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China has now achieved the elimination of malaria, but it still faces severe

challenges in the post-elimination stage. China continues to be plagued by

imported malaria cases, and preventing re-transmission of imported malaria is

critical. The effectiveness of antimalarial drugs for malaria control largely

depends on the study of drug resistance markers in vitro. Monitoring

molecular markers of parasite-associated drug resistance can help predict and

manage drug resistance. There is currently a lack of systematic reviews of

molecular markers for indigenous and imported malaria in China. Therefore,

this review summarizes the published articles related to molecular marker

polymorphism of indigenous and imported malaria cases in China in the past

two decades, to study themutation frequency and distribution of crt,mdr1, dhps,

dhfr and K13 gene resistance-related loci. This can provide a whole picture of

molecular markers and the resistance mutations of imported cases in China,

which has certain significance for drug resistance surveillance planning, safe and

effective treatment, and preventing the recurrence of local transmission by

imported malaria in China in the future.
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Introduction

Malaria is one of the most devastating infectious diseases. It imposes a severe burden on

developing countries, especially in Southeast Asia and Africa. Of the five species of

Plasmodium that infect humans, Plasmodium falciparum and Plasmodium vivax have

the highest infection and morbidity rates. According to the 2022 World Health

Organization (WHO) World Malaria Report, there are an estimated 247 million malaria
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cases globally in 2021, with an increase from 245 million in 2020

(WHO, 2022). The increase in malaria cases has been influenced by

the disruption of services during the COVID-19 pandemic. Malaria

deaths are estimated at 619,000 in 2021, a slight decrease compared

to 2020 (WHO, 2022).

The widespread resistance of parasites to antimalarial drugs has

attracted great attention in recent years. The emergence of parasite

resistance has severely hindered the progress of malaria elimination.

Resistance to chloroquine (CQ) in P. falciparum had emerged in

Thailand as early as the late 1950s, and over time the drug was no

longer effective (Payne, 1987). In the 1960s and 1970s, these

resistant strains spread steadily through South America, Southeast

Asia and India (Liu et al., 1995; Wellems and Plowe, 2001).

Resistance also generally emerged in the late 1970s following the

entry of sulfadoxine-pyrimethamine (SP) as an alternative

treatment for falciparum malaria (Suebsaeng et al., 1986). Malaria

treatment has been plagued by recurring resistance in parasites until

the advent of artemisinin. Artemisinin-based combination

therapies (ACTs) were introduced in the 1990s and are now used

to treat uncomplicated malaria (Fairhurst and Dondorp, 2016).

With the widespread use of ACTs in malaria-endemic countries and

the increase in insecticide-treated bed nets, malaria morbidity and

mortality have decreased significantly globally (Bhattarai et al.,

2007). However, artemisinin resistance was first reported in

western Cambodia in 2008, and the emergence of resistance

resulted in lower parasite clearance rates (Noedl et al., 2008;

Dondorp et al., 2009; Ashley et al., 2014). Since then, artemisinin-

resistant parasites have spread rapidly across Southeast Asia (Phyo

et al., 2012; Kyaw et al., 2013). Recent studies have confirmed the

emergence of artemisinin partial resistance in several areas of

Africa, notably in Rwanda, Guyana and Papua New Guinea

(Maïga-Ascofaré and May, 2016; Uwimana et al., 2021). In the

absence of effective antimalarial drugs, the emergence of

artemisinin resistance in Africa is likely to lead to a repeat of high

mortality rates and this needs to be addressed through resistance

surveillance. At present, P. falciparum is resistant to almost all

antimalarial drugs. Meanwhile, P. vivax also developed resistance to

chloroquine and primaquine in Southeast Asia during the 1990s

(Murphy et al., 1993; Looareesuwan et al., 1997).

