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Integrated microbiome and
metabolome analysis reveals
the interaction between
intestinal flora and serum
metabolites as potential
biomarkers in hepatocellular
carcinoma patients

Xiaoyue Li1,2, Yongxiang Yi1,2,3*, Tongxin Wu1, Nan Chen1,
Xinyu Gu2, Liangliang Xiang2, Zhaodi Jiang2, Junwei Li1

and Heiying Jin4*

1Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese
Medicine, Nanjing, China, 2Department of Hepatobiliary Surgery, The Second Hospital of Nanjing,
Nanjing University of Chinese Medicine, Nanjing, China, 3Department of Hepatobiliary Surgery,
Nanjing Drum Tower Hospital, Nanjing, China, 4Department of Colorectal Surgery, The Second
Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
Globally, liver cancer poses a serious threat to human health and quality of life.

Despite numerous studies on the microbial composition of the gut in

hepatocellular carcinoma (HCC), little is known about the interactions of the

gut microbiota and metabolites and their role in HCC. This study examined the

composition of the gut microbiota and serum metabolic profiles in 68 patients

with HCC, 33 patients with liver cirrhosis (LC), and 34 healthy individuals (NC)

using a combination of metagenome sequencing and liquid chromatography

−mass spectrometry (LC−MS). The composition of the serum metabolites and

the structure of the intestinal microbiota were found to be significantly altered in

HCC patients compared to non-HCC patients. LEfSe and metabolic pathway

enrichment analysis were used to identify two key species (Odoribacter

splanchnicus and Ruminococcus bicirculans) and five key metabolites

(ouabain, taurochenodeoxycholic acid, glycochenodeoxycholate, theophylline,

and xanthine) associated with HCC, which then were combined to create panels

for HCC diagnosis. The study discovered that the diagnostic performance of the

metabolome was superior to that of the microbiome, and a panel comprised of

key species and key metabolites outperformed alpha-fetoprotein (AFP) in terms

of diagnostic value. Spearman’s rank correlation test was used to determine the

relationship between the intestinal flora and serum metabolites and their impact

on hepatocarcinogenesis and progression. A random forest model was used to

assess the diagnostic performance of the different histologies alone and in

combination. In summary, this study describes the characteristics of HCC

patients’ intestinal flora and serum metabolism, demonstrates that HCC is

caused by the interaction of intestinal flora and serum metabolites, and
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suggests that two key species and five keymetabolites may be potential markers

for the diagnosis of HCC.
KEYWORDS

intestinal flora, serum metabolites, biomarkers, hepatocellular carcinoma,
integrated analysis
Introduction

Primary liver cancer is the fourth leading cause of cancer-

related deaths worldwide, with hepatocellular carcinoma (HCC)

accounting for approximately 80% of all cases (Bray et al., 2018).

China represents approximately half of all new cases and deaths

related to HCC worldwide (Torre et al., 2015). Although surgery

can help patients with liver cancer, the 5-year survival rate is only

50%–70% (2022). Furthermore, most HCC patients are diagnosed

in advanced stages with a poor prognosis due to a lack of specific

symptoms in the early stages and no known early diagnostic

markers (Kobayashi et al., 2017). To screen for and diagnose

HCC, imaging methods (e.g., CT and B-ultrasound) and serum

biomarkers (e.g., AFP) are commonly used. However, imaging

alone is insufficient for distinguishing small HCCs from hepatic

sclerosing nodules. In addition, AFP has a sensitivity of 65% for the

clinical diagnosis of HCC and a sensitivity of less than 40% for

preclinical prediction (Marrero and Lok, 2004). As a result, new

biomarkers and effective drug targets are urgently needed to

improve the prognosis of HCC patients.

Gut microbes and circulating metabolites have received much

attention as biomarkers for human diseases such as cancer in recent

years due to the development and application of sequencing

technologies and LC−MS-based metabolomics. Intestinal

microbes are recognized as novel virtual metabolic organs, and

the gut microbiota has been demonstrated to play a significant role

in the development of numerous diseases. By altering the

permeability of the intestinal mucosa in a way that disrupts

immune or metabolic homeostasis, gut microbiota imbalances can

contribute to the development of autoimmune diseases or cancer

(Qin et al., 2012; Dodd et al., 2017; Lucas et al., 2017). The close

relationship between the liver and the intestine is referred to as the

“gut-liver axis” (Tripathi et al., 2018). An intact gut-liver axis is

dependent on a healthy intestinal microbiota and normal liver

function. In addition, the gut microbiota has been identified as an

important player in chronic inflammatory liver disease, liver

cirrhosis, alcoholic liver disease, and nonalcoholic fatty liver

disease (Bajaj et al., 2014; Shen et al., 2017; Ponziani et al., 2019).

Several studies have shown that the gut microbiota can be used as a

noninvasive diagnostic tool for certain diseases and cancers, such as

type 2 diabetes (T2D), colorectal cancer (CRC), and pancreatic

cancer (PC) (Ren et al., 2017; Yu et al., 2017). Although the

importance of microbes in HCC has been reported in several

studies, the profile of the gut microbial community and its

functional contribution to HCC has yet to be thoroughly studied
02
and systematically characterized (Ren et al., 2019; Huang

et al., 2020).

Using microbial metabolites, the gut microbiota has been linked

to diseases such as cancer (Louis et al., 2014). Food and nutrients

are transformed by gut microbes into a metabolite environment,

which controls the equilibrium of the metabolites (Anand et al.,

2016). By providing metabolic flux to promote anabolism, acting as

competitive enzyme inhibitors, or modifying signaling proteins,

among other mechanisms, these metabolites can exert genotoxic or

tumor-suppressive effects (O'Keefe, 2016).

The liver is one of the most active metabolizing organs in our

bodies, and it plays an important role in regulating various

metabolic processes (Fausto et al., 2006). The liver receives

metabolites produced by bacteria in the gut via the portal vein

and transports them directly to the liver to perform regulatory

functions. Because of the natural connection between intestinal

microbes and the liver, the liver is the first organ to receive intestinal

metabolites and it plays an essential role in the interaction between

extraneous materials and the systemic environment. Metabolomics

is a very promising method for identifying metabolites that can shed

light on the etiology, treatment, and early diagnosis of disease

(Beyoğlu and Idle, 2013).

