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Dysregulation of metabolism plays an important role in the onset and

progression of multiple pathogenic diseases, including viral hepatitis. However,

a model to predict viral hepatitis risk by metabolic pathways is still lacking. Thus,

we developed two risk assessment models for viral hepatitis based on metabolic

pathways identified through univariate and least absolute shrinkage and selection

operator (LASSO) Cox regression analysis. The first model is designed to assess

the progression of the disease by evaluating changes in the Child–Pugh class,

hepatic decompensation, and the development of hepatocellular carcinoma.

The second model is focused on determining the prognosis of the illness, taking

into account the patient’s cancer status. Our models were further validated by

Kaplan–Meier plots of survival curves. In addition, we investigated the

contribution of immune cells in metabolic processes and identified three

distinct subsets of immune cells—CD8+ T cells, macrophages, and NK cells—

that have significantly affected metabolic pathways. Specifically, our findings

suggest that resting or inactive macrophages and NK cells contribute to

maintaining metabolic homeostasis, particularly with regard to lipid and a-
amino acid metabolism, thereby potentially reducing the risk of viral hepatitis

progression. Moreover, maintaining metabolic homeostasis ensures a balance

between killer-proliferative and exhausted CD8+ T cells, which helps in

mitigating CD8+ T cell-mediated liver damage while preserving energy

reserves. In conclusion, our study offers a useful tool for early disease

detection in viral hepatitis patients through metabolic pathway analysis and

sheds light on the immunological understanding of the disease through the

examination of immune cell metabolic disorders.
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1 Introduction

Viral hepatitis has been a global health problem for a very long

time and is still regarded as a serious threat to human health.

Hepatitis B and C viruses infect over 300 million people and cause

over 1 million deaths annually, leading to significant healthcare

and economic burdens for patients and society (Lazarus et al.,

2019; The, 2022). Furthermore, patients with viral hepatitis who

remain untreated worsen over time and may eventually develop

liver cirrhosis and hepatocellular carcinoma (Sherman and Shah,

2018; Lazarus et al., 2019). Despite taking long-term viral

suppression treatments, cure rates for hepatitis virus remain low

(Manns et al., 2017; Tang et al., 2018), leaving patients to face a

long-term risk of disease progression and a shorter life span. In

light of these challenges, there is an urgent need for accurate

prediction of disease progression and prognosis in patients with

viral hepatitis.

X. Chang et al. and X. Zhang et al. developed assessment models

of liver injury and cirrhosis of viral hepatitis patients by using

selected clinical characteristics (Chang et al., 2021; Zhang et al.,

2021). Moreover, researchers have recently built models that take

into account factors such as tumor markers, genomes, or

transcriptomes for viral hepatitis patients with liver cancer to

analyze the risk of carcinogenesis, patient survival, and treatment

of liver cancer (Hlady et al., 2019; Xiang et al., 2021; Wang et al.,

2022). However, despite advancements made in the field, there are

still some crucial elements that influence viral hepatitis progression

and prognosis, which have not been incorporated into previous

prediction models.

A recent study showed that there is a strong association between

chronic hepatitis virus infection and metabolic disorders (Wang et al.,

2020). J. Li et al. found that disruptions in lipid and fatty acid

metabolism are involved in liver failure progression (Li et al., 2022).

Similarly, metabolic reprogramming of cancer cells is well known to

have a considerable impact on neoplastic disease initiation and

progression. Metabolic changes in other cell types in the tumor

microenvironment (TME) can also facilitate tumor development

(Martıńez-Reyes and Chandel, 2021). Many studies have found that

metabolic processes such as bile acid metabolism, amino acid

metabolism, and energy metabolism are involved in the occurrence,

progression, and patient outcomes of liver cancer, including viral

hepatocellular carcinoma (Ma et al., 2018; Dai et al., 2020; Jühling

et al., 2021; Liang et al., 2021; Parker et al., 2022). Recent evidence has

also suggested that metabolic circuits could be crucial in the treatment

of cirrhosis and liver cancer (Zhao et al., 2020; Du et al., 2022).

Therefore, we attempted to innovatively develop metabolism

prognostic models to offer a clinically novel approach for the risk

prediction of viral hepatitis patients.

Additionally, we aimed to explore the connection between

metabolism and the progression of viral hepatitis. Metabolism is

known to contribute greatly to shaping the body’s immune

processes, leading to complex, diverse, and sometimes conflicting

results (Patel et al., 2019; Yu et al., 2021). In viral hepatitis patients,

there is also a close relationship between metabolism and immunity.

For example, M. Canavese et al. found that Trp metabolism
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participates in both anti-hepatitis C virus (anti-HCV) and anti-

tumor immune responses (Canavese et al., 2016). Previous evidence

has also shown that disruptions in immunometabolism participate

in the process of viral hepatitis exacerbation, hepatocarcinogenesis,

and the prognosis of the disease (Wang et al., 2021; Hu et al., 2022;

Li et al., 2022). Moreover, metabolic reprogramming of immune

cells can play a role in the progression of both hepatitis and liver

cancer (Lee et al., 2015; Song et al., 2022). Meanwhile, advances in

single-cell RNA sequencing (scRNA-seq) has provided a deeper

understanding of immune cell subsets (Papalexi and Satija, 2018).