China has also suffered from malaria since ancient times. After

long-term unremitting struggle and efforts, China reported zero

indigenous cases in 2017 (Feng et al., 2018). Although WHO

certified China as a malaria-free country in 2021, China is still

plagued by imported malaria cases (Liu, 2014; WHO, 2022). In the

context of current antimalarial drug resistance globally, the threat of

imported drug-resistant parasites must be monitored and addressed

timely. The effectiveness of antimalarial drugs for malaria control

relies heavily on the study of resistance markers in vitro, and

monitoring parasite-associated molecular markers of resistance

can help predict and manage drug resistance (Fairhurst and

Dondorp, 2016; Haldar et al., 2018). This review summarizes the

published articles related to molecular marker polymorphism of

indigenous and imported malaria cases in China in the past two

decades, to study the mutation frequency and distribution of

resistance-related loci. This can provide better understanding of

antimalarial drug resistance marker surveillance in China, which
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has certain significance for the surveillance and management of

imported cases and preventing re-transmission in the future.
Study selection method

PubMed and CNKI databases were searched for peer-reviewed

articles from China published between 1 January 2001 and 1 May

2022, that had genotyped the crt, mdr1, dhfr, dhps and pfK13 genes

of P. falciparum or P. vivax (Figure 1). The following search terms

were used: “((malaria OR falciparum OR vivax) AND (molecular

marker OR crt OR mdr1 OR dhfr OR dhps OR K13)) AND (China

OR China-Myanmar border) AND ((“2001/01/01” [Date -

Publication]: “2022/05/01” [Date - Publication]))”. Studies related

to parasites in the last two decades were screened and those based

on transgenic parasites, books and modelling studies were excluded.

In addition, the following information was extracted from the

studies: the year samples were collected, study area, source of

imported cases, sample size, and gene polymorphism.
Results

Literature screening results

According to the search conditions, a total of 230 literatures

were obtained from PubMed and CNKI databases. Reviews and

books, non-malaria studies and molecular marker studies were
Records excluded with reasons (N = 178 ):
reviews and books

sample collected outside of China

non-malaria work

non-P. falciparum or non-P. vivax malaria
non-molecular marker studies

crt, mdr1, dhfr, dhps and k13 mutations were not studied
sample collected before 2001

Records screened (N = 230)
From PubMed (N = 193)

From CNKI (N = 137 )

Journal included in the analysis
(N = 52 )

FIGURE 1

Flow diagram of study selection. The figure shows the number of
manually screened and excluded publications identified in
PubMed and CNKI, and finally screened the 52 publications
counted in this study.
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excluded. According to the abstract and results of the literature,

studies containing non-P. falciparum or non-P. vivax, non-crt gene,

non-mdr1 gene, non-dhfr gene, non-dhps gene, non-K13 gene and

studies with samples collected before 2001 were all excluded.

Finally, 52 literatures were included in this study (Figure 1).

According to statistics, the total number of samples included in

the study was 17,754, and its time span was from 2001 to 2019.
The distribution of samples

Among all samples, indigenous samples (76.7%) were collected

from 2001 to 2014 and imported samples (23.3%) were collected from

2004 to 2019. The collection time of these samples was not

continuous, and there were gaps in several years, which may be

due to the time lag of sample research or the lack of research in this

area. The proportion of imported samples was significantly higher

than that of indigenous samples among different gene groups (P <

0.05) (Figure 2). For more than 63.5% of the 52 studies, the years of

sample collection were from 2012 to 2019 (Supplementary Tables 1–

8). More than 90% of the imported P. falciparum malaria samples in

China were mainly imported from Africa, whereas all imported P.

vivax cases in China came from Southeast Asia, especially Myanmar.
Molecular marker of resistance

In P. falciparum related resistance genes, the pfcrt gene of

indigenous samples had the highest mutation frequency of K76T

(87.1%), while M74I/T, N75E/D/K and A220S mutations were

more common (37.5%, 37.3% and 35%, respectively) (Figure 3).