The process of tumorigenesis is accompanied by an overall shift

in metabolic status, which has an effect not only on the tissue of the

tumor but also on the microenvironment surrounding it (Al-

Zoughbi et al., 2014; Vander Heiden and DeBerardinis, 2017).

Furthermore, metabolic changes can be observed more directly in

the tumor cell state than genomic and proteomic changes and are

thus expected to become useful tumorigenesis biomarkers (Patel

and Ahmed, 2015). In the past few years, much research has been

done on the metabolites in the blood that are linked to liver cancer.

This research has shown that metabolites play a major role in the

development of HCC (Tong et al., 2021; Liu et al., 2022).

With increasing research on the gut microbiome and

metabolome as biomarkers in HCC, we have a deeper

understanding of possible diagnostic methods for HCC. However,

little is known about the interactions between gut microbes and

metabolites and how they influence the development of liver cancer.

In this study, metagenome sequencing of stool and metabolomic

analysis of serum from three cohorts (HCC, LC, and NC) were

performed to discover changes in gut microbes and serum

metabolites. Simultaneously, matched serum and stool samples

were analyzed for metabolites and microbes, and it was

discovered that gut microbes were closely associated with serum

metabolites. Based on these findings, the diagnostic performance of
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key gut microbes, key serum metabolites, and key gut microbial

metabolites were compared. Meanwhile, the molecular pathway

mechan i sms we r e e x am in ed t o l e a rn mor e a bou t

hepatocarcinogenesis.
Materials and methods

Participant information

This study included 68 newly diagnosed hepatocellular

carcinoma patients, 33 patients with liver cirrhosis from the

Hepatobiliary and Pancreatic Treatment Center of the Second

Hospital of Nanjing, Jiangsu Province, and 34 healthy subjects

from the Health Management Center. Stool and serum samples

were collected in accordance with the protocol approved by the

ethics committee of the Second Hospital of Nanjing, and all

participants provided written informed consent. The study

subjects’ demographic and clinical data, CT scans, and dietary

habits were obtained from hospital electronic medical records and

questionnaires (online Supplementary Table S1). International

guidelines say that HCC or cirrhosis can be diagnosed by looking

at integrated pathology, imaging, laboratory tests, clinical

symptoms, and medical history.

The HCC patients were screened and confirmed. The following

were the exclusion criteria: 1) patients with other diseases, such as

tumors in other locations, gastrointestinal diseases, hypertension,

diabetes, and metabolic diseases; 2) patients who had previously

received anticancer treatment; 3) patients who had recently received

antibiotics or probiotics; and 4) patients who lacked critical clinical

information. Age, sex ratio, BMI, and dietary habits were used to

match the patients with the controls. Individuals who had

hypertension, diabetes, obesity, metabolic syndrome, irritable

bowel syndrome (IBD), or had received antibiotics and/or

probiotics treatment within the previous 8 weeks were

also excluded.
Sample collection

Fresh fecal samples were collected from each participant and

evaluated for fecal morphology and color. The samples were divided

into three 300 mg portions and immediately snap-frozen in liquid

nitrogen. The entire process of moving and manipulating the

samples on ice took less than 20 minutes. After snap-freezing

with liquid nitrogen, the samples were stored at -80°C until

extraction for testing. A professional nurse collected venous blood

in strict accordance with standard asepsis procedures. The serum

was centrifuged and stored at -80°C until testing.
Microbial DNA extraction, metagenome
sequencing and data processing

Total DNA was extracted from the stool samples using the

QIAamp 96 Power Fecal QIAcube HT kit (Qiagen, Germany), and
Frontiers in Cellular and Infection Microbiology 03
the DNA was further purified using the MGI Easy DNA Magnetic

Beads Purification Kit (MGI, China) according to the

manufacturer’s instructions. To measure how much purified

DNA there was, a Qubit dsDNA BR Assay Kit (Invitrogen, USA)

was used.

The library was built using DNBSEQ (online Supplementary

Figure S1) and the original sequencing data (Raw Data) were

filtered using the short oligonucleotide alignment program SOAP

(Li et al., 2008) to obtain clean data, and the host sequence was

aligned with Bowtie2 (Langmead and Salzberg, 2012) to remove

reads derived from the host. MEGAHIT (Li et al., 2015) assembled

high-quality short reads from each DNA sample. MetaGeneMark

(Zhu et al., 2010) was used to performmetagenomic gene prediction

on the assembled scaffold. CD-HIT (Fu et al., 2012) was used to

cluster predicted genes, and redundant sequences were removed to

construct the gene catalog. Salmon (Patro et al., 2017) was used for

quantification. Diamond’s (Buchfink et al., 2015) BLASTP function

was used for functional annotation, and Kraken2’s default

parameters were used for taxonomic annotation.
LC/MS nontargeted metabolomics analysis

Metabolite extraction was performed according to a previously

reported method. In short, samples were extracted by directly

adding precooled methanol and acetonitrile (2:1, v/v), and

internal standards mix 1 (IS1) and internal standards mix 2 (IS2)

were added for quality control of the sample preparation. After

vortexing for 1 minute and incubating at -20°C for 2 hours, the

samples were centrifuged for 20 minutes at 4000 rpm, and the

supernatant was then transferred for vacuum freeze drying. The

metabolites were resuspended in 150 µL of 50% methanol and

centrifuged for 30 min at 4000 rpm, and the supernatants were

transferred to autosampler vials for LC−MS analysis. A quality

control (QC) sample was prepared by pooling the same volume of

each sample to evaluate the reproducibility of the whole LC−MS

analysis. For metabolite separation and detection, a Waters 2D

UPLC (Waters, USA) tandem Q Exactive high-resolution mass

spectrometer (Thermo Fisher Scientific, USA) was used. The

samples were analyzed using a Waters 2D UPLC (Waters, USA)

coupled to a Q-Exactive mass spectrometer (Thermo Fisher

Scientific, USA) with a heated electrospray ionization (HESI)