In combination with single-cell analysis, we hope to gain a deeper

insight into the role of immunometabolism in disease progression

and prognosis.

In this study, we developed metabolism-related models to predict

the risk of disease progression and prognosis in viral hepatitis patients.

In addition, we investigated its underlying mechanisms by analyzing

immune cell infiltration and the intrahepatic single-cell immune

landscape. Ultimately, our findings have the potential to facilitate

early detection of disease progression in viral hepatitis patients,

thereby aiding in the mitigation of disease progression and

improving the survival rate of patients.
2 Materials and methods

2.1 Data preparation

We utilized publicly available datasets to gather mRNA

expression profiles and patients’ clinical information from three

cohorts. Hepatocellular carcinoma (hcc cohort, Cohort 3) data were

obtained from The Cancer Genome Atlas (TCGA), and GSE15654

(cirrhosis cohort, Cohort 2) and GSE84044 (fibrosis cohort, Cohort

1) were obtained from the Gene Expression Omnibus (GEO)

database. Gene sets concerning metabolism were retrieved from

Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/

msigdb/genesets.jsp). Then, single-sample gene set enrichment

analysis (ssGSEA) of various metabolic pathways in these cohorts

was obtained by using the R package “GSVA”. The databases

mentioned above are publicly available. Thus, our study did not

require the approval of the local ethics committee.
2.2 Risk and prognosis-related candidate
selection

Univariate Cox regression was implemented to screen metabolic

pathways related to outcomes of patients, such as progression of the

Child–Pugh class, hepatic decompensation, hepatocellular carcinoma

(HCC) development, and death; p < 0.05 was regarded as statistically

significant. Pearson’s correlation analysis was used between ssGSEA

and grading of liver biopsy, including the sequential histological staging

of fibrosis (Scheuer score “S”) and grading of inflammation (Scheuer

score “G”). We screened some metabolic pathways by adjusting p <

0.05 and the absolute value of the correlation coefficient >0.4. Then, we

selected risk and prognosis-related overlapping pathways as their
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respective candidates. Forest plots and heatmap were generated using

R software.
2.3 Development and validation of the risk
and prognosis model

For the metabolic pathways preliminarily screened above, the

least absolute shrinkage and selection operator (LASSO) Cox

regression analysis and multivariate Cox regression analysis were

carried out to identify key pathways and build a prediction model.

We calculated the risk score of every patient based on the ssGSEA

score of each pathway and its corresponding regression coefficients,

score = coef 1 * ssGSEA score of pathway 1 + coef 2 * ssGSEA score

of pathway 2 + ··· + coef n * ssGSEA score of pathway n. According

to the optimal or median cut point of the risk score in the whole

cohort, the patients could be divided into high-risk and low-risk

groups. To validate the feasibility of the risk model, the Kaplan–

Meier (K-M) survival curve was used between the high-risk and

low-risk groups in these datasets separately. According to the

progression of the Child–Pugh class-related score of each patient

in different Scheuer score subgroups, we made a box plot using

GraphPad Prism 9.0 software.
2.4 Immune infiltration analysis

With gene expression data in Cohort 1, 22 types of immune cell

infiltration of each sample were obtained by CIBERSORTx (https://

cibersortx.stanford.edu/index.php). Then, we assessed the

relationship between our disease progression risk-related

metabolic pathways and immune cell infiltration by using

Pearson’s test and adjusting p-value <0.05 and showed results

through a heatmap.
2.5 Single-cell transcriptomic analysis

To conduct our single-cell analysis, we first utilized data

obtained from scRNA-seq results of liver samples sourced from

GSE182159, which includes records of 23 individuals (Zhang et al.,

2023). To normalize the featured expression measurements for each

cell by the total expression, we utilized a global-scaling

normalization method called “LogNormalize” and then

implemented a linear transformation (scaling) as a standard pre-

processing step, calculated variable gene features using the

“FindVariableFeatures” function, and conducted principal

component analysis on the scaled variable feature data. We then

employed the modularity optimization technique “Louvain

algorithm” to iteratively cluster cells together, and we used

Uniform Manifold Approximation and Projection (UMAP) to

visualize similar cells together in low-dimensional space. The gene

matrix from all samples was performed by the R package Seurat

(Stuart et al., 2019). A multi-dataset integration algorithm

“Harmony” was used to correct the batch effect (Korsunsky et al.,

2019). Differential gene expression analysis was carried out in
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Seurat using the “FindMarkers” function with the Wilcoxon test.

