
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Xihui Shen,
Northwest A&F University, China

REVIEWED BY

Lotta Johanna Happonen,
Lund University, Sweden
Chao Pan,
Beijing Institute of Biotechnology, China
Bo Pang,
National Institute for Communicable
Disease Control and Prevention (China
CDC), China

*CORRESPONDENCE

Yajun Song

songyj@bmi.ac.cn

Xilin Zhao

zhaox5@njms.rutgers.edu

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 26 February 2023
ACCEPTED 04 May 2023

PUBLISHED 26 May 2023

CITATION

Xiao L, Qi Z, Song K, Lv R, Chen R, Zhao H,
Wu H, Li C, Xin Y, Jin Y, Li X, Xu X, Tan Y,
Du Z, Cui Y, Zhang X, Yang R, Zhao X and
Song Y (2023) Interplays of mutations in
waaA, cmk, and ail contribute to phage
resistance in Yersinia pestis.
Front. Cell. Infect. Microbiol. 13:1174510.
doi: 10.3389/fcimb.2023.1174510

COPYRIGHT

© 2023 Xiao, Qi, Song, Lv, Chen, Zhao, Wu,
Li, Xin, Jin, Li, Xu, Tan, Du, Cui, Zhang, Yang,
Zhao and Song. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 26 May 2023

DOI 10.3389/fcimb.2023.1174510
Interplays of mutations in waaA,
cmk, and ail contribute to phage
resistance in Yersinia pestis
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Plague caused by Yersinia pestis remains a public health threat worldwide.

Because multidrug-resistant Y. pestis strains have been found in both humans

and animals, phage therapy has attracted increasing attention as an alternative

strategy against plague. However, phage resistance is a potential drawback of

phage therapies, and the mechanism of phage resistance in Y. pestis is yet to be

investigated. In this study, we obtained a bacteriophage-resistant strain of Y.

pestis (S56) by continuously challenging Y. pestis 614F with the bacteriophage

Yep-phi. Genome analysis identified three mutations in strain S56: waaA* (9-bp

in-frame deletion 249GTCATCGTG257), cmk* (10-bp frameshift deletion

15CCGGTGATAA24), and ail* (1-bp frameshift deletion A538). WaaA (3-deoxy-D-

manno-octulosonic acid transferase) is a key enzyme in lipopolysaccharide

biosynthesis. The waaA* mutation leads to decreased phage adsorption

because of the failure to synthesize the lipopolysaccharide core. The mutation

in cmk (encoding cytidine monophosphate kinase) increased phage resistance,

independent of phage adsorption, and caused in vitro growth defects in Y. pestis.

The mutation in ail inhibited phage adsorption while restoring the growth of the

waaA null mutant and accelerating the growth of the cmk null mutant. Our

results confirmed that mutations in the WaaA–Cmk–Ail cascade in Y. pestis

contribute to resistance against bacteriophage. Our findings help in

understanding the interactions between Y. pestis and its phages.
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Introduction

Phages have long been used in medicine to identify specific

bacteria or as alternative treatment for treating bacterial diseases.

Because of the global emergence of antibiotic resistance, phage

treatment has attracted great attention as an alternative or

complement to antibiotic therapy. Y. pestis, the causative agent of

plague, is transmitted by fleabite or respiratory droplets (Gage and

Kosoy, 2005; Cathelyn et al., 2006). Three plague pandemics have

been recorded in history, resulting in approximately 200 million

deaths (Sun and Singh, 2019). Although human plague cases have

been well controlled in most countries, sporadic cases or outbreaks

are occasionally reported in plague foci worldwide. In 2017, a

pneumonic plague outbreak in Madagascar caused 209 deaths in

4 months (Tsuzuki et al., 2017). Antibiotics are generally effective in

the treatment of plague, but several antibiotic-resistant strains of Y.

pestis have been isolated from patients and rodents in recent years

(Cabanel et al., 2018; Sebbane and Lemaitre, 2021). In this context,

bacteriophage therapy has been suggested as an alternative, the

efficacy of which depends on the administration route (e.g., oral,

intramuscular, and aerosol spray) or the frequency of phage

application (Anisimov and Amoako, 2006; Sebbane and Lemaitre,

2021; Vagima et al., 2022).

The use of phage therapy has many ethical considerations. For

instance, discussing the known and unknown risks of phage therapy

can be challenging for patients and physicians. Moreover, the

development of phage therapy has been hindered by the lack of

predefined regulatory pathways for phage production and concerns

about intellectual property protection (Kingwell, 2015). However,

the main limitation of phage therapy is phage resistance. In natural

environments, bacteria are subjected to strong selective pressure by

bacteriophages (Vlot et al., 2018). In response, bacteria have

developed mechanisms to resist phages, including inhibition of

DNA injection, restriction and modification, abortive infection,

CRISPR–Cas, and inhibition of adsorption via phase variation of

cell surface receptors (Kim et al., 2015; Takeuchi et al., 2016; Reyes-

Robles et al., 2018). Although the CRISPR–Cas system has been

studied for decades, unknown defense systems in bacteria remain to

be discovered (Makarova et al., 2013). For example, Doron et al.

have identified several unreported defense systems using microbial

pangenome analysis (Doron et al., 2018). Notably, mutations in

certain genes may render the host bacterium resistant to phage

infection (Laanto et al., 2020).