Only K76T mutation was detected in samples from 2001 to 2007. In

imported samples, mutations frequency at sites 74, 75 and 76 were

similar (32.6%, 32.2% and 34.8%, respectively) and usually mutated

simultaneously. In indigenous samples, the most common

mutations of pfmdr1 gene were N86Y and Y184F, accounting for

14% and 12.6%, respectively. The N1042D mutation of pfmdr1 was

detected in some samples, but the proportion was very low (only

0.8%) (Supplementary Table 2). Similar to the indigenous samples,
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the most common mutation of pfmdr1 in the imported samples

were N86Y and Y184F (22.7% and 34.7%, respectively) (Figure 3).

The difference was that the mutation of N1042D was not detected in

the imported samples, but the D1246Y mutation of pfmdr1 was

detected in the imported African samples, which was not detected

in the indigenous samples. In indigenous samples, the mutations in

N51I, C59R, S108N and I164L of pfdhfr were all over 50%, and

C59R had the highest mutation frequency (92.4%). In imported

samples, the mutation frequency of N51I, C59R and S108N in

pfdhfr gene were high, accounting for 92.3%, 84.9% and 97.1%,

respectively (Figure 3). The difference was that the mutation

frequency of I164L in indigenous samples (69.5%) was

significantly higher than that in imported samples (0.24%) (P <

0.05). For pfdhps, the highest mutation frequency was K540E/N

(78.4%) in indigenous samples and A437G (75.7%) in imported

samples. Mutations of I431V and A613S were detected in a small

part of the imported samples. For pfK13, F446I had the highest

mutation frequency, accounting for 31.4% of indigenous samples

and 3.7% of imported samples (Figure 3).

In P. vivax related resistance genes, the mutation frequency of

T958M and F1076L of pvmdr1 gene was the highest in indigenous

samples, which were 71.6% and 75.6%, respectively (Figure 4).

Different from the indigenous samples, in addition to T958M

(74.1%) and F1076L (64.9%), the mutation of pvmdr1 gene was

also higher at G698S (62%) and M908L (60.8%) in imported

samples. In indigenous samples, the mutation frequency of S58R,

T61M and S117N/T were high in pvdhfr gene, which were 44.4%,

40.1% and 67.3%, respectively, and the mutation frequency of

A383G site in pvdhps gene was the highest (61.5%) (Figure 4).

The highest mutation frequency of pvdhfr gene in imported samples

was S58R (58.6%) and the mutation rate of A383G site in pvdhps

gene was the highest (71.3%).

Based on the collected results, the period from 2001 to 2012 was

defined as the early stage of the study, and the period from 2012 to

2019 as the late stage. In indigenous samples, pfcrt, pfmdr1, pfdhfr,

pfdhps, pvdhfr, and pvdhps genes in the early stage were not

significantly different from those in the late stage (P >0.05).

Different from the late stage, mutations at N11Y, K189T, R225K,

E252Q, I352T and P441L were newly found in less than five

samples, but F446I was still the main mutation in pfk13. In the

pvmdr1 gene, mutations at P8L, G520D, G698S, L845F, A861E and

M908L were newly discovered in the early stage, which were not

found in the late stage. In the imported malaria samples, the

mutation of each gene in the early stage showed no significant

trend than the later stage (P >0.05).
Discussion and conclusion

The study of genetic molecular markers of drug resistance can

provide a better understanding of drug action and drug resistance

mechanisms that are critical to achieving malaria treatment and

control of transmission. The mutation of P. falciparum chloroquine

resistance transporter gene (pfcrt) K76T has been confirmed to be

closely related to CQ resistance, and those P. falciparum carrying

the K76T mutation are generally accompanied by M74I, N75E and
FIGURE 2

Distribution of samples by gene. All samples (n=17754) were from
published studies (n=52). The indigenous cases were collected from
2001 to 2014 and the imported cases were collected from 2004
to 2019.
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A220S mutations (Babiker et al., 2001; Djimdé et al., 2001; Sa and