Differentially expressed genes (DEGs) were ranked by log2-

transformed fold change (log2FC) after being filtered with a

maximum adjusted p-value of 0.05. Gene set enrichment analysis

(GSEA) (Subramanian et al., 2005) was performed to enrich the

biological function information of the DEGs. Pathway-specific gene

sets were downloaded from the GSEA database (http://www.gsea-

msigdb.org). AUCell analysis was performed to evaluate pathway

activity based on a given gene set (Aibar et al., 2017). Machine-

learning framework (random forest algorithm) was used to quantify

the sensitivity and responsiveness of each cell type to biological

perturbations in the scRNA-seq dataset, which was calculated by

the R package Augur (Skinnider et al., 2021). The area under the

receiver operating characteristic curve (AUC) in cross-validation

was calculated to characterize the responsiveness. We included

metabolic enzyme genes detected by this dataset in machine-

learning analysis. The gene list of metabolic enzymes was

obtained from the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database (https://www.kegg.jp).
2.6 Statistical analysis

The statistical analyses were performed using R software

(Version 4.1.0, http://www.R-project.org) and the corresponding

packages. p-Values less than 0.05 were regarded as statistically

significant, and all p-values were bilateral.
3 Results

3.1 Overview

In this study, data were collected from three cohorts of patients

infected with hepatitis B virus (HBV)/HCV (n = 493) in different

stages of viral hepatitis progression. The activity of metabolic

pathways was calculated using ssGSEA score data and analyzed in

relation to pathological grades of inflammation and fibrosis,

carcinogenesis progression, liver function deterioration, and

survival prognosis. A risk assessment model was established based

on these findings. Additionally, this study analyzed immune

infiltration and created an intrahepatic single-cell immune

landscape (Figure 1).
3.2 Screening disease progression risk-
related metabolic pathways in viral
hepatitis cohort

First, we examined how different metabolic pathways affected

the course of the disease in the cohort of viral hepatitis patients

before the cancer stage. The Scheuer scoring system was used to

determine the grades of inflammatory activity and degree of fibrosis

in Cohort 1 (Scheuer, 1991). We preliminarily screened 220

metabolic pathways associated with both liver inflammation and

fibrosis through correlation analysis (|correlation coefficient| > 0.4,
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p < 0.05) (Supplementary Table S1). Furthermore, in Cohort 2,

univariate Cox regression analysis was conducted to assess the roles

of metabolic pathways in the progression of early-stage (Child–

Pugh-A) cirrhosis patients. The main outcome events of disease

progression included the progression of the Child–Pugh class

(event: child) and hepatic decompensation (event: decomp) and

HCC development (event: hcc). The results showed that 96

metabolic pathways (p < 0.05) contributed to three outcome

events as protective or risk factors of disease progression in the

early stage of liver cirrhosis (Supplementary Table S2).
Frontiers in Cellular and Infection Microbiology 04
After the integration of all the metabolic pathways associated with

disease progression in the two cohorts, 37 common metabolic

pathways were identified. Of these, three pathways were identified as

risk factors, while the remaining pathways were protective (Figure 2).

3.3 Construction of models related to viral
hepatitis disease progression risk

Considering that an excessively large number of pathways may

cause a drop in the value of the clinical application, we employed
DA B EC

FIGURE 2

Filtration of metabolic pathways related to disease progression. (A–D) We showed only the 37 overlapping outcome-related pathways in Cohort 1
and Cohort 2. (A) Heatmap showing the correlation coefficient between the chosen metabolic pathways and two kinds of liver biopsy in Cohort 1.
Forest plot of univariate Cox analysis for the chosen metabolic pathways related with (B) evaluation of progression of Child–Pugh class (child), (C)
hepatic decompensation (decomp), and (D) hepatocellular cancerization (hcc) in Cohort 2 (p < 0.05). (E) Related metabolic pathway in panels (A–D).
FIGURE 1

An overview of the study’s design and analysis.
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the LASSO Cox regression analysis to narrow the range of metabolic

pathways and constructed risk models from two aspects:

deterioration of liver function and carcinogenesis development.

Two risk assessment models of liver function deterioration

progression were built according to two events in Cohort 2: child

and decomp. First, after LASSO Cox regression analysis, eight

optimal variables of Child–Pugh class progression were extracted

from 37 metabolic pathways mentioned above to construct the

signature (Figure 3A). Then, the corresponding coefficients

obtained from the multivariate Cox regression model and then

ssGSEA scores of the optimal eight pathways were combined to

obtain a Child–Pugh class progression risk score for each patient:

score1 = 0.119 * GO0043550 + 0.102 * RHSA1442490 − 0.009 *

GO1901662 − 0.021 * GO0033539 + 0.003 * GO0006635 − 0.049 *

hsa00120 − 0.146 * GO0006112 − 0.164 * WP43. Based on the

optimal cutoff value of the risk score, the patients could be stratified

into high- and low-risk groups (Figure 3B). Then, a Kaplan–Meier

curve was utilized to show that patients in the high-risk subgroup

have significantly worse prognoses than their low-risk counterparts

(Figure 3C, p < 0.0001). Similarly, we attained eight optimal hepatic

decompensation-related pathways (Figure 3D) and corresponding

risk score: score2 = 0.077 * GO0043550 + 0.026 * RHSA2022923 −

0.008 * GO1901662 − 0.074 * WP4583 − 0.010 * GO0006706 −

0.056 * hsa00120 + 0.025 * GO0072329 − 0.088 *WP43. However, if

we took the optimal value determined with the maximally selected

rank method as the cut point of the two groups, the sample size of

the high-risk group might be so small that it interfered with later

survival analysis (Figure 3E). Thus, the high- and low-risk groups

were divided in accordance with the median value of the risk score.

Then, the striking difference between these two subgroups is also

shown in Figure 3F. Moreover, we noted the relationship between

the scale of inflammation and fibrosis and the risk score of liver
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function deterioration. Considering the small number of g3 and g4

grades, we regard the two grades as one group. The results suggest

that patients with a higher Scheuer score for their liver biopsy have a

greater risk score of Child–Pugh class progression (Figures 3G, H).