In this study, we used in vitro culture assays to screen Y. pestis

strains with varying degrees of phage resistance and obtained

several strains with mild-to-complete resistance to bacteriophages.

We examined heritable gene mutations in resistant strains and

identified Y. pestis genes involved in resistance to phage lysis, such

as waaA, cmk, and ail. waaA encodes 3-deoxy-D-manno-

octulosonic acid transferase, which is involved in the synthesis of

lipopolysaccharide (LPS) and serves as the phage receptor in Y.

pestis (Kiljunen et al., 2011). cmk encodes cytidine monophosphate

(CMP) kinase, which catalyzes the transfer of a phosphoryl group

from ATP to CMP or dCMP and plays a crucial role in the

biosynthesis of nucleoside precursors (Walker et al., 2012).

Escherichia coli with the cmk mutation are less susceptible to T7
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phage (Qimron et al., 2006). Our previous study indicated that Ail

contributes to phage adsorption in Y. pestis by interacting with the

phage tail fiber protein (Zhao et al., 2013). By deciphering the

evolutionary processes of Y. pestis against phage lysis stress, we have

provided insights into the physiological processes involved in

receptor recognition, phage DNA replication, and host

degradation resistance.
Materials and methods

Bacterial strains, plasmids, phage,
and media

The Y. pestis strains used in this study are described in Table 1.

Other bacterial strains and plasmids are described in Supplementary

Table S1, and the primers used in the study are described in

Supplementary Table S2. The phage Yep-phi used in this study

can effectively lyse all tested Chinese isolates of Y. pestis but is unable

to lyse other Yersinia species (Zhao et al., 2011). Y. pestis and Yep-

phi cultures were incubated at 26°C and E. coli at 37 °C. Luria–

Bertani (LB) media were used for bacterial liquid cultures. A soft

agar medium was prepared by adding 0.4% (wt/vol) agar to liquid

media. Plates were supplemented with ampicillin (Amp, 100 mg/ml),

kanamycin (Kan, 100 mg/ml), spectinomycin (Spe, 100 mg/ml), or

chloramphenicol (Cm, 34 mg/ml) when required.
Identification of phage-resistant Y. pestis
614F derivates

Different titers (from 1.5 × 108 plaque-forming unit [PFU] to

1.5 × 104 PFU) of 0.5 ml strain 614F (109 CFU/ml) and 5 ml Yep-

phi were mixed and incubated at 26°C for 24h. The serial mixtures

were separately plated on LB agar and incubated at 26°C for 24h.

Colonies on plates were resistant to the corresponding titer of phage

and were selected for passages. Bacterial stocks of every passage

were stored for future analysis. Coculture passages were performed

to obtain a fully resistant Yep-phi derivate of 614F (phage titer 1.5 ×

108 PFU). The genomes of resistant and wild-type 614F strains were

sequenced and compared. The identified mutations were screened

with mismatch–polymerase chain reaction (PCR) in all passage

stocks to determine when these mutations occurred during the

entire passage process (Supplementary Table S2) (Wangkumhang

et al., 2007).
Mutant construction

Scarless genome editing was used to generate gene knockouts

and point mutants in Y. pestis (Kim et al., 2014). In brief, selection

cassettes containing Spe-resistant genes, flanked by FRT, I-SceI

sites, and 120-bp homologous arms, were electroporated into 201/

pREDTKI, which encodes meganuclease I-SceI under the control

of the an hydrotetracycline-induced tetA promoter and l-Red
recombinase genes under the control of the arabinose-inducible
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araB promoter as well as a temperature-sensitive replication

origin. The knockout strains were confirmed via PCR and

sequencing. Using the primers listed in Supplementary Table S2,

the PCR fragment containing the SacI/HindIII site of mutant gene

S56 was amplified and cloned into the donor plasmid pKSI-1,

which with I-SceI recognition sites was digested with SacI and

HindIII to produce pKSI-1_waaA*, pKSI-1_cmk*, and pKSI-

1_ail*. The donor plasmid was electroporated into knockout

strains; transformants were restruck onto LB plates containing

Kan, Spe, and Amp and grown overnight at 26°C. Restruck

colonies were suspended in LB containing Kan, Spe, and Amp

and grown overnight at 26°C. The colonies were repatched twice

onto LB supplemented with 10 mmol L-arabinose for inducing

lambda red recombinase and 20 mmol IPTG for inducing I-SceI

expression to loop out the selection cassette and donor plasmid at

26°C. To verify the loss of the selection cassette, isolates were

tested for growth on LB plates with or without Spe and Amp. The

sensitive isolates were screened via PCR and sequencing to

confirm mutagenesis. Successive passage was performed at 37°C

to remove pREDTKI from the strain. The waaA*/cmk*/ail*

mutant was constructed via suicide plasmid-mediated genome

editing (Philippe et al., 2004). Homologous upstream and

downstream fragments flanking the waaA* mutation were

amplified from S56 using PCR. The fragments were cloned into

the suicide plasmid pDS132, which was digested with SacI and

SalI, and replicated in S17-1 lpir. The recombinant plasmids were

purified and introduced in cmk*/ail* via conjugation. Plates
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containing Cm were screened after incubation at 37°C