Twu, 2010). This phenomenon was also shown in the collection of

indigenous and imported malaria samples in China, with a trend

toward higher mutation frequency at sites 74-76 of pfcrt gene
Frontiers in Cellular and Infection Microbiology 04
(Figure 3). In addition, mutations at loci Q271E, N326S, I356T,

and R371I were found in which reported in the border area of

Yingjiang County in Yunnan Province and Kachin area in

Myanmar, which may be due to the frequent migration of
FIGURE 4

Point mutation frequencies of pvmdr1, pvdhfr and pvdhps genes. The mutation sites with frequencies greater than 1% were shown in the figure. The
indigenous cases of P. vivax were collected from 2006 to 2012, while the imported cases were collected from 2004 to 2019.
FIGURE 3

Point mutation frequencies of pfcrt, pfmdr1, pfdhfr, pfdhps and pfK13 genes. The mutation sites with frequencies greater than 1% were shown in the
figure. The indigenous cases of P. falciparum were collected from 2001 to 2014, while the imported cases were collected from 2007 to 2019.
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populations in border areas to spread parasite drug resistance (Yang

et al., 2007; Carrara et al., 2013; Wang et al., 2020; Si et al., 2021). P.

falciparum multidrug resistance 1 (pfmdr1) genes are associated

with resistance to CQ, mefloquine, quinine and artemisinin in P.

falciparum, especially the N86Y allele (Sidhu et al., 2006; Feng et al.,

2015; Gil and Krishna, 2017; Muiruri et al., 2018). From the data

collected, mutations at the N86Y and Y184F sites of pfmdr1 were

common, mutations in Y184F and N86Y occurred simultaneously

in most samples. (Figure 3). The F1226Y mutation was detected in

only a few samples, studies confirmed that parasites with the

F1226Y mutation increases parasite resistance to quinine and

lumefantrine (Wang et al., 2020). Notably, the N1042D mutation

was detected in the indigenous samples and studies have found that

parasites with the N1042Dmutation have increased susceptibility to

pyronaridine (Bai et al., 2018), but the D1246Y mutation was

detected in the imported African samples, which indicated the

geographical differences in the production of malaria resistance (Xu

et al., 2018; Zhou et al., 2019; She et al., 2020; Huang et al., 2021;

Zhao et al., 2021).Mutations in dihydrofolate reductase (dhfr) and

dihydropteroate synthase (dhps) are associated with parasite

resistance to SP drugs (Triglia et al., 1997). The study found that

mutations at N51I, C59R, S108N, and I164L of pfdhfr gene were

associated with pyrimethamine resistance (Triglia et al., 1997;

Happi et al., 2005). And mutations at S436A, A437G, K540E,

A581G and A613S of pfdhp gene were associated with sulfadoxine

resistance (Kublin et al., 2002; Berglez et al., 2004; Pearce et al.,

2009). The mutation frequency of these sites of pfdhfr and pfdhp,

which we collected, was high. This phenomenon is similar to studies

in Myanmar, Thailand, and Cambodia in Southeast Asia (Anderson

et al., 2005; Khim et al., 2005; Huang et al., 2012). It is estimated that

P. vivax, which is endemic in Southeast Asia, has shown resistance

to SP (Figure 3). Different from the indigenous samples imported

samples of falciparum malaria from Africa have high mutation

frequency (>80%) in N51I, C59R, and S108N of pfdhfr, and have

lower mutation frequency at I164L (Figure 3). It can indicate that

indigenous parasites may have developed high pyrimidine

resistance. Therefore, close monitoring of the associated resistance

to imported malaria in Africa is critical. The kelch13 (K13)

propeller domain of P. falciparum has been shown to be

associated with artemisinin resistance (Cheeseman et al., 2012;

Miotto et al., 2013). It has been confirmed that the F446I, N458Y,

M476I, Y493H, R539T, I543T, P553L, R561H and C580Y site

mutations of the pfK13 gene are closely related to artemisinin

resistance (Huang et al., 2015; WHO, 2018; Feng et al., 2019).