Then, by taking the occurrence of liver cancer as the outcome of

each patient in Cohort 2, we established the HCC development risk

assessment model. Their key pathways were also identified from the

above 37 pathways employing LASSO Cox regression analysis to

build the HCC development risk assessment model: score3 = −0.043

* RHSA211935 − 0.066 * GO0006706 − 0.133 * WP43 (Figure 4A).

The patients were divided into two subgroups based on the optimal

cut point, and the difference between the two subgroups was

significant, as demonstrated by the results of the analysis

(Figures 4B, C).
3.4 Construction of a viral hepatitis
prognostic model based on prognosis-
related metabolic pathways

Next, we examined the effects of metabolic pathways on the

survival and prognosis of viral hepatitis patients from the

perspectives of the cancer-free and cancerous stages. The Cox

regression model was used to assess the effects of each metabolic

pathway on the prognosis of patients in Cohort 2 and Cohort 3.

Finally, 28 common metabolic pathways (Figures 5A, B) were

identified, of which 12 pathways have a consistent trend of

hazard ratio (Figures 5C, D). This indicates that these 12

pathways contributed greatly to determining the prognosis of

viral hepatitis patients before and after liver cancer development.

To establish prognostic risk models, we will examine these 12

pathways for key pathways.
G

D

A B

E F H

C

FIGURE 3

Construction and validation of liver function deterioration progression risk-related models. For the two events, (A, D) LASSO regression models were
visualized. coef, regression coefficient; exp(coef), exponent coefficient (hazard ratio); se(coef), standard error of the coefficient; z, Wald statistic.
(B, E) According to the cut point derived from maximally selected rank statistics, the patients were separated into two risk subgroups. (C, F) Kaplan–
Meier plots of survival curve between high-risk and low-risk groups in two models. (G, H) Box plot showing a difference in Child–Pugh class
progression related-risk score among the five grades in two evaluation approaches. LASSO, least absolute shrinkage and selection operator.
****means p < 0.0001,*** means p < 0.001, ** means p < 0.01, and * means p < 0.05.
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For patients in Cohort 2, we selected eight pathways by LASSO

Cox regression analysis and constructed a prognostic model for

patients before the occurrence of liver cancer: score4 = 0.006 *

GO0046050 − 0.047 * GO0033539 − 0.079 * GO0006651 − 0.035 *

GO0009222 − 0.058 * RHSA70350 + 0.081 * GO0072337 − 0.057 *

RHSA196783 − 0.045 * WP4157 (Figure 6A). There was a

significant difference between the high- and low-risk groups,

which were separated by an appropriate value (Figures 6B, C, p <

0.0001). Similarly, based on the survival data of liver cancer patients

in Cohort 3, we obtained their prognostic model: score5 = −0.064 *

GO0015942 − 0.116 * GO0046185 + 0.005 * GO0019694 − 0.032 *

GO0006651 (Figure 6D). Then, we obtained two groups and also

found that patients in the low-risk group had a better prognosis

(Figures 6E, F, p = 0.00014).
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3.5 Metabolic disorders mediate
the imbalance of immune homeostasis
in hepatitis

Furthermore, we investigated the role of the 37 critical metabolic

pathways in disease progression from the immunological perspective.

In Cohort 1 with clinical information on inflammatory activity and

fibrosis degree, we evaluated 22 types of immune cell infiltration

fractions by CIBERSORTx, and then the correlation between the

activities of the 37 critical metabolic pathways and the immune

infiltration fractions was calculated (Figure 7A). The results

demonstrated that three risk metabolic pathways showed obvious

immune-enhancing and pro-inflammatory effects: their metabolic

activity was positively associated with plasma cells, gamma delta T
D

A B

C

FIGURE 5

Filtration of prognosis-related metabolic pathways. (A) Venn diagram to identify 28 overlapping prognosis related-metabolic pathways. (B) Related
metabolic pathways in panels C and D. Forest plot of univariate Cox analysis for the chosen prognosis-related metabolic pathways in (C) Cohort 2
and (D) Cohort 3 (p < 0.05).
A B C

FIGURE 4

Construction and validation of viral hepatitis cancerization risk-related models. (A) The LASSO regression model is visualized. (B) According to the
cut point with maximally selected rank statistics, the patients were split into high-risk and low-risk groups. (C) Kaplan–Meier plots of survival curve
between two subgroups. LASSO, least absolute shrinkage and selection operator.
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cells, M1 macrophages, CD8+ T cells, and activated NK cells but

negatively associated with resting memory CD4+ T cells, Treg cells,

resting NK cells, and M2 macrophages. In contrast, the remaining

protective metabolic pathways had immunosuppressive and anti-

inflammatory effects (Figure 7A).