source and that was controlled by the Xcalibur 2.3 software

program (Thermo Fisher Scientific, Waltham, MA, USA). The

separation was carried out on a Waters ACQUITY UPLC BEH

C18 column (1.7 m, 2.1 mm, 100 mm, Waters, USA), with the

column temperature set to 45°C. In positive mode, the mobile phase

contained 0.1% formic acid (A) and acetonitrile (B), while in

negative mode, the mobile phase contained 10 mM ammonium

formate (A) and acetonitrile (B). The gradient conditions were as

follows: 0–1 min, 2% B; 1–9 min, 2%–98% B; 9–12 min, 98% B; and

12.1–15 min, 2% B. The injection volume was 5 µL, and the flow

rate was 0.35 mL/min. Compound Discoverer 3.1 (Thermo Fisher

Scientific, USA) software was used to process the LC−MS/MS data,

which included peak extraction, peak alignment, and compound

identification (Dunn et al., 2011; Sarafian et al., 2014).
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Statistical analysis

To compare the differences between different microorganisms,

theWilcoxon rank-sum test, Kruskal−Wallis (K-W), LEfSe analysis,

Adonis and ANOSIM were used (Stat et al., 2013). The

metabolomics R package metaX (Wen et al., 2017) and the

metabolome bioinformatic analysis pipeline were used for data

preprocessing, statistical analysis, metabolite classification

annotations, and functional annotations. To compare metabolites

between groups, principal component analysis (PCA), partial least

squares discriminant analysis (PLS-DA), Student’s t test, and fold

change obtained from the variability analysis were used. The

correlation between microorganisms and metabolites was

evaluated using Spearman correlation and random forest analyses.

Pearson correlation analysis was used to evaluate the correlation of

species and metabolites with the clinical data. The statistical

significance level was set at p<0.05.
Results

After a rigorous pathological diagnosis and exclusion process,

68 patients with HCC, 33 patients with LC, and 34 NC were

included in the analysis and comparison. Metagenome

sequencing and untargeted LC−MS analysis were performed on

the feces and serum of the participants, respectively. K−W, the

Wilcoxon rank-sum test, and abundance restriction were used to

screen different subgroups of microbes, and LEfSe analysis was used

to screen HCC-associated species-level key gut microbiota (KGM).

In addition, a metabolic pathway enrichment analysis was

performed on the differential metabolites that were screened
Frontiers in Cellular and Infection Microbiology 04
based on the untargeted LC−MS results to screen for HCC-

related key serum metabolites (KSM) in important metabolic

pathways. Using random forest classification models, the potential

of various panels consisting of different species or metabolites as

biomarkers was evaluated. Then, in fecal- and serum-matched

enrollees, a combined analysis of differential species and

differential metabolites was performed to determine which omics

best separated HCC from non-HCC by comparing separate and

combined modeling of different omics with the receiver operating

characteristic (ROC) curves. Finally, the best panel’s worth was

determined by comparing the difference between the best panel and

the best omics model (Figure 1).
Demographics of the study cohort and
quality control of the samples

Before the experimental design and sample collection,

participants were matched for dietary habits and clinical

characteristics (including age, sex, and body mass index) to

ensure that established confounding factors did not affect group

differentiation. Serum levels of alanine aminotransferase (ALT),

aspartate aminotransferase (AST), glutamyl transpeptidase (GGT),

and total bilirubin were significantly higher in HCC patients than in

controls, but total protein and platelets were significantly

lower (Table 1).

Stool morphology and color were assessed prior to metagenome

sequencing. Except for one stool sample with an abnormal color in

the HCC group, all stool samples were yellow and soft, with no

significant differences among the groups (online Supplementary

Table S2). To ensure the accuracy of the subsequent analysis, the
FIGURE 1

A schematic of the design and the experimental flow diagram. After a strict pathological diagnosis and exclusion process, 68 patients with HCC, 33
patients with cirrhosis, and 34 healthy controls were included at the Second Hospital of Nanjing, Jiangsu Province, China. In total, 132 serum
samples and 134 feces samples were included in the analysis. Characterized the gut microbiome of 67 patients with HCC, 33 patients with cirrhosis,
and 34 healthy controls and identified the microbial markers. Simultaneously characterized the serum metabolites from 66 hepatocellular
carcinomas, 32 cases of hepatic sclerosis, and 34 healthy controls to identify metabolite markers. Random forest analysis is used to assess the ability
of various marker combinations to distinguish the HCC cohort from the non-HCC cohort (cirrhosis and healthy controls). Using serum- and fecal-
matched cohorts to examined the link between the gut microbiota and serum metabolites that changed significantly in HCC. HCC, hepatocellular
carcinoma; KGM, key gut microbes; KSM, key serum metabolites; KGMSM, key gut microbial-associated serum metabolites.
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raw sequencing data from 134 stools (67 HCC, 33 LC, and 34 NC)

were filtered and assembled for statistical analysis and gene

prediction (online Supplementary Table S3).

After the removal of hemolyzed serum samples, a total of 132

serum samples (66 HCC, 32 LC, and 34 NC) were included in the

analysis (online Supplementary Table S1). The base peak

chromatograms (BPC) of all QC samples overlapped, the

spectrum overlap was good, and the retention time and peak

response intensity fluctuated very little, indicating that the

instrument was in good condition and that the signal was stable

throughout the entire sample detection and analysis (online

Supplementary Figure S2A). The ratio of compounds in the QC

sample with a relative peak area coefficient of variation (CV) of less

than or equal to 30% to the total number of compounds was higher

than 60%, indicating that the data quality was sufficient (online

Supplementary Figure S2B).
Intestinal flora structural changes in
hepatocellular carcinoma

Statistical analyses of microbial abundance for each of the three

groups were conducted. The estimated species richness in each
Frontiers in Cellular and Infection Microbiology 05
group was close to saturation according to the rarefaction analysis

(Figure 2A). The Chao1 indices of the different groups differed

significantly at both the phylum and genus levels, whereas the

Shannon and Simpson indices differed significantly at the genus

level but not at the phylum level (online Supplementary Figure S3).