overnight. The clone was selected on a plate containing 7%

sucrose following growth at 26°C for 4 days. We selected

transformants that grew on plates but not on Cm plates. The

strain containing waaA*/cmk*/ail* was detected via PCR and

confirmed via sequencing.
Growth curves

The overnight grown strains were cultured to OD620 of

approximately 1.0, diluted 1:100 into 20 ml of LB, and cultured at

26°C and 200 rpm. OD620 was determined every 2h using 300 ml of
bacterial culture. The OD620 values were used to draw growth

curves. Data were obtained in triplicate, and experiments were

repeated twice. Area under the curve analysis was used to quantify

the differences in growth (Vornhagen et al., 2019).
Phage infection assay

The lysis activity of each phage strain was examined using a spot

test on Y. pestis (Paul et al., 2011; Zhao et al., 2013). In brief, 100 ml

of bacteria cultured to exponential phase (OD620~1.0) were

concentrated 10-fold via centrifugation and mixed with 3 ml of

liquefied soft agar medium. The mixture was plated on LB plates to

create double-layer agar plates. When the medium solidified, 3 ml of
TABLE 1 Y. pestis strains used in this work.

Strains Characteristics

614F Antiqua biovar strain

S12 Partially phage-resistant strain after 12 passages of 614F with phage challenging, with 249GTCATCGTG257 deletion in waaA gene, accession numbers
SAMN07501781

S38 Phage-resistant strain after 38 passages of 614F with phage challenging, with 15CCGGTGATAA24 deletion in cmk

S56 Phage-resistant strain after 56 passages of 614F with phage challenging, with A538 deletion in the ail gene on top of S38 accession numbers SAMN07488721

S88 Phage-sensitive strain after 56 passages of 614F without phage challenging, accession numbers SAMN07488727

201 Microtus biovar strain

DwaaA waaA was replaced by a Spe cassette in 201

Dcmk cmk was replaced by a Spe cassette in 201

Dail ail was replaced by a Spe cassette in 201

waaA* waaA (D249GTCATCGTG257), DwaaA with Spe cassette replaced by the waaA of S56

cmk* cmk (D15CCGGTGATAA24), Dcmk with Spe cassette replaced by the cmk of S56

ail* ail* (DA538), Dail with Spe cassette replaced by the ail of S56

waaA*/cmk* cmk*/DwaaA with Spe cassette replaced by the waaA of S56

waaA*/ail* ail*/DwaaA with Spe cassette replaced by the waaA of S56

cmk*/ail* ail*/Dcmk with Spe cassette replaced by the cmk of S56

waaA*/cmk*/
ail*

cmk*/ail* with the waaA in 201 replaced by the waaA of S56

C_waaA* Complemented with waaA of 201 on pACYA184

C_cmk* cmk* with overexpressed cmk on pBAD33
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serial dilutions of Yep-phi were spotted on the plates. Plates were

incubated at room temperature for 10 h and then examined

and photographed.
Phage adsorption assay

For phage adsorption, approximately 8 × 105 PFU of Yep-phi in

100 ml was mixed with 500 ml bacteria (OD620~1.0). LB was used as

a nonadsorbing control in each assay, and the phage titer in the

control supernatant was set to 100%. The mixture was incubated at

room temperature for 5 min and centrifuged at 16,000 × g for 3 min.

Residual PFU percentage was calculated as described in a previous

study (Kiljunen et al., 2011).

Residual PFU  =  
number of PFU in mixture

number of PFU in LB
 �  100%

Statistical differences were determined using one-way analysis of

variance (ANOVA) with three independent data sets. To reveal

the temporal phage adsorption kinetics of all strains, residual PFU

percentage was tested at different time points (2, 5, 10, and

15 min). Each assay was performed in triplicate and repeated

twice. Statistical differences were determined using two-way RM

ANOVA with Dunnett ’s multiple comparisons to wild-

type groups.
Phage efficiency of plating assay

To determine the efficiency of plating (EOP) of Yep-phi on

different strains, 300 ml of wild-type and mutant Y. pestis–cultured

bacteria (OD620~1.0) were mixed with 100 ml of Yep-phi in 3 ml of

0.4% soft agar and poured onto LB plates. The number of PFUs was

counted after 24h–48h. Each strain was verified in triplicate. EOP

was calculated as described (Hyman and Abedon, 2010).

EOP  =  
number of PFU on mutant strain
number of PFU on wild − type

 �  100%
Isolation and analysis of LPS

LPS isolation was performed using the phenol–water extraction

method (Zhang and Skurnik, 1994). In brief, 9 ml overnight

bacterial cultures were collected via centrifugation and

resuspended in 1.5 ml distilled water. The bacterial suspensions

were incubated at 70°C for 1h and then mixed with water-saturated

phenol (pH 4.0) reheated to 70°C for 10 min and then transferred to

ice for cooling (< 10°C). Then, the cells were centrifuged at 2,000 × g

for 20 min. The uppermost aqueous layer obtained was transferred

to a new Eppendorf tube and 2 volumes of acetone were added to

precipitate LPS. The LPS pellet was dissolved in 150 ml of water, of
which 5 ml of LPS was analyzed via 15% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis and silver staining (Zhang and

Skurnik, 1994).
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Protein expression and purification