The F446I mutation of the pfK13 gene was found to be predominant

in the border areas of Myanmar and Yunnan Province of China

(Supplementary Table 8).And the mutations of A578S and P574L

loci of pfK13 were more common in African imported samples

(Supplementary Table 8). Although zero indigenous cases have

been reported in China since 2017, cross-border malaria

transmission due to Anopheles mosquitoes in the China-

Myanmar border area and human importation from malaria-

endemic areas in Southeast Asia and Africa make malaria

management and drug resistance monitoring difficult (Feng

et al., 2019).
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.The proportion of imported vivax malaria cases has increased

since the absence of indigenous cases in China, and there is still a risk

of transmission (Zhang et al., 2022). P. vivax is the geographically

most widespread malaria parasite and imposes a severe burden on

global public health (Mueller et al., 2009; Howes et al., 2016). From

the data collected, imported samples of vivax malaria in recent years

came from Southeast Asia, especially Myanmar, where the malaria

burden is the heaviest (Supplementary Tables 5–7). China’s Yunnan

Province borders Myanmar, so there is a high risk of cross-border

transmission of mosquito vectors, which still requires high attention.

Due to the limitation of in vitro culture of P. vivax, the research of

drug resistancemolecular markers is full of challenges, so the research

mainly focuses on the homologous molecular markers with P.

falciparum (Wang et al., 2022). P. vivax multidrug resistance gene

(pvmdr1), homologous to pfmdr1, has been identified as a possible

genetic molecular marker of CQ resistance (Brega et al., 2005;

Suwanarusk et al., 2007). The frequency of M908L (41.8%) or

T958M (72.5%) mutations in the pvmdr1 gene was higher in

imported vivax samples of China (Figure 4). It is worth noting that

mutations at the M908L, T958M, Y976F and F1076L sites have been

confirmed to be closely related to CQ resistance (Brega et al., 2005;

Chehuan et al., 2013; Li et al., 2020). Interestingly, the mutation

frequencies of Y976F (2.4%) and F1076L (69.2%) in the China-

Myanmar border area of imported P. vivax samples were significantly

different (P<0.05) (Figure 4). This finding is consistent with studies in

the Myanmar region, where Y976F is also rare (Nyunt et al., 2017),

but these results are quite different from studies in the Thai-

Cambodian border region, where the incidence of Y976F is high

(Tantiamornkul et al., 2018). The resistance of P. vivax to SP has been

shown to be caused by mutations in two genes, dihydrofolate

reductase (pvdhfr) and dihydropteroate synthase (pvdhps) (Tjitra

et al., 2002; Korsinczky et al., 2004). Among them, the mutations

of pvdhfr codons 57, 58, 117, 173 and pvdhps codons 382, 383 and 553

were found to be associated with pyrimethamine and sulfadoxine

resistance (Imwong et al., 2001; Imwong et al., 2003; Korsinczky et al.,

2004; Huang et al., 2022). The pvdhfr gene with 57 site (36.3%)

mutation mainly occurred in the border area between China and

Myanmar, which was an imported case from Myanmar. The

mutation at locus 117 of pvdhfr gene mainly occurred in the

Myanmar, and the point mutation frequency of loci 58 and 117

were high, which were 51.0% and 62.7%, respectively (Figure 4).

Almost all of the collected data carried at least one of the two

mutations, 383 and 553, indicating that almost all of these parasites

had developed resistance to sulfadoxine (Figure 4).

This study found that there was a lack of sample collection and

testing in some years, which may be due to fewer studies in this

period or delayed reporting. Most of the study period was from

2012 to 2019. Therefore, no significant trend in mutation sites of

each gene has been observed over time. In addition, it was found

that some mutation sites (especially pfK13 gene) were detected in a

small number of cases of these genes studied in this study. Due to

the small number of detected mutations, it is necessary to continue

to detect whether they have an impact on drug resistance in the

future. At present, China has been eliminated malaria, but the risk

of imported malaria continues to exist globally, especially resistant
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malaria in Southeast Asia and Africa. Therefore, surveillance for

susceptibility of imported malaria to commonly used antimalarial

drugs in China (including increased monitoring of the piperaquine

resistance gene related gene pfpm2-3) should be integrated into the

routine case surveillance in all provinces, which can provide

complete evidence and address the risk of resistance to

antimalarial drugs in time to ensure that treatment effects to

prevent malaria retransmission.
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