At the species level (online Supplementary Table S4), the Chao1

indices revealed that the community richness differed significantly

among the groups, with NC > HCC > LC (Figure 2B); Shannon

indices and Simpson indices demonstrated that the microbiome

diversity of HCC and LC was significantly lower than that of NC,

with the diversity of HCC being higher than that of LC (with no

significance) (Figures 2C, D).

The structure of the intestinal flora communities of the three

groups were investigated in this study (online Supplementary Table

S5). Bacteroidetes, Firmicutes, and Proteobacteria accounted for

more than 90% of the total abundance and were the dominant phyla

in the three groups (Figure 2E). At the genus level, Bacteroides and

Phocaeicola were the most dominant in all three groups, with the

relative abundance of Bacteroides increasing and Phocaeicola

decreasing in HCC and LC compared to NC (Figure 2F). At the

species level, except for Phocaeicola vulgatus, which had the highest

abundance in all three groups, the most abundant species in HCC

were Faecalibacterium prausnitzii (6.48%), Bacteroides fragilis
TABLE 1 Clinical characteristics of the enrolled participants.

Clinical and pathological indexes P values (NC vs. HCC) P values (LC vs. HCC)
NC (n=34) LC (n=33) HCC (n=68)

Age (year) 55.50±8.66 54.18±11.49 57.88±9.97 0.068 0.138

Gender

Female 13(38%) 8(24%) 15(22%) 0.087 0.811

Male 21(62%) 25(76%) 53(78%)

BMI 22.71±1.24 22.78±1.27 22.89±1.31 0.441 0.712

AFP (ng/mL)

≤20 34(100%) 27(82%) 37(54%) <0.0001 0.008

>20 0 6(18%) 31(46%)

ALT (0–40 U/L) 22.11±13.89 38.42±40.09 72.61±139.03 0.0002 0.172

AST (0–40 U/L) 19.64±5.11 43.61±27.14 86.63±146.22 <0.0001 0.555

GGT (0–40 U/L) 24.02±14.05 78.28±96.53 103.22±139.75 <0.0001 0.438

Total protein (66.0–87.0 g/L) 72.22±3.47 63.24±8.52 64.07±6.74 <0.0001 0.567

Total bilirubin (3.0–19.0 umol/L) 10.55±3.88 37.73±33.19 24.94±26.17 <0.0001 0.016

Platelets (101–320 10^9/L) 254.00±63.11 86.27±69.39 127.04±74.51 <0.0001 0.002

Aetiological factors

HBV NA 28(85%) 61(90%) – 0.485

others NA 5(15%) 7(10%)

Dietary habit Mixed diet Mixed diet Mixed diet
One-way analysis of variance was used to evaluate the differences among the three groups. The Wilcoxon rank-sum test was used to compare the variables between the two groups. BMI, body
mass index; AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, glutamyl transpeptidase; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; LC,
liver cirrhosis; NC, healthy controls; NA, not applicable; Mixed diet, the participants did not have picky or poor dietary habits, i.e., they were not pure vegetarians or pure meat eaters, and they
were all from Nanjing, China, with roughly the same dietary habits.
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(6.32%), and Bacteroides thetaiotaomicron (5.35%), and in LC, they

were Bacteroides fragilis (11.8%), Bacteroides ovatus (6.14%), and

Faecalibacterium prausnitzii (5.41%). Additionally, the most

prevalent bacteria in NC were Faecalibacterium prausnitzii

(8.99%), Bacteroides uniformis (6.51%), and Phocaeicola dorei

(5.16%) (Figure 2G). Additionally, Venn plots of the intergroup

overlap showed that 5755 of the 6640 species found were shared by

all three groups, while 274 species were found only in

HCC (Figure 2H).
Differential analysis of intestinal microbes

To compare the differences in fecal microbial communities

between groups and to identify microbes associated with HCC, K

−W was performed on HCC, LC, and NC, and microbes with a p

value<0.05 and median relative abundance greater than 0.01% of

the total abundance were recognized as differential microbes. The

results showed that a total of 4 phyla, 49 genera, and 86 species were

identified (p < 0.05) (online Supplementary Table S6). The

Wilcoxon rank-sum test was used to compare the differences in

microbes among the groups (online Supplementary Figures

S4A–C).

At the phylum level, the number of Verrucomicrobia was

significantly higher in HCC patients than in LC patients, whereas

Cyanobacteria, Euryarchaeota, and Uroviricota were lower in HCC

patients than in NC patients (p<0.05) (online Supplementary Table

S7). At the genus level, 21 genera, including Roseburia, Lachnospira,

and Ruminococcus, were significantly higher in HCC than LC,

while 42 genera, excluding Veillonella, were significantly lower in

HCC than NC, including Faecalibacterium, Alistipes, and
Frontiers in Cellular and Infection Microbiology 06
Phaecolarctobacterium. (online Supplementary Table S8).

Correspondingly, 35 species, such as Phocaeicola vulgatus,

Lachnospira eligens, Bacteroides uniformis, and Ruminococcus

bicirculans, differed between HCC and LC (p<0.05). Compared to

NC, except for Veillonella parvula, Veillonella sp. T1–7, Veillonella

atypica, and Veillonella dispar, which were significantly increased in

HCC, all 57 species (Phocaeicola dorei, Bacteroides uniformis,

Faecalibacterium prausnitzii, etc.) were significantly reduced

(P<0.05) (online Supplementary Table S9). Furthermore, the

bacterial differences between LC and NC at the phylum and

species levels were compared, and the results as shown in (online

Supplementary Tables S7-S9).

LEfSe was used to identify the key gut microbiota. After

excluding species with relative abundances of less than 0.01%, the

HCC, LC, and NC groups contained 2, 9, and 30 species,

respectively (Figure 3). Odoribacter splanchnicus and

Ruminococcus bicirculans were species-level potential biomarkers

for the detection of HCC.
Serum metabolite changes in patients with
hepatocellular carcinoma

Tumorigenesis is accompanied by a general change in the

metabolite status of the local tissue and circulatory system.