The PCR-generated DNA fragment comprising waaA and waaA*

was cloned into the BamHI/HindIII site of the pET32a vector. The

plasmid was introduced into DH5a cells, and its DNA sequence was

confirmed. The plasmid was extracted and introduced into E. coli BL21

(DE3) cells. To induce the expression of WaaA and WaaA* in E. coli

BL21(DE3) cells, 1 mM IPTG was added when the culture reached the

mid-exponential growth phase at an OD600 of approximately 0.8. The

bacterial cells were cultured at 37°C for 4h and collected. WaaA and

WaaA* were purified via immobilized metal affinity chromatography

on a nickel cephalosporin HP column. The proteins were desalted with

PBS (pH 7.2) and 20% glycerol and concentrated using a protein

concentration column (Mamat et al., 2009). Protein concentrations

were determined using a BCA protein assay kit.
Circular dichroism spectroscopy

To compare the circular dichroism (CD) spectra of wild-type

WaaA andWaaA*, a Jasco J-815 spectropolarimeter (Greenfield, 1999;

Kelly et al., 2005) was used. Protein solutions (0.1–0.35 mg/ml) were

quantified at 200–260 nm. Spectra were obtained with a scan speed of

50 nm/min and 0.5-nm data pitch. The percentage of secondary

structure was estimated using online software connected to Jasco J-815.
Protein structure analysis

Protein Data Bank (PDB) was used to conduct homology search

(Rose et al., 2015). For WaaA, the structure of membrane-

embedded monofunctional glycosyltransferase WaaA from

Aquifex aeolicus (PDB code: 2XCI.A) was used as the template

based on the quality of models produced. Multiple sequence

alignment was performed using Clustal Omega from UniProt

(Yip et al., 2008). The ESPript server was used to predict the

secondary structure of WaaA (Robert and Gouet, 2014). The

Alphafold v2.3.1 monomer_casp14 model was used to predict the

structures of WaaA andWaaA* (Jumper et al., 2021). The biological

and functional insights derived from the predicted models were

verified by matching the models with the protein function database.
Results

Continuous phage challenge produced
phage-resistant derivates of strain 614F

Yep-phi is routinely used as a diagnostic phage for identifying Y.

pestis, and no natural Yep-phi phage-resistant Y. pestis isolate has been

reported (Zhao et al., 2011). In this study, we exposed cultures of Y.

pestis 614F to serially diluted phage Yep-phi. The surviving clones were

selected and amplified continuously. Figure 1A illustrates how resistant

mutants were identified by rounds of progressive challenges with

different phage titers. Phage spotting assays revealed that after 12
frontiersin.org
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rounds of phage challenge, the derivate of 614F (strain S12) showed

decreased phage susceptibility (resistant to phage titer 105 PFU),

whereas later derivates (S38 and S56, with 38 and 56 rounds of

challenges, respectively) were fully resistant to phage titer 108 PFU

(Figure 1B). The EOP assay showed a similar result; the EOP value for

S12 was 3.2 × 10−6, whereas the EOP values for S38 and S56 were<1.68

× 10−9 (Figure 1C). Our results confirmed that the 614F strain

gradually developed full resistance to phage Yep-phi under

continuous stress. Residual PFU percentages were used to evaluate

the adsorption capability of 614F and its derivates S12, S38, and S56.

All derivate strains lost their ability to adsorb phages (Figure 1D),

which was confirmed through the temporal kinetics of adsorption

assays (Figure 1E).

Genomic analysis revealed mutations in
phage-resistant strain S56

To examine the genetic variations responsible for phage resistance,

we sequenced the genomes of strain S56 and its ancestor strain 614F. A
Frontiers in Cellular and Infection Microbiology 05
control strain S88 (56 passages without phage challenges) was

sequenced to rule out unrelated mutations. We identified three

mutations in S56 (Supplementary Figure S1): a 9-bp in-frame

deletion (249GTCATCGTG257) in waaA (gene ID: YPO0055), a 10-

bp frame shift deletion (15CCGGTGATAA24) in cmk (gene ID:

YPO1391), and a 1-bp frame shift deletion (A538) in ail (gene ID:

YPO2905), which are annotated according to Y. pestis CO92. The

mutations were named waaA*, cmk*, and ail*, respectively, and

mismatch-PCR was used to screen their presence in passage stocks.

The findings revealed that waaA* occurred in passage 12 (strain S12),

cmk* occurred in passage 38 (strain S38) in addition to waaA*, and ail*

occurred in passage 56 (strain S56) in addition to waaA*/cmk*.
waaA*/cmk*/ail* mutations reproduced
phage resistance phenotypes in strain 201

To determine whether a similar phage-resistant profile can be

reproduced and the roles of mutations in waaA (9-bp deletions),
A B

D E

C

FIGURE 1

Screening and characterization of phage-resistant mutants of strain 614F. (A) Screening procedures. (B) Ten-fold dilution of lysates of Yep-phi
applied to bacterial lawns of 614F wild-type and phage-resistant strains. The maximum titer of bacteriophage is 108 PFU. (C) The efficiency of plating
(EOP) of Yep-phi phage on various strains. EOP = (number of PFUs on mutant strain)/(number of PFUs on wild-type strain). The titer of
bacteriophage is 1.68 × 109 PFU. (D) Adsorption of Yep-phi on strain 614F and its derivates. The Y-axis represents percentage of residual plaque-
forming unit (PFU). Error bars show standard deviations of the mean of three biological replicates. Significance was determined by one-way ANOVA
followed by Dunnett’s multiple comparison test. #P< 0.0001. (E) Adsorption kinetics of Yep-phi to strain 614F and its derivates. ***P< 0.001 (two-
way RM ANOVA with Dunnett’s multiple comparison test). Error bars indicate standard deviations in triplicate samples.
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cmk (10-bp deletions), and ail (1-bp deletion), we constructed