Our results revealed distinct effects of metabolic pathways on

different subsets of macrophages and NK cells. Specifically, liver

tissues with high inflammation and fibrosis levels had increased

infiltration of pro-inflammatory M1macrophages and activated NK

cells, which were associated with risk metabolic pathways

(Figures 7B–E). In contrast, liver tissues with high inflammation

and fibrosis levels had decreased infiltration of anti-inflammatory

M2 macrophages and resting NK cells, which were associated with

protective metabolic pathways (Figures 7F–I).
3.6 Intrahepatic single-cell immune
map reveals the metabolic perturbations
of macrophage, NK cell, and CD8+
T-cell clusters

To further understand the effects of intrahepatic metabolic

dysregulation on the immune cell subtypes, we utilized the

scRNA-seq profiles of immune cells in liver tissues. In total, 19

cases were enrolled, including 15 HBV-infected cases (HBV) and

four healthy control cases (HC). After quality control and batch

correction, 98,074 cells were retained for analysis. There were 11 cell

types identified according to the expression level of the canonical

cell markers (Supplementary Figures 1A, B).
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Next, we evaluated the degree of metabolic imbalances in

various cell types in HBV infection. The expression of 711

metabolic enzyme genes (see Materials and Methods) in each cell

was included in the analysis. Machine-learning framework (random

forest algorithm) was used to determine the responsiveness of each

cell subset to biological perturbations caused by HBV infection. The

results indicated that macrophages were the most responsive cell

type to biological perturbations, with an AUC value of 0.832. NK

cells had moderate responsiveness, with an AUC of 0.611

(Supplementary Figures 1C, D).

A second round of clustering was conducted to better

understand the metabolic perturbations of macrophages and NK

cells. The AUCell analysis was used to evaluate pathway activity

based on the given 37 critical metabolic pathways (see Figure 2) in

the scRNA-seq dataset. Four macrophage clusters (Mac1–4) were

generated by re-clustering (Figure 8A). The Mac1–3 clusters

expressing high levels of inflammatory molecules (IL1b, CXCL8,
CXCL3, and NLRP3) were annotated as pro-inflammatory clusters.

The Mac4 clusters expressing low levels of inflammatory molecules

but high levels of C1QC and APOE were considered resting or anti-

inflammatory (Figure 8B). Other DEGs are shown in

Supplementary Table S3. The GSEA was applied to identify

functional differences in immune pathways based on the DEGs

between Mac1–3 and Mac4. The results suggested that Mac1–3 had

enhanced defense response, cytokine production, and inflammatory

response (Figure 8C). Next, we verified seven macrophage-related

metabolic pathways in scRNA-seq (Figure 8D). In addition to the

regulation of lipid kinase activity pathway (GO0043550), which was

a pro-inflammatory metabolic pathway, the other six were anti-
D
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E
F

C

FIGURE 6

Construction and validation prognosis-related models. (A, D) The LASSO regression models were visualized. (B, E) According to the cut point
obtained from maximally selected rank statistics, the patients were divided into two risk groups. (C, F) Kaplan–Meier plots of survival curve between
high-risk and low-risk groups in two models. LASSO, least absolute shrinkage and selection operator.
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inflammatory pathways, including urea cycle disorders (WP4583),

fatty acid beta-oxidation (GO0006635), monocarboxylic acid

metabolism (GO0072329), alpha amino acid metabolism

(GO1901605), peroxisomal lipid metabolism (RHSA390918), and

small molecule metabolism (GO0044282) (Figure 8E). We found

that the activity of the GO0043550 pathway was higher than that in

the HC group at all stages (acute recovery (AR), immune tolerant

(IT), immune active (IA), and chronic resolved (CR)) of HBV

infection. In comparison, the other six anti-inflammatory pathways

had decreased activity in HBV groups (Figure 8F). As expected, the

activity level of the pro-inflammatory pathway GO0043550 was

high in pro-inflammatory clusters Mac1–3 but low in resting

clusters Mac4 (Figure 8G). In contrast, the other six anti-

inflammatory pathways had high activities in the resting cluster

Mac4 (Figures 8H–M).
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Through re-clustering, three clusters of NK cells (NK1–3) were

annotated (Figure 9A). NK1 subset expressed high levels of CD226

(DNAX Accessory Molecule-1), a costimulatory molecule that

indicates an activation state of NK cells with cytotoxic effector

and cytokine production functions. NK1 also expressed high levels

of GNLY (Granulysin), FCGR3A (Fc Gamma Receptor IIIa), and

LAMP1 (lysosomal-associated membrane protein 1), which

suggested strong cell-killing and degranulation abilities. NK2–3

subsets expressed high levels of inhibitory molecules CD96

(Tactile), TIGIT (T-cell immunoglobulin and ITIM domain), and

KLRC1 (Killer Cell Lectin Like Receptor C1), indicating that they

were inactive or resting (Figure 9B). Other DEGs are shown in

Supplementary Table S3. Furthermore, we investigated the activities

of NK cell-related metabolic pathways in three clusters of NK cells

and found that the activities of the alpha-amino acid metabolism
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FIGURE 7