Metabolites and fermentation products produced by the intestinal

flora can enter the bloodstream and impact the host’s physiological

functions. The metabolic profile in the serum was examined to

investigate the relationship between metabolites in the serum and

HCC. 8,709 ions were scanned by mass spectrometry, 2,934 of

which were identifiable, which is the sum of metabolites detected in

all samples and does not imply that they varied in various
B C D

E F G H

A

FIGURE 2

The gut microbiome community is divided into three groups. (A) Rarefaction curves between the number of samples and the number of species. In
all samples, the number of species approached saturation. Fecal microbial alpha diversity at the species level was estimated by the Chao1 index
(B), Shannon index (C), and Simpson index (D). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns p > 0.05. (E, F) The top 5 representative
phyla and genera, as well as their proportions in each of the three groups. (G) The top 10 representative species and their proportions among the
three groups. (H) A Venn diagram displaying group overlaps revealed that 274 of the total richness of 6640 species were unique to HCC. The red
circle represents HCC, the blue circle represents LC, and the green circle represents NC.
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subgroups. (online Supplementary Table S10). Based on the

abundance of metabolites detected by untargeted metabolomics,

PLS-DA was performed (Figures 4A, B). According to the scatter

plot, the samples from HCC, LC, and NC were separable, and the

alignment test revealed that the data were not overfitted

(Figures 4C, D) (in general, the closer the slopes of the R2Y and

Q2Y lines are to zero, the more likely the model is overfitted). The
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PLS-DA analysis for LC versus NC is depicted in online

Supplementary Figures S5A, B.

PLS-DA yielded “Variable Importantance in Projection” (VIP)

values, with larger values indicating a greater contribution of the

variable to the subgroup. The following criteria were used to screen

biologically significant differential metabolites: 1) VIP value≥1 for

the PLS-DA’s first principal component, 2) p value<0.05 for the t

test, and 3) fold-change≥1.2 or ≤0.83. In HCC versus LC, HCC

versus NC, and LC versus NC, 424, 823, and 825 differential

metabolites were screened for biological significance, respectively

(online Supplementary Table S11). The differences in metabolism

between HCC and non-HCC were demonstrated using volcano

plots (Figures 4E, F). The volcano plots of LC versus NC are shown

in online Supplementary Figure S5C.

To better understand the mechanism of differential metabolites

implicated in the pathogenesis of HCC, metabolic pathway

enrichment analysis was performedon the KEGG IDs of the

differential metabolites. Metabolic pathways with p values less

than 0.05 were considered to be significantly enriched in

differential metabolites and plotted bubble plots (Figures 5A–C)

for these pathways (the metabolites on the pathways are shown in

online Supplementary Table S12). Bile secretion, cholesterol

metabolism, purine metabolism, caffeine metabolism, metabolic

pathways, apoptosis, and vitamin digestion and absorption were
B

C

D

E

F

A

FIGURE 4

Overview of altered serum metabolism in HCC (n=66) and non-HCC (LC (n=32), NC (n=34)). (A, B) PLS-DA shows the differences between the
groups’ metabolites. The abscissa (PC1) and the ordinate (PC2) are the two main coordinates that explain the greatest difference between the
samples. The number is the score of the principal component, which represents the percentage of the explanation on the overall variance of the
specific principal component. The graph points represent samples, and different colors represent various sample grouping information; similar
samples are clustered together. (C, D) The two rightmost points in the figure are the actual R2Y and Q2 values of the model, and the remaining
points are the R2Y and Q2 values obtained by randomly arranging the samples used. This result is mainly used to judge whether the model is
overfitting and the validity of the model. A volcano plot is a graphical representation of differential metabolism. (E) Metabolites that differ between
HCC and NC. (F) Metabolites that differ between HCC and LC. Green marks the downregulated differential metabolites, red marks the upregulated
differential metabolites, and metabolites without differences are labeled purple−gray.
FIGURE 3

Key species selection by LEfSe. Differential microbial score chart: the higher
the score, the greater the contribution of the microbe to the difference.
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all significantly enriched in the HCC versus LC comparison group.

The pathways that were significantly enriched in the HCC versus

NC comparison group included caffeine metabolism, metabolic

pathways, bile secretion, cholesterol metabolism, primary bile acid

biosynthesis, drug metabolism - other enzymes, prostate cancer,

and porphyrin and chlorophyll metabolism. In the LC versus NC

comparison group, the differential metabolites were involved in

caffeine metabolism, bile secretion, cholesterol metabolism, primary

bile acid biosynthesis, metabolic pathways, porphyrin and

chlorophyll metabolism, and cysteine and methionine metabolism.

It was discovered that the bile secretion, cholesterol metabolism,

and caffeine metabolism pathways are all associated with the

progression of HCC. Three pathway-related differential

metabolites involved in all three comparison groups were focused

on to find metabolomic markers: ouabain, taurochenodeoxycholic

acid (TCDCA), glycochenodeoxycholate (GCDCA), theophylline,

and xanthine (online Supplementary Table S13). The expression of

these metabolites in various groups were researched (Figure 5D).

The findings revealed that the expression of ouabain, TCDCA, and

GCDCA was significantly lower in HCC than in LC but significantly
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higher than in NC. Theophylline expression was significantly lower

in HCC compared to non-HCC, whereas xanthine expression was

significantly higher in HCC compared to NC.
Correlation analysis of metagenome and
metabolome

Correlation analysis and joint analysis of serum and fecal

matched microbiome-metabolome data (65 in HCC, 32 in LC,

and 34 in NC) were performed to explore the relationship between

the microbiota and the serum metabolome. By calculating

Spearman correlation coefficients between different species and

metabolites, a correlation coefficient matrix was obtain (online

Supplementary Table S14), as well as the top 20 differential

species and metabolites with the smallest p values for each omics,

which were chosen for the heatmap (Figures 6A, B), and the results

of LC versus NC are shown in Supplementary Figure S6A.