single, double, or triple mutants derived from strain 201. Strain

waaA* was partially resistant to phage Yep-phi (resistant to 3.15 ×

103 PFU, Figure 2A), with an EOP value of 5.4 × 10−6 (Figure 2B,

phage titer 1.05 × 1010 PFU). Moreover, waaA*/cmk* and waaA*/

cmk*/ail* were fully resistant to phages with EOP< 1.05 × 10−10,

which is much lower than that for waaA* (Figure 2B). Adsorption

assays indicated that all mutants had a significantly lower ability to

adsorb phage Yep-phi, and the residual PFU percentages among the

three mutants were indistinguishable (Figures 2C, D). These results

suggest that the waaA* mutation affects the binding between Y.

pestis and its phage.
The waaA* mutation inhibits phage
adsorption by truncating LPS

Phage adsorption defects were found in strain waaA* and strain

614F carrying the waaA* mutation. The waaA* mutant and the

waaA null mutant DwaaA displayed similarly decreased phage
Frontiers in Cellular and Infection Microbiology 06
susceptibility (resistant to 4.35 × 103 PFU phage), with decreased

EOP (Figure 3A). In the complementation test, the phage

suscept ib i l i ty of waaA* supplemented with plasmid

pACYC184_waaA was restored and comparable to that of wild-

type strain 201 (Figures 3A, B). In the adsorption kinetics assays, the

phage adsorption ability of waaA* was similar to that of DwaaA,
and waaA* mutant complemented with plasmid pACYC184_waaA

showed similar phage adsorption ability to the wild-type strain,

confirming the anti-adsorption effect of the waaA* mutation

(Figures 3C, D).

Because the waaA gene, encoding 3-deoxy-D-mannooctulosonic

acid (KDO) transferase, is involved in LPS synthesis (Chung and

Raetz, 2010), we hypothesize that the mutation in waaA* affects the

adsorption of Yep-phi phage because of failure to synthesize LPS,

which is the phage adsorption receptor. At 26°C, Y. pestis expresses

rough LPS, which does not contain the O-polysaccharide that is

considered the phage receptor (Kiljunen et al., 2011). Rough LPS

was expressed in 201 WT but was not stained on the gel by silver (a

characteristic of a core-lacking LPS) in either DwaaA or waaA*

(Figure 3E), which confirmed the failure of complete LPS core
A B

DC

FIGURE 2

Reproduction of phage resistance induced by waaA, cmk, and ail mutations in strain 201. (A) Ten-fold dilution of Yep-phi lysates applied to lawns of
201 wild-type and mutant bacterial strains. The maximum titer of bacteriophage is 3.15 × 107 PFU. (B) Efficiency of plating (EOP) for different strains.
The titer of bacteriophage is 1.05 × 1010 PFU. (C) Adsorption of 8 × 105 PFU Yep-phi to Y. pestis 201 WT and its single-, double-, or triple-gene
mutants shown as residual PFU percentages. Significance was determined by one-way ANOVA. #P< 0.0001. (D) Adsorption kinetics of Yep-phi to
wild-type Y. pestis 201 and its mutants (ca. 2 × 106 PFU/108 CFU). **P< 0.01 (Dunnett’s multiple comparison test of two-way RM ANOVA).
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synthesis in the two mutants (Meredith et al., 2006; Dentovskaya

et al., 2011). CD spectra assays demonstrated that wild-type WaaA

has two negative absorption bands at 209 and 222 nm, which are

characteristic of a-helical proteins, and the CD spectrum of WaaA*

protein is slightly different from that of wild-type strain (Figure 3F).

Meanwhile, the build-in software of the spectropolarimeter

predicted decreased a-helix and increased b-sheet in WaaA*

protein comparing with the wild-type WaaA (Figure 3G).

The 9-bp (249GTCATCGTG257) in-frame deletion in waaA

resulted in the 84TMT86 deletion in WaaA. To further determine

the consequence of the 84TMT86 deletion in WaaA, we compared

the predicted structures of wild-type WaaA and mutated WaaA*.
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Sequence alignment of WaaA and WaaA* showed the presence of