Metabolic disorders contributed to the immune imbalance in hepatitis. (A) Heatmap showing Pearson’s correlation coefficients between the activities
of metabolic pathways and the immune infiltration fractions. (B) The infiltration fraction of M1 macrophages in groups with different degrees of
inflammation. (C) The infiltration fraction of activated NK cells in groups with different degrees of inflammation. (D) The infiltration fraction of M1
macrophages in groups with different degrees of fibrosis. (E) The infiltration fraction of activated NK cells in groups with different degrees of fibrosis.
(F) The infiltration fraction of M2 macrophages in groups with different degrees of inflammation. (G) The infiltration fraction of resting NK cells in
groups with different degrees of inflammation. (H) The infiltration fraction of M2 macrophages in groups with different degrees of fibrosis. (I) The
infiltration fraction of resting NK cells in groups with different degrees of fibrosis. Data in panels B–I are mean ± SEM. LASSO, least absolute
shrinkage and selection operator. ****means p < 0.0001,*** means p < 0.001, ** means p < 0.01, and * means p < 0.05.
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pathway (GO1901605) and lipid homeostasis pathway

(GO0055088) were upregulated in resting clusters of NK2–3

(Figures 9C, D). Interestingly, our correlation analysis results in

Cohort 1 supported these findings by demonstrating that activated

NK cells are more closely associated with disease risk-related

metabolic processes than resting NK subsets, as illustrated in

Figures 9E, F.

Our findings also demonstrated that liver tissues with high

levels of inflammation and fibrosis exhibit an elevated infiltration of

CD8+ T cells, which are linked to risk metabolic pathways

(Figures 10A, B). Upon re-clustering, we observed various CD8+

T-cell clusters (Figure 10C), which were identified through the

expression of their characteristic markers, CD3D and CD8A. One

of these clusters, CD8T_PDCD1, expressed high levels of PDCD1

and LAYN, which are typical markers of exhausted T cells.

Additionally, FOSB (G0/G1 switch regulatory protein 3),

SLC4A10 (Solute carrier family 4 member 10), TYROBP

(Transmembrane immune signaling adaptor TYROBP), and

TXNIP (Thioredoxin-interacting protein) were utilized to

annotate the corresponding CD8+ T-cell clusters. Another cluster,

CD8T_GNLY, expressed high levels of the activation marker,

granzymes (GZMB), and granulysin (GNLY), representing a high

cytotoxicity of this CD8+ T subset. The CD8T_CCR7 subset
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exhibited high expression of CCR7 and SELL(CD62L), indicating

a naive T subset. Finally, the CD8+ T-cell cluster with high

expression of MKI67 suggested an active proliferation future

(Figure 10D). Other DEGs are shown in Supplementary Table S3.

Next, we analyzed the activity of the disease-related metabolic

pathway mentioned earlier (Figures 2E, 7A) in the CD8+ T-cell

clusters. We observed that the activity of a protective pathway, the

energy reserve metabolic process (GO0006112), was upregulated in

the CD8T_PDCD1 subset compared to the CD8T_GNLY and

CD8T_MKI67 subsets (Figure 10E). This may indicate that CD8+

T cells can maintain the balance of killer-proliferative cluster and

exhausted cluster by the energy reserve metabolic homeostasis.
4 Discussion

In this study, we used ssGSEA scores of metabolic pathways in

viral hepatitis patients to identify the most active pathways and

created risk assessment models for disease progression and

prognosis. These models were validated through survival analysis

and exhibited excellent capacities for risk prediction. Additionally,

we investigated the potential mechanism by analyzing immune

infiltration using single-cell transcriptomics data. Our findings
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FIGURE 8

The metabolic perturbations of macrophage clusters in hepatitis. (A) UMAP visualization of the macrophage clusters. (B) Dot plot showing the
expression levels of given genes in each cluster. (C) GSEA of the significant DEGs between Mac1–3 and Mac4. An enrichment score (ES) > 0
indicated that the pathway is upregulated in Mac1–3, while an ES < 0 indicated that the pathway is upregulated in Mac4. (D) Macrophage-related
metabolic pathways and corresponding database sources. (E) Heatmap showing Pearson’s correlation coefficients between the activities of
metabolic pathways and the Macrophage infiltration fractions. (F) Heatmap showing the scaled mean activities of metabolic pathways in each group.
HC, healthy control; IT, immune tolerant phase; AR, acute recovery phase; IA, immune active phase; CR, chronic resolved phase. (G–M) The
activities of metabolic pathways in each macrophage cluster. UMAP, Uniform Manifold Approximation and Projection; GSEA, gene set enrichment
analysis; DEGs, differentially expressed genes.
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FIGURE 10

The metabolic perturbations of CD8T clusters in hepatitis. (A) The infiltration fraction of CD8+ T in groups with different degrees of fibrosis. (B) The
infiltration fraction of CD8+ T in groups with different degrees of inflammation. (C) UMAP visualization of the CD8T clusters. (D) Dot plot showing
the expression levels of given genes in each cluster. (E) The activities of the metabolic pathway in several CD8T clusters. Data in panels A and B are
mean ± SEM. UMAP, Uniform Manifold Approximation and Projection. ****means p < 0.0001,*** means p < 0.001, ** means p < 0.01, and * means
p < 0.05.
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FIGURE 9

The metabolic perturbations of NK clusters in hepatitis. (A) UMAP visualization of the NK clusters. (B) Dot plot showing the expression levels of given
genes in each cluster. (C, D) The activities of metabolic pathways in each NK cluster. (E) Heatmap showing Pearson’s correlation coefficients
between the activities of metabolic pathways and the NK infiltration fractions. (F) NK-related metabolic pathways and corresponding database
sources. UMAP, Uniform Manifold Approximation and Projection. ****means p < 0.0001.
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suggested that the dysfunction of liver metabolism can cause

immune dysregulation and highlighted the crucial role of

metabolic dysfunction of NK, macrophage, and CD8+ T subsets

in disease development.