The association analysis of Odoribacter splanchnicus and

Ruminococcus bicirculans with differential metabolites was
B C

D

A

FIGURE 5

(A–C) Bubble plots of pathways with significant enrichment of differential metabolites. The ordinate is the name of the metabolic pathway, and the
abscissa is the rich factor (rich factor = the number of differential metabolites annotated to the pathway/all identified metabolites annotated to the
pathway). The larger the rich factor, the greater the proportion of differential metabolites annotated to the pathway. The color from blue to red
indicates that the p value decreases sequentially; the larger the point, the more differential metabolites are enriched in the pathway. (D) Distribution
of different metabolites in each group. *p < 0.05, **p < 0.01, ***p < 0.001.
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performed to screen for key species-associated serum metabolites

and discovered 66 key species with significantly associated

metabolites in HCC versus LC and 45 in HCC versus NC (p <

0.05) (Online Supplementary Table S15). In both comparison

groups, nine metabolites showed significant associations with key

species associated with HCC, including three key metabolites

(TCDCA, GCDCA, and xanthine) associated with HCC (Figure 7A).

By comparing the ROC curves between the separate modeling

of different omics and the combined data modeling, which omics

better separates HCC and non-HCC was evaluated, and it was

discovered that in HCC versus LC, merged > species > metabolites

with AUC values of 0.800, 0.708, and 0.696, respectively

(Figure 7B). Metabolites > merged > species had AUC values of

1.000, 0.944, and 0.582 for HCC versus NC, respectively

(Figure 7C). The results of LC versus NC are shown in

Supplementary Figure S6B.
Evaluation of the contribution of various
panels to the prediction of HCC using ROC
curves

To evaluate the biomarker potential of HCC-related keystone

species and metabolites, a key KGM panel with Odoribacter

splanchnicus and Ruminococcus bicirculans and a KSM panel with

ouabain, TCDCA, GCDCA, theophylline, and xanthine were

constructed. Each panel’s ability to distinguish between HCC and

non-HCC were tested. Based on the relative abundance of

metagenome and untargeted metabolic profile assays, the data

from each panel were divided into a training set and a validation

set, first building a random forest model for the training set and
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then using this model to predict the validation set and construct

ROC curves. 10-fold cross-validation was perform and then

averaged the resulting ROC curve. The AUC values of the KGM

panel for HCC versus NC and HCC versus LC were 0.60 ± 0.22 and

0.65 ± 0.19, respectively (Figure 8A), whereas the AUC values of the

KSM panel for distinguishing HCC from NC and LC were 0.95 ±

0.06 and 0.65 ± 0.15, respectively (Figure 8B). It is also worth noting

that the KSM panel did surprisingly well to distinguish LC from the

NC group (AUC: 0.93 ± 0.12) (online Supplementary Figure S5D).

After that, we incorporated the KGM and KSM data into the

random forest model to develop the ROC curve. The AUC values

of the KGM+KSM panel for HCC versus NC and HCC versus LC

were 0.97 ± 0.06 and 0.72 ± 0.18, respectively (Figure 8C).

The clinical indicator AFP (cutoff value of 20 ng/mL) is

commonly used to aid in the diagnosis of HCC. To compare the

efficacy of AFP and our KGM+KSM panel in detecting HCC, AFP

levels in all individuals included in this study were recorded.

According to the findings, the AUC values for the AFP panel for

HCC versus NC and LC were 0.75 ± 0.19 and 0.70 ± 0.19,

respectively (Figure 8D). In contrast, the KGM+KSM panel

performed better than the AFP panel in terms of diagnostic value.

When KGM+KSM was combined with AFP to build the ROC

curve, the AUC values for distinguishing HCC from NC and LC

improved slightly when compared to the KGM+KSM panel,

reaching 0.99 ± 0.02 and 0.76 ± 0.17, respectively (Figure 8E).

Furthermore, it created a KGMSM (key gut microbial-associated

serum metabolites) panel with 9 differential serum metabolites

related to key species, which had significantly lower potential as

HCC markers than the KGM+KSM panel, with AUC values of 0.86

± 0.14 and 0.53 ± 0.18 for HCC versus NC and HCC versus LC,

respectively (Figure 8F).
BA

FIGURE 6

(A, B) The heatmap of the top 20 differential species and differential metabolites with the smallest p values for every omics in HCC vs. non-HCC.
Columns represent the differential metabolites, and rows represent the differential species. The color blocks represent the correlation coefficient.
The darker the color, the stronger the correlation between the different species and the different metabolites. Red represents a positive correlation,
and blue represents a negative correlation. * represents p<0.05, ** represents p<0.01.
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Correlation of key species, key metabolites,
and clinical indicators

Spearman correlation on key metabolites and key species

associated with HCC was performed, and the results revealed that

ouabain, TCDCA, GCDCA, and xanthine had a significant negative

correlation with Odoribacter splanchnicus and Ruminococcus
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bicirculans (Figure 9A). Meanwhile, Pearson correlation analysis

of key species and key metabolites with AFP, liver function index,

and immune cells were conducted (Figures 9B, C). Odoribacter

splanchnicus was found to be significantly and positively correlated

with AFP, white blood cells (WBCs), and leukocytes (LYs); GCDCA

and TCDCA were significantly and positively correlated with total

bilirubin (TBIL) and GGT but significantly and negatively
B

C

A

FIGURE 7

Correlation analysis of the metagenome and metabolome. (A) Spearman correlation network interaction diagram of the key species and differential
metabolites. Each point in the figure represents a species or a metabolite. The more lines there are between the points, the more species or
metabolites it may regulate. Blue dots represent species, red dots represent metabolites, red connecting lines between dots are positive correlations,
and green lines are negative correlations. The thickness of the line represents the level of the correlation coefficient. (B, C) Random forest ROC map
of species and metabolomes (the ROC map of the metabolome is on the left, the ROC map of species is in the middle, and the ROC map of the
species and metabolomes is on the right).
B

C D

E F

A

FIGURE 8

(A–F) The ROC curves of a random forest analysis of different panels. KGM, key gut microbes; KSM, key serum metabolites; KGMSM, key gut
microbial-associated serum metabolites. The abscissa of the ROC curve is the false-positive rate; the ordinate is the true positive rate; the blue
curve is the average curve after 10 folds; the AUC is the area under the curve; the shaded region is the upper and lower 1 standard deviation.
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correlated with total protein (TP), platelets (PLTs), and immune

cells such as LYs, indicating that HCC-related metabolites were

closely related to the deterioration of liver function in HCC patients.
Discussion

The study’s findings confirmed changes in gut microbiota and

serum metabolites in HCC patients. The panels of key species and

key metabolites associated with HCC as potential markers of HCC

were created, both individually and in combination, and then tested

the diagnostic value of each panel for HCC. By comparing the two

omics to assess the diagnostic performance of different omics alone

and in combination. The control group consisted of individuals who

underwent a physical examination at Nanjing’s Second Hospital,

whereas the HCC patients were newly diagnosed patients. Study

participants were screened for pharmacological factors such as

anticancer drugs and antibiotics to rule out any interference with

changes in the intestinal flora. It was discovered that the differences

in gut microbial composition and structure among NC, HCC, and

LC and the diversity of fecal microbes decreased in that order, which

is consistent with previous research (Ren et al., 2019).