charged residue matching the monofunctional glycosyltransferase

WaaA of A. aeolicus (PDB code: 2XCI.A) (Schmidt et al., 2012; Rose

et al., 2015). In A. aeolicus, residues S54 and R56 of WaaA had been

proven vital for its KDO transferase activity, and these two residues

together with S28 and E31 provide necessary hydrogen bonds to

bind tetraacyl-4'-phosphate lipid A during KOD transferring

process as part of the receptor-substance binding site of WaaA

(Schmidt et al., 2012). Secondary structure predictions of WaaA and

WaaA* indicated that the 84TMT86 deletion occurred in the

junction of b-sheet 2 (b2) and a-helix3 (a3), right next to

residues S54 and R56 of A. aeolicus WaaA (Supplementary Figure
A B

D

E

F G

C

FIGURE 3

The waaA mutation inhibits phage adsorption by disrupting LPS. (A) Ten-fold dilution of Yep-phi lysates applied to bacterial lawns of wild-type and
mutant Y. pestis strains. The maximum titer of bacteriophage is 4.35 × 107 PFU. (B) Efficiency of plating (EOP) of 2 × 102 PFU phage for different strains.
(C) Adsorption of Yep-phi to Y. pestis 201 and waaA mutant strains, expressed as a percentage of residual PFU. Significance was determined by one-way
ANOVA; **P< 0.01. ns, non-significant. (D) Adsorption kinetics of Yep-phi to Y. pestis and waaA mutant strains expressed as percentages of residual PFU.
Two-way RM ANOVA was used to determine significance between the mutant and wild-type groups; ** P< 0.01. (E) Analysis of isolated LPS fractions
from Y. pestis 201 and waaA mutants using SDS/PAGE. The gel was silver stained for visualization. (F) CD spectra of WaaA and WaaA*. (G) The build-in
software of the spectropolarimeter predicted the conformations ratio between WaaA and WaaA* of Y. pestis 201.
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S2). Sequence alignment of multiple bacterial WaaA showed that

the 84TMT86 region is conserved among multiple bacterial species

(Supplementary Figure S3). Additionally, Alphafold analysis of

WaaA and WaaA* proteins demonstrated that their predicted

structures are slightly different from each other (Supplementary

Figures S4A–C). The 84TMT86 is located at an a helix-loop-b turn

connection in WaaA protein, and the deletion of 84TMT86 of

resulted in a shorter length of the a helix, followed by a shift of

approximately 2.7 Å in the loop and a 6.8° deflection of the in the b
turn (Supplementary Figure S4D).

Our results suggest that the 84TMT86 deletion in WaaA hinders

its binding to the precursor of lipid A, and causes the loss of its

glycosyltransferase function. The three amino acids in-frame

deletion in waaA* resulted in a core-lacking LPS of Y. pestis,

leading to phage resistance similar to DwaaA.
cmk*-related phage resistance is
independent of adsorption

cmk encodes a cytidylate kinase that catalyzes phosphoryl

transfer from ATP to (d)CMP (Tsao et al., 2015). Mutant waaA*/

cmk* was more resistant to phage lysis than waaA*. However, the

role of the cmk mutation against phage lysis remains unknown. To

address this, we constructed cmk*, which contains a frameshift

mutation (15CCGGTGATAA24 deletion). We performed infection

assays using cmk*, C_cmk* (a complementary strain), and Dcmk

(cmk null mutant) simultaneously and found that cmk* and Dcmk

were resistant to a high phage titer (3.15 × 107 PFU) (Figure 4A),

with EOP values of 5.8 × 10−5 and 4.5 × 10−5, respectively

(Figure 4B). C_cmk* restored susceptibility, comparable with

wild-type 201. Notably, cmk* and Dcmk have similar adsorption

capacity compared with WT 201 (Figures 4C, D), suggesting that

cmk*-mediated phage resistance is irrelevant for the adsorption of

Y. pestis and phage particles. The 10-bp (15CCGGTGATAA24)

deletion of cmk led to premature termination of Cmk translation.

The mechanism of Cmk-related phage resistance needs

further investigation.
The ail* mutation affects the phage
adsorption ability of Y. pestis

In Y. pestis, Ail is an outer membrane protein that contains 182

amino acids. Our previous study revealed that Ail interacts with the

phage tail fiber protein and contributes to phage adsorption in Y.

pestis (Zhao et al., 2013). In this study, we identified the A538

deletion in ail in strain S56 (ail*, Table 1), which is at the very end of

the ail coding region. ail* or Dail was as susceptible to phages as

wild-type 201, with comparable EOP values (Figures 5A, B).

Moreover, the ail* mutant showed similar phage adsorption

defects as the null mutant Dail (Figures 5C, D). The addition of

waaA* or cmk* to ail* did not make a difference in phage adsorption

(Figures 5C, D); however, it significantly increased resistance to

phage compared with the ail* null strain (Figures 4B, 5B). Our

results indicate that ail* (1-bp deletion at A538) exhibited phage
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adsorption resistance, consistent with the effects of disrupting phage

adsorption in Dail.
Interplays of waaA*/cmk*/ail* mutations
restore the growth of the mutants

The waaA*/cmk* mutant is resistant to high-titer phage attacks

(Figures 2A, B), and the ail*mutant is somewhat sensitive to phages

even though it adsorbs phages less effectively. We wondered

whether the evolution of phage resistance due to the waaA*/cmk*

mutations was a liability that was compensated by the ail mutation

or why the weakly lysis-resistant ail* mutation occurred in Y. pestis

when the waaA*/cmk* mutation already renders the strain

completely phage resistance. The 614F derivate S12 grows slower

in LB than 614F. The growth of S38 is even slower than that of S12,

which suggests the great fitness costs accompanying the phage

resistance phenotype of these two derivates. Interestingly, S56

grew much better than S38, and its growth recovered to the level

of 614F (Figure 6A and Supplementary Figure S5A). Because

waaA*/cmk*/ail* mutations occurred sequentially in S12, S38, and

S56, we assumed that waaA* and cmk* mutations influence the

growth of the mutants in addition to conferring phage resistance

onto them. Growth curves showed a deceleration of bacterial

growth for cmk*, especially for waaA*, while the subsequent ail*

mutation restored the mutant growth, as measured by calculating

area under the curve (Figures 6B, C; Supplementary Figures S5B,

C). Our results indicate that the growth deficiency in waaA*/cmk*

mutants can be compensated by the A538 deletion of ail.
Discussion

In this study, we obtained phage-resistant Y. pestis mutants by

continuously challenging strain 614F with the Yep-phi phage.