To ensure that our disease progression risk models have a high

predictive value, we used liver histopathology, function

deterioration, and carcinogenesis as evaluation indicators and

screened for metabolic pathways related to the risk of disease

progression. Moreover, to better align our findings with the

demands of a modern personalized treatment model, we

narrowed the scope of these pathways, attempted to identify key

metabolic pathways, and constructed disease progression risk

models based on these pathways. Our results showed that there

are three common key metabolic pathways in the two risk models of

liver function deterioration progression, in which regulation of lipid

kinase activity is a risk pathway, while quinone catabolic process

and primary bile acid biosynthesis are protective. This result

indicated that they are vital in the process of liver function

deterioration. An endosomal protein has been shown to trigger

an autophagy response during viral infections by increasing lipid

kinase activity, which may also contribute to the progression of viral

hepatitis (Dong et al., 2021). Redox reactions triggered by quinone

can lead to damage to hepatocytes. To counteract this, key enzymes

such as NAD(P)H quinone dehydrogenase 1 (NQO1) decompose

these quinone compounds to protect hepatocytes (Dinkova-

Kostova and Talalay, 2000; Kudoh et al., 2014). The liver plays a

crucial role in both bile acid biosynthesis and steroid catabolism.

According to the model, the primary bile acid biosynthesis pathway

appears to be a good predictor of liver function, while the steroid

catabolic process is more closely linked to late-stage liver

deterioration and the risk of liver cancer. The liver is the major

apparatus for breaking down poisonous substances, and

cytochrome p450 plays a crucial role in this process. Disruptions

in this process can lead to liver fibrosis, inflammation, and

eventually liver cancer due to toxicant buildup (Backman et al.,

2016; Gao et al., 2020). In line with this, our results showed that

oxidation by cytochrome p450 is a key indicator for predicting risk

during all phases of viral hepatitis disease progression.

Furthermore, to make our models more comprehensive and

individualized, we preliminarily screened the prognosis related-

metabolic pathways through survival data of non-cancer and cancer

viral hepatitis and identified key pathways from these two to

establish two prognostic models. Although the key metabolic

pathways were different between the two models, there was a

common metabolic pathway between them: the diacylglycerol

biosynthetic process. Diacylglycerol is an important component of

cellular membranes and glycerol lipids and has a crucial impact on

various metabolic programs and signaling pathways (Eichmann and

Lass, 2015). All these suggest that diacylglycerol biosynthesis is an

excellent predictor of both non-cancer and cancer viral hepatitis,

likely due to its involvement in a variety of prognosis-related

metabolic processes.

To investigate the contribution of immune cells in metabolic

processes, we performed an analysis of immune cell infiltration. Our

analysis revealed that several immune cells, such as macrophages,

NK cells, and CD8+ T cells, have a significant impact on metabolic
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pathways. By combining the results from the pathological samples,

we identified two distinct subsets of macrophages (Shapouri-

Moghaddam et al., 2018), classically activated or inflammatory

(M1) macrophages, which have a high correlation with increased

disease risk, while alternatively activated or anti-inflammatory (M2)

macrophages were found to offer protection. Moreover, we

observed similar characteristics in two subsets of NK cells. CD8+

T cells showed a high correlation with increased disease risk.

Furthermore, we explored the disease metabolic disorder on these

immune subsets in different states, including classical cell types and

some re-clustering subsets.

In our study, we identified activated macrophage clusters,

Mac1–3, based on their levels of anti-inflammatory or pro-

inflammatory cytokines, such as IL1b, NLRP3, and pro-

inflammatory CXC chemokines, as previously reported (Ley,

2008; Renaudin et al., 2020). APOE is an anti-inflammatory

molecule that can be produced by mononuclear cells in response

to inflammatory cytokines such as IL1b (Ali et al., 2005; Braesch-

Andersen et al., 2013). Therefore, the Mac4 subset, which had high

levels of APOE and other anti-inflammatory cytokines, was

classified as a resting macrophage cluster. This classification was

consistent with the enrichment analysis of inflammatory functions,

which showed that the Mac4 subset had lower levels of

inflammatory pathways than the Mac1–3 subsets. By scRNA-seq

analysis of macrophage-related metabolic pathways, we identified

increased activity of the lipid kinase pathway in activated

macrophage subsets, such as M1 macrophages and Mac1–3

clusters. During each stage of HBV infection, the activity of this

pathway was found to be higher compared to that of the healthy

control group (Zhang et al., 2023). It has previously been

demonstrated that lipid kinases regulate macrophage immune

responses and participate in tumor progression and metastasis in

pancreatic ductal adenocarcinoma (Kaneda et al., 2016). Unlike the

lipid kinase pathway, which is active in inflammatory macrophage

subsets (Mac1–3), the peroxisomal lipid metabolism pathway is

highly active in resting macrophage subsets (M2 macrophages and

Mac4). Peroxisomes are organelles that participate in various types

of lipid metabolism and have important roles in viral hepatitis and

fatty liver disease (Dharancy et al., 2005; Reddy and Rao, 2006; Kim

et al., 2007). Our findings added to our understanding of the

potential mechanisms by indicating that resting macrophage

subsets may be responsible for the protective effects of

peroxisomal lipid metabolism.