Fecal Bacteroides are a sign of a healthy gut because they break

down polysaccharides and oligosaccharides and give nutrients and

vitamins to the host and other intestinal microbes (Wexler, 2007).

Bacteroides acidifaciens in the mouse intestine alleviated liver injury

by reducing hepatocyte apoptosis in a cd95-dependent manner,

according to one study (Wang et al., 2022a). However, it was

discovered in another study on the combined gut microbial and

transcriptomic analysis of HCC patients that the extent of tumor

load was positively correlated with the abundance of Bacteroides,

which caused adverse clinical outcomes via increased serum bile

acids (Huang et al., 2020). Furthermore, Bacteroides has been
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shown to be a drug target for certain herbal and anticancer drugs

in the treatment of HCC, although whether by increasing or

decreasing it remains debatable. The Shaoyao Ruangan Mixture,

for example, may have antihepatocellular effects by increasing

Bacteroides, whereas nimbolide has antihepatocellular effects by

decreasing Bacteroides (Zhen et al., 2019; Ram et al., 2022). It was

hypothesize that these disparities are due to differences in animal

and human flora, subject selection criteria and heterogeneity, or 16S

rRNA sequencing limitations. The detection of species levels is also

limited by 16S rRNA sequencing, and while some microbes may

maintain dynamic equilibrium at the genus level, species levels

within the genus have different effects on disease susceptibility.

Metagenome sequencing results revealed that differential species

under the Bacteroides branch, such as Bacteroides_sp. HF-5287,

Bacteroides_sp. A1C1, Bacteroides_sp. CACC_737, Bacteroides_sp.

PHL_2737, Bacteroides_intestinalis, Bacteroides_uniformis, and

Bacteroides_cellulosilyticus were all higher in the NC group than

in the other two groups and were also important markers to

distinguish the healthy group from the other two groups.

Veillonella was found to be associated with autoimmune

hepatitis (AIH), primary biliary cholangitis (PBC), primary

sclerosing cholangitis (PSC), HBV infection, and alcoholic

hepatitis, among other liver diseases that are highly correlated

with liver function indicators and liver inflammation, according

to previous research (Wei et al., 2020; Kim et al., 2021). Veillonella

was also found to be positively related to AFP, a clinical indicator of

HCC (Zhang et al., 2019). This is consistent with this study that,

with the exception of Veillonella parvula, Veillonella sp. T1–7,

Veillonella atypica, Veillonella dispar, and most key species

differing in HCC and LC had a decreasing trend compared to

NC. It was also discovered that these four species were more

abundant in LC than in HCC, which is consistent with the

findings of a study on the gut flora of HBV-associated early HCC
B

C

A

FIGURE 9

(A) Spearman correlation chord diagram of key species and key metabolites. Species or metabolites are on the edge of the circle in the figure, and
the connecting line in the circle represents the correlation between the species and metabolites; red is a positive correlation, and blue is a negative
correlation. The darker the color or the thicker the line, the stronger the correlation. (B, C) Pearson correlation cluster heatmap depicting the
relationships between the key metabolites (ouabain, TCDCA, GCDCA, theophylline, and xanthine), the key species (Odoribacter splanchnicus and
Ruminococcus bicirculans) and the clinical indicators. WBC, white blood cell; LY, leukocytes; GGT, gamma-glutamyl transferase; EOS, eosinophil;
TP, total protein; PLT, platelets; NE, neutrophilic granulocyte; TBIL, total bilirubin; MONO, monocytes; BASO, basophil. Red indicates positive
correlations, whereas blue indicates negative correlations. *p < 0.05, **p < 0.01, ***p < 0.001.
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and LC (Tang et al., 2021). It is worth noting that the LEfSe analysis

results indicate that these four species have the potential to

diagnose LC.

Furthermore, Ruminococcus bicirculans and Odoribacter

splanchnicus were identified as potential species-level microbial

markers for the diagnosis of HCC in the LEfSe analysis.

Ruminococcus’s benefits and drawbacks are debatable. It has been

proposed that it is a probiotic that could benefit HCC patients

receiving anti-PD-1 immunotherapy as well as combat the anxiety

and fear associated with cancer treatment and recurrence (Okubo

et al., 2020; Mao et al., 2021). Ruminococcus, on the other hand, was

strongly associated with some diseases and significantly enriched in

patients with thyroid cancer, endometrial cancer, and clear cell

renal cell carcinoma, and it may serve as a biomarker for clinical

features and prognosis and provide a new therapeutic target for

clinical treatment (Chen et al., 2022; Ishaq et al., 2022; Zhao et al.,

2022). In this study, it was discovered that the relative abundances

of Ruminococcus and Ruminococcus bicirculans in HCC were

significantly lower than those in NC but significantly higher than

those in LC.

In contrast, Odoribacter splanchnicus, another potential HCC

marker, is widely regarded as a probiotic that can be used in fecal

transplantation to treat disease (Lima et al., 2022). Odoribacter

splanchnicus was found to be age-enriched in centenarians, and it

may aid in health maintenance (Wang et al., 2022b). Odoribacter

splanchnicus was shown to be useful in treating colitis and colorectal

cancer by stimulating IL-6 and IL-1 production and Th17 cell

expansion (Xing et al., 2021). Odoribacter splanchnicus was found

in this study to be significantly lower in HCC and LC than in NC,

and it is expected to be a new therapeutic target for HCC.