Characterization of these mutants identified successive mutations

in waaA, cmk, and ail.

The waaA null mutant not only demonstrated resistance to eight

types of phages but was also greatly attenuated inmice (Filippov et al.,

2011). Our previous study revealed that the waaA null mutant lost

most of its phage-binding activity in an adsorption assay while

remaining sensitive to high titers of Yep-phi (Zhao et al., 2013).

Crystal structure analysis of WaaA from A. aeolicus suggested that

the N-terminal domain functions as the acceptor–substrate

binding site for the lipid A precursor (Schmidt et al., 2012). In

contrast, the waaA* mutant harbors a 9-bp in-frame deletion

(249GTCATCGTG257, resulting in the 84TMT86 deletion in WaaA)

that is located at the junction of the N-terminal b2 sheet and a2 helix
(Supplementary Figure S2). Basic amino acids on the N-terminal a2
helix have been shown to be crucial for facilitating the entry of the

lipid A precursor into the acceptor–substrate binding site of WaaA

(Schmidt et al., 2012). Here, we found that the phage-induced 9-bp

in-frame deletion in waaA had similar effects to the waaA null

mutation in Y. pestis regarding truncated LPS and phage resistance.

Previous research has revealed that Yersinia pseudotuberculosis

with the cmk null mutation has a growth defect and is highly
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attenuated in mice (Walker et al., 2012). Our data indicate that the

phage-induced cmk* mutation (with a 15CCGGTGATAA24

frameshift deletion leading to the failure of Cmk translation)

displays a similar phage-resistant phenotype as Dcmk. However,

how defects in cmk confer phage resistance to Y. pestis is unclear.

Because T7-like phages depend on the nucleoside monophosphate

kinase of the host (Qimron et al., 2006), we propose that the loss of

Cmk impacts nucleoside synthesis pathways and hinders the

replication of phages in the host. In this study, other genes

encoding nucleoside monophosphate kinases, such as adk, tmk,

gmk, and pyrH (Qimron et al., 2006), were found to be unaffected in

the phage-resistant S56 strain, likely due to the high fitness costs

associated with mutations in these essential genes. Notably, cmk*

showed growth deficiency in addition to phage resistance, similar to

waaA*. This finding suggests that bacterial resistance to lytic phages

comes at a cost to growth fitness.
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Previous research has demonstrated that laboratory passages of

Y. pestismay result in the disruption or premature truncation of Ail

expression (Leiser et al., 2015). Ail is a critical virulence factor of Y.

pestis, playing a central role in promoting immune resistance to

human host defense (Zhang et al., 2020; Kent et al., 2021). We have

reported that ail* with a frameshift mutation in ail (A538 deletion)

and Dail have similar phenotypes, indicating that the A538 deletion

affects the functional integrity of Ail. Both waaA* and ail*

attenuated phage adsorption, and the phage resistance of waaA*/

ail* was additive compared with that of ail* or waaA* alone. Thus,

we speculate that the phage primarily relies on LPS as an adsorption

receptor, whereas ail is a secondary receptor, thereby affecting the

reduction in viral progeny through different loadings onto host

bacteria (Zhao et al., 2013).

The ail* mutation, which was observed only in S56 (the final

passage), plays a minor role in phage resistance. However, the
A B

DC

FIGURE 4

cmk* resists phage lysis without impacting phage adsorption. (A) Ten-fold dilution of Yep-phi lysates applied to bacterial lawns of wild-type and cmk
mutant Y. pestis strains. The maximum titer of bacteriophage is 4.35 × 107 PFU. (B) Efficiency of plating (EOP) for different strains. (C) Adsorption of
Yep-phi to Y. pestis 201 and its cmk mutant strains expressed as a percentage of residual PFU. ns, non-significant (one-way ANOVA). (D) Adsorption
kinetics of Yep-phi to Y. pestis and cmk mutant strains, expressed as percentages of residual PFU. ns, non-significant (Dunnett’s multiple comparison
test of two-way RM ANOVA).
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FIGURE 5

The ail mutation confers resistance to phages in Y. pestis. (A) Ten-fold dilution of Yep-phi lysates applied to bacterial lawns of wild-type and mutant
strains. The maximum titer of bacteriophage is 4.35 × 107 PFU. (B) Efficiency of plating (EOP) for different strains. (C, D) Yep-phi adsorption and
adsorption kinetics to Y. pestis 201 and its mutant strains. #P< 0.0001. ns, non-significant.
A B C

FIGURE 6

Growth attenuation caused by waaA* and/or cmk* mutations can be restored by ail* in Y. pestis. (A) Growth curve of Y. pestis 614F and its derivates.
(B) ail* restored growth of waaA*. (C) ail* restored growth of cmk*. Data represent the average of three biological replicates; error bars indicate SEM.
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mutation in ail restores the growth of Y. pestis that was disrupted by

a single mutation in waaA or cmk. In the phospholipid biosynthesis

pathway, CTP and dCTP are downstream products of Cmk and

may affect outer membrane lipids (Langley and Kennedy, 1978). In

addition, the mutation in waaA can result in the accumulation of

tetraacylated precursor lipid IV A (Tzeng et al., 2002). In contrast,

the deletion of ail has been reported to cause an abnormal flow of

phospholipids into the outer leaflet of the outer membrane

(Kolodziejek et al., 2021), which might counterbalance the

detrimental effects of accumulating mutations in waaA and cmk.