To estimate the activity states of the three NK cell clusters, we

evaluated the expression of canonical markers related to their

activation or inactive state and cell-killing and degranulation

functions. NK cells can be activated by CD226, whereas CD96

and TIGIT binding to CD226 ligands can play an inhibitory effect

and balance out the cytotoxicity of NK cells that are activated by

CD226 (Martinet and Smyth, 2015). GNLY, FCGR3A, and LAMP1

may effectively depict active states as NK cell signatures for cytokine

generation and cytotoxicity, while KLRC1 serves a crucial inhibitory

role in controlling NK cells’ activation and effector activities (Braud

et al., 1998; Alter et al., 2004; Mathewson et al., 2021). The results of

our study revealed that resting state NK cell subsets exhibit high

levels of activity in both alpha amino acid catabolism and lipid
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homeostasis, as determined by both classical classification and re-

clustering analysis. It was implied that there may be a relationship

between NK cells and the two metabolic pathways that can

potentially reduce the risk of viral hepatitis progression. This

connection may be through the effect of these pathways on the

resting state of NK cells. The study by X. Fang et al. provided

evidence that NK cells not only possess strong cell-killing abilities

but also are able to maintain homeostasis in lipid metabolism in

trophoblasts by increasing the expression of apolipoprotein APOD,

which helps preserve a normal state in these cells (Fang et al., 2022).

There may be a similar lipid homeostasis-related process that would

occur in resting NK cells for patients with viral hepatitis to slow

down the spread of liver cell damage.

Upon assessing the metabolic imbalances in various immune cell

types during HBV infection, our results showed that the response of

CD8 T cells was weaker in comparison to that of macrophages and

NK cells. Nevertheless, it should be acknowledged that CD8 T cells

still play a vital role in the immune response in the development of

viral hepatitis. The prevailing consensus holds that CD8 T cells play

an indispensable role in the clearance of hepatitis virus infections

(Guidotti and Chisari, 2006) while simultaneously producing certain

antiviral cytokines (Guidotti, 2002). These processes are believed to

be advantageous in impeding the progression of viral hepatitis.

Nonetheless, it is noteworthy that the elimination of viruses by

CD8 T cells is often accompanied by hepatic cell destruction,

which not only directly results in liver impairment (Maini et al.,

2000) but also induces liver fibrosis due to aberrant hepatic cell

regeneration and repair of the liver, culminating in the ultimate

progression to cirrhosis and hepatocellular carcinoma (Nakamoto

et al., 1998; Sitia et al., 2012). Our findings also indicate that

infiltration of CD8+ T cells may exacerbate inflammation and

fibrosis in liver cells, demonstrating the damaging effect of CD8+ T

cells on the liver. Furthermore, we conducted a re-clustering of

intrahepatic CD8+ T cells and classified each cluster based on the

expression of several essential functional genes. Compared to

activated phenotype clusters, such as CD8T_GNLY and

CD8T_MKI67, which demonstrate cytotoxic and proliferative

characteristics, exhausted T cells (CD8T_PDCD1) exhibit a higher

energy reserve metabolic activity. The crucial role of energy for

proper immune cell function is evident, especially in chronic

inflammatory states where immune cells require a higher priority

for energy demands compared to other body parts (Straub et al.,

2010). Our results suggest that maintaining energy reserve metabolic

homeostasis may alleviate CD8+ T cell-mediated liver damage by

balancing the killer-proliferative and exhausted clusters, thus slowing

down disease progression.

This study has several limitations. Although the results of our

models are confirmed by the K-M curve, experimental verification

is lacking. Additionally, our prediction models have the potential to

provide insights for clinical decision-making, but it is important to

note that further clinical testing and the development of guidelines

may be necessary for the future to ensure the practicality and

effectiveness of our prediction model.
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5 Conclusion

In conclusion, our study offered a unique perspective on the

development and prognosis of viral hepatitis by utilizing the

biological process of metabolism. Our findings resulted in the

creation of a novel risk assessment tool, providing a valuable

resource for clinicians in making informed decisions.

Furthermore, our work provides new insights into the

relationship between viral hepatitis and immunometabolism,

enriching our understanding of the underlying mechanisms

involved in this disease.
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SUPPLEMENTARY FIGURE 1

Single cell immune landscape of liver tissues infected with HBV. (A) UMAP

visualization of the immune cell subtypes in liver tissues. (B) Dot plot
exhibiting the expression levels of canonical markers in each cell type. (C)
UMAP plot annotated with cell types and AUC values. (D) The AUC value of
each immune cell type.
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Names and corresponding correlation analysis results of 220 metabolic
pathways associated with both liver inflammation and fibrosis in Cohort1.
SUPPLEMENTARY TABLE 2

Names and corresponding risk assessment results of 96 metabolic pathways
associated with risk of liver dysfunction and hepatocellular carcinogenesis in

Cohort 2.

SUPPLEMENTARY TABLE 3

Differential Expressed Genes of various macrophage, NK, and CD8+T

cell clusters.
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