Metabolic pathway enrichment analysis was performed using

differential metabolites to learn the mechanisms of the metabolic

pathway changes in the different groups. Bile secretion, cholesterol

metabolism, and caffeine metabolism pathways were found to be

enriched in HCC versus LC, HCC versus NC, and LC versus NC,

which are closely related to HCC progression. Among the various

endogenous metabolites from the host intestinal flora that are

synergistically metabolized, bile acids have received increased

attention due to their known pro-tumorigenic properties (Quante

et al., 2012; Yoshimoto et al., 2013), which involve two important

receptors: the farnesoid X receptor (FXR) and the G-protein-

coupled bile acid receptor (TGR5) (Jia et al., 2018). There is

accumulating evidence that bile acids play an important role in

HCC. TCDCA and GCDCA were discovered to be involved in the

bile secretion and cholesterol metabolism pathways, and their

serum concentrations were both significantly different in pairwise

comparisons, suggesting that they could be used as clinical

biomarkers. Previous research has discovered that TCDCA not

only causes oxidative stress in gastrointestinal tumors, resulting in

compensatory upregulation of TR mRNA (Lechner et al., 2002), but

it also reduces expression of the tumor suppressor gene CEBP in

HepG2 cell lines (Xie et al., 2016), which is correlated with the risk

of colon cancer and HCC (Kühn et al., 2020; Farhat et al., 2022).

GCDCA is a significant human bile salt. GCDCA treatment of

HepG2 cel l l ines act ivates ERK1 and ERK2, induces

phosphorylation of Mcl-1 at the T163 site and is a potential
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carcinogen in the development of HCC (Liao et al., 2011).

Meanwhile, in vitro and in vivo studies revealed that GCDCA

activated autophagy in HCC cells and significantly increased their

invasive potential (Gao et al., 2019). These mechanisms may

represent a novel treatment for HCC. TCDCA and GCDCA were

significantly higher in the HCC group than in the NC group in

our study.

Another important pathway involving theophylline and

xanthine is caffeine metabolism. In the majority of observational

studies and meta-analyses, coffee consumption has been linked to a

lower risk of cancers such as colorectal (Mackintosh et al., 2020),

breast (Oh et al., 2015), prostate (Wilson et al., 2011), and liver

cancer (Inoue and Tsugane, 2019). Theophylline is a xanthine

derivative that is primarily eliminated by liver metabolism and is

used to treat respiratory diseases such as asthma. Studies have

shown that increasing coffee consumption raises serum levels of the

metabolite theophylline, which has been shown to have anticancer

activity and a protective effect against cisplatin-induced GFR

damage in patients with various malignancies, although the

precise mechanism is unknown (Benoehr et al., 2005; Guertin

et al., 2015). Theophylline is a natural substance that is easily

accessible. It has the potential to be modified and used as a

scaffold structure for the creation of effective antitumor

medications. Non-small cell lung cancer (NSCLC) has been

reported to be effectively treated with theophylline derivatives

containing 1,2,3-triazole rings (Ye et al., 2021). According to this

study, theophylline was significantly reduced in patients with HCC.

Additionally, we discovered that 9 serum metabolites, including

TCDCA, GCDCA, and xanthine, were closely related to the

previously screened key species Odoribacter splanchnicus and

Ruminococcus bicirculans and that the KGMSM panel constructed

from the 9 differential metabolites associated with the key species

has some diagnostic potential. The Spearman correlation test

showed that ouabain, TCDCA, GCDCA, and xanthine all had

significant negative correlations with Odoribacter splanchnicus

and Ruminococcus bicirculans.

Previous research has shown that both gut microbes and serum

metabolites have great potential for disease diagnosis (Luo et al.,

2018). However, the causal relationship between gut microbes and

metabolites in HCC is unclear, and no articles have been published

that report on which is best for diagnosing HCC: gut microbes or

metabolites. ROC curves were used to assess each panel’s potential

contribution to predicting HCC, and it was found that the KSM

panel was superior to the KGM panel in distinguishing HCC from

non-HCC but it had an AUC value of less than 0.7 in distinguishing

HCC from LC. When the KGM+KSM panel was used for the

diagnosis of HCC, the AUC values for HCC versus LC (AUC > 0.7)

and HCC versus NC improved, indicating that the KGM+KSM

panel is superior to the KGM panel and the KSM panel as a

potential marker for HCC. Using the best ROC results from

separate omics modeling versus combined data modeling, the

AUCs for HCC versus LC and HCC versus LC were 0.800

(merged) and 1.000 (metabolites), which are very close to the

corresponding AUC values of 0.72 and 0.97 for our KGM+KSM

panel. Furthermore, when the clinical indicator AFP was included

in the panel, the AUC values reached 0.76 and 0.99. This study
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suggest that the KGM+KSM panel could be a promising,

noninvasive HCC detection method.

It is worth noting that although the changes and associations of

the microbiome and metabolome in HCC were described in our

study, which evaluated and compared different panels as HCC

markers, these results were not validated in a separate population

cohort. In the future, more and larger cohort studies will be needed.

Meanwhile, this study has some limitations. First, the prognosis

is an important aspect of disease research. We were unable to study

the disease’s prognosis for the time being because it was not possible

to follow all patients in the short term. Second, the strict enrollment

criteria resulted in a small number of patients being enrolled. In the

future, we hope to increase the sample size and conduct additional

studies through multicenter collaboration. Finally, we focused on

two HCC-related key species and five HCC-related key metabolites.

We discovered their possible involvement in HCC through pathway

enrichment analysis, but this needs to be validated in vivo and in

vitro experiments, and we will continue our research in this

direction in the future. We hope that our research will lead to

new approaches to the diagnosis and treatment of HCC.
Conclusions

The intestinal flora and serum metabolism in HCC patients

were studied. The results imply that HCC could be caused by a

mutual regulation of key species and key metabolites. A comparison

of the diagnostic performance of the KGM, KSM, and KGM + KSM

panels and AFP suggested that HCC-related key species

(Odoribacter splanchnicus and Ruminococcus bicirculans) and key

metabolites (ouabain, TCDCA, GCDCA, theophylline, and

xanthine) may be potential markers for the diagnosis of

hepatocellular carcinoma.
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