneri that are not

entrapped in septin cages (Mostowy et al., 2011; Lobato-Marquez
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et al., 2019). Additionally, p62 has been shown to boost the

metabolic activity of intracellular Shigella not trapped in septin

cages. However, the exact mechanism by which p62 promotes the

metabolism of free Shigella requires more systematic exploration.
3.5 Indirect function of p62 in
facilitating xenophagy

p62 may facilitate clearance of invaders through producing

substances with antibacterial activity. For example, upon Mtb

invaded host cells, p62 could capture certain cytosolic proteins,

such as ribosomal protein rpS30 precursor FAU and ubiquitin, and

then deliver them from the cytosol into conventional autophagic

organelles, leading to their degradation by proteolysis into smaller

peptides which possess antimicrobial properties (Ponpuak and

Deretic, 2011). Subsequently, these vesicles containing small

antimicrobial peptides are transported into autophagosomes in

which Mtb resides and kill them, which indirectly contributes

to xenophagy.
4 Potential drugs against intracellular
bacterial infection based on p62

To explore a new effective pharmaceutical means to eliminate

various drug-resistant intracellular bacteria, Yoon Jee Lee et al.

developed and synthesized chemical p62 agonists targeting the N-

degron pathway and facilitating p62-mediated xenophagy under

microbes’ invasion (Lee et al., 2022). They found that these p62

agonists rescue Hela cell’s autophagic activities from suppression by

S. Typhimurium. Mechanistically, to promote xenophagy targeting

S. Typhimurium, the p62 agonists bind directly to the ZZ domain of

p62, facilitating transportation of the pathogens to the

autophagosome. Furthermore, the p62 agonists was confirmed to

suppress the growth of Mtb, Gram-negative Escherichia coli and the

Gram-positive Streptococcus pyogenes through xenophagy,

suggesting its potential as a drug in killing a broad range of

pathogenic bacteria. More encouragingly, in addition to its

antimicrobial effect, the anti-inflammatory effect of p62 agonists

were also observed both in vitro and in vivo. Interestingly, the

antimicrobial efficacy is independent of rapamycin-modulated core

autophagic pathways and is synergistic with the reduced production

of inflammatory cytokines. Collectively, manual chemical activation

of universally conserved p62-dependent xenophagy could be a

promising treatment for infectious diseases caused by various

bacterial strains. Previously, cytokine TNF-a was confirmed to

stimulate the activity of p62-mediated xenophagy targeting

intracytosolic Shigella and Listeria (Mostowy et al., 2011).

However, whether TNF-a will affect overall autophagy flux which

is required during normal metabolic activity of cell needs

further investigation.

Apart from its role in eliminating bacteria through xenophagy,

p62 is also pivotal in reducing inflammasome activity and

mitigating acute pulmonary inflammation resulting from L.

pneumophila. This is achieved through the direct binding of p62
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to NLR proteins of the inflammasome, further underscoring the

potential of p62 as a therapeutic target in managing the severity of

Legionnaires’ disease (Ohtsuka et al., 2014).
5 Mysteries about roles of p62 in
intracellular bacterial infection

Although much progress has been made regarding roles of p62

in host’s antibacterial mechanisms, some mysteries therein still

need to be unveiled. For example, it is demonstrated that Chlamydia

trachomatis infection of HeLa cells could induce p62-dependent

xenophagy 24h post-infection. However, a decrease of xenophagy

levels at 48h post-infection was observed in study, indicating a

defect in sustained autophagy initiation with limited p62 protein

after lysosomal degradation of autophagosomes (Wang et al., 2021).

Moreover, downregulation of p62 did not influence the morphology

and number of C. trachomatis infecting HeLa cells, suggesting that

there must be other antibacterial mechanisms other than

xenophagy which play significant roles in host cell clearance of

C. trachomatis.

As a cytoplasmic protein, the role of p62 outside the cells is

rarely investigated. A study focusing on sepsis indicated that

treatment of macrophages and monocytes with lipopolysaccharide

phosphorylated intracellular p62 at Ser403 and induced pyroptosis

which enable passive release of p62. Furthermore, extracellular p62

binds directly with insulin receptor (INSR) on cell surface to

activate downstream NF-kB-dependent metabolic programming,

which mediates bacterial septic death in mice (Zhou et al., 2020).

However, whether extracellular p62 could facilitate or inhibit

intracellular bacterial growth still needs to be further considered

and explored.
6 Summary

To sum up, functioning as a cytoprotective protein in most

cases, p62 defends against pathogen’s invasion mainly in a

xenophagy-dependent way during intracellular bacterial infection.
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However, some mysteries regarding roles of p62 in bacterial

infection still wait to be explored, and uncovering these mysteries

will help us further understand the mechanisms of bacterial

infection and develop targeted and effective antibacterial drugs.
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