One plausible explanation is that the ail mutation rebalances the

changes in lipid content of the outer membrane caused by waaA

and cmk mutations, thereby modifying cell shape and accelerating

growth. Our data suggest that mutations in waaA* and cmk* may be

advantageous to Y. pestis in the presence of phages but come at the

cost of growth defects when phages are absent. Notably, waaA* and
cmk* could recover their fitness through the ail mutation.

In this study, we identified successive mutations in waaA, cmk,

and ail of Y. pestis that were induced by continuous phage

challenges. Although these genes have individually been shown to

be related to phage resistance in Y. pestis and other bacteria, they

have not been observed simultaneously in one strain. Based on our

findings, we propose a scenario in which Y. pestis developed a

phage-resistant phenotype through mutations in waaA, cmk, and

ail under continuous phage pressure. Initially, when phage stress

was imposed on Y. pestis, the cells prevented phage adsorption

through the waaA mutation, which truncates LPS. As phage

pressure persisted, waaA*/cmk* mediated stronger phage

resistance reinforced by the cmk mutation, which enhances

resistance to phage lysis but leads to growth defects. Finally, the

growth of waaA*/cmk* was restored by the ail mutation, and

waaA*/cmk*/ail* prevented phage attachment because the Ail

receptor was damaged. The interplay between mutations in the

WaaA–Cmk–Ail cascade illustrates a tradeoff strategy during the

development of phage-resistant phenotypes in Y. pestis (Figure 7).

All three genes responsible for phage resistance in Y. pestis

discussed in this study are known to be virulence-related factors for

pathogenic Yersinia. In the case of CO92, the waaA null mutant

exhibited an LD50 nearly 4 million times lower than that of its wild-

type counterpart (Filippov et al., 2011). In mice, the KIM5 ail null
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mutant showed > 3,000-fold increase in LD50 (Felek et al., 2010).

The cmk null mutant in Y. pseudotuberculosis was > 400 times

attenuated in the mice model (Walker et al., 2012). These findings

suggest that phage pressure may have an impact on virulence and

fitness in other niches of Y. pestis, which could partially explain the

scarcity of natural phage-resistant isolates of Y. pestis.

A caveat to consider is whether these mutations are involved in

antibiotic resistance in Y. pestis. Studies have suggested that LPS

regulated byWaaA plays a role in polymyxin resistance, and an Ail-

like protein imparts ceftriaxone resistance to Salmonella enterica

(Hu et al., 2005; Moffatt et al., 2019). In Y. pestis, the minimal

inhibitory concentration of polymyxin B for the waaA null mutant

is 250 times lower than that of its wild-type counterpart, possibly

due to the less efficient incorporation of 4-amino-4-deoxyarabinose

into lipid A (Dentovskaya et al., 2011). Furthermore, reduced Cmk

activity may increase the tolerance of Staphylococcus aureus to

vancomycin through effects on cell wall biosynthesis (Matsuo et al.,

2013). Notably, all these antibiotics target the bacterial membrane,

which suggests that phage resistance likely relies on changes in

membrane characteristics. Fortunately, there is no evidence linking

the WaaA–Cmk–Ail cascade to resistance against first-line

antibiotics used to treat plague (Barbieri et al., 2020). Studies

using animal models and clinical studies have identified tradeoffs

between resistance and virulence. These findings bode well for

improving treatment effectiveness despite the development of

phage resistance (Oechslin, 2018; Mangalea and Duerkop, 2020).

In this study, we examined the microevolutionary processes of

Y. pestis under phage stress and found that phage exposure resulted

in complex changes in Y. pestis, particularly perturbations of the cell

membrane. The findings of the present study provide valuable

insights into the molecular mechanisms underlying Y. pestis

resistance to bacteriophage and may aid ongoing investigations

into phage therapies for plague. Notably, as a facultative

intracellular pathogen with a complex life cycle, Y. pestis is likely

to develop phage resistance through different pathways under

different conditions, such as in natural environments, fleas, and

hosts if exposed to phage pressure. We acknowledge that these three

genes (waaA, cmk, and ail) were identified through continuous in

vitro selection with phage pressure and caution against using our

data to predict or interpret what may happen in human or rodent
Growth
waaA*, ail*

cmk* ail*

A

B
C

FIGURE 7

Proposed scenario of interplay between mutations in Y. pestis leading to resistance to Yep-phi phage infection. (A) Inhibition of phage adsorption to
the surface of bacterial cells due to alterations in the surface receptor LPS by waaA* and ail*. (B) Inhibition of phage replication through secondary
bacterial metabolites by cmk*. (C) Restoration of growth by ail*.
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hosts. Investigating the relationship between phage resistance and

virulence characteristics of Y. pestis during long-term phage

therapies will be valuable, although ethical and technical obstacles

need to be addressed. Additional genetic factors related to phage

resistance in Y. pestis should be discovered through parallel passages

under phage pressure. Moreover, conditions more closely

resembling the host environment may help identify pathways of

phage resistance in Y. pestis.
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