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PCR amplicon sequencing may lead to detection of spurious operational

taxonomic units (OTUs), inflating estimates of gut microbial diversity. There is

no consensus in the analytical approach as to what filtering methods should be

applied to remove low-abundance OTUs; moreover, few studies have

investigated the reliability of OTU detection within replicates. Here, we

investigated the reliability of OTU detection (% agreement in detecting OTU in

triplicates) and accuracy of their quantification (assessed by coefficient of

variation (CV)) in human stool specimens. Stool samples were collected from

12 participants 22–55 years old. We applied several methods for filtering low-

abundance OTUs and determined their impact on alpha-diversity and beta-

diversity metrics. The reliability of OTU detection without any filtering was only

44.1% (SE=0.9) but increased after filtering low-abundance OTUs. After filtering

OTUs with <0.1% abundance in the dataset, the reliability increased to 87.7%

(SE=0.6) but at the expense of removing 6.97% reads from the dataset. When

filtering was based on individual sample, the reliability increased to 73.1% after

filtering OTUs with <10 copies while removing only 1.12% of reads. High

abundance OTUs (>10 copies in sample) had lower CV, indicating better

accuracy of quantification than low-abundance OTUs. Excluding very low-

abundance OTUs had a significant impact on alpha-diversity metrics sensitive

to the presence of rare species (observed OTUs, Chao1) but had little impact on

relative abundance of major phyla and families and alpha-diversity metrics

accounting for both richness and evenness (Shannon, Inverse Simpson). To

increase the reliability of microbial composition, we advise removing OTUs

with <10 copies in individual samples, particularly in studies where only one

subsample per specimen is available for analysis.

KEYWORDS

OTU (Operational Taxonomic Unit), filtering, microbiome, low abundance, reliability –
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1 Introduction

New technological advancements and computational methods

have enabled investigations of microbial communities that are no

longer limited to bacterial culturing methods, leading to

the discovery of hundreds of new bacterial species in the human

gut. Importantly, these studies highlight the significant role that the

gut microbiome plays in both heath and disease. However,

methodological variations in sample collection protocols,

processing, and analytics make the reproducibility of findings

across multiple studies or meta-analyses challenging (Lozupone

et al., 2013; Goodrich et al., 2014). Currently, there is no consensus

regarding best practices for human stool collection and analysis,

leading to concerns regarding the reliability and reproducibility of

these datasets. Several factors including DNA extraction methods,

sequencing technologies, and analytical approaches are known to

have a significant impact on the characterization of the stool

microbiota (Lauber et al., 2010; Carroll et al., 2012; Goodrich

et al., 2014; Sinha et al., 2015; Chiu and Chao, 2016; Sinha et al.,

2017; Vogtmann et al., 2017; Antosca et al., 2020; Bartolomaeus

et al., 2020), underscoring the importance of using standardized

protocols to minimize bias.

In this study, we focused on analytical approaches to deal with

low-abundance operational taxonomic units (OTUs) identified

through 16S rRNA amplicon sequencing. These low-abundance

OTUs, often thought to be spurious, can account for up to 50% of

the detected OTUs in a sample, thereby skewing microbial diversity

metrics (Eckburg et al., 2005; Gorzelak et al., 2015). The few studies

that have examined the reliability (defined as % agreement in

detecting OTU in replicates) of microbial composition in

subsamples of the same fecal specimens showed that high

abundance taxa are more reproducible compared to low-

abundance taxa that are only sporadically detected within

replicates (Wu et al., 2010; Gorzelak et al., 2015). Given that

approximately 80% of bacterial species found in stool correspond

to uncultivable species (Eckburg et al., 2005), estimating the

microbiota composition relies on sequencing approaches. This is

further compounded by PCR, which is used to generate amplicons

and can lead to the overestimations of spurious OTUs, further

inflating estimates of microbial diversity (Pienaar et al., 2006; Lahr

and Katz, 2009; Goodrich et al., 2014; Potapov and Ong, 2017; Ma

et al., 2019). One suggested approach to overcome these concerns is

to sequence several replicates of the same specimen. While this

approach can significantly improve the reliability of OTU detection

(Zhou et al., 2008; Zhou et al., 2011), it is often not feasible

particularly in studies with large numbers of subjects.

The aim of this study was to test if analyzing a single sample

(oneplicate) per individual provides a reliable assessment of

microbial composition. Reliability and validity are critical for

advancing the use of human microbiome indicators in future

human microbiome research and clinical trials. We investigated

the reliability and variability of OTU detection within triplicates of

the same human stool specimens. We applied several methods for

filtering the low-abundance OTUs and determined their impact on

alpha- and beta-diversity metrics. We provide an overview of
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comparative results and recommendations for data analysis that

may improve the reliability and reproducibility of microbial

composition estimates across studies.
2 Methods

2.1 Study participants and
sample collection

The study was approved by the Health Sciences Institutional

Review Board of the University of Wisconsin-Madison (#2016-

0251). Recruitment and stool collection are described elsewhere

(Holzhausen et al., 2021). Briefly, the study population consisted of

12 volunteers with a mean age of 35.4 years (SE = 3.1). Each stool

specimen was aliquoted into three subsamples (triplicate) and

frozen at −80°C within 30 min of stool production.
2.2 DNA extraction, PCR, and sequencing

DNA extraction from stool samples has been previously

described in detail (Eggers et al., 2018; Eggers et al., 2019; Kates

et al., 2020; Holzhausen et al., 2021). Briefly, DNA was extracted from

lysed cells using phenol:chloroform:isoamylalcohol followed by

isopropanol precipitation in the presence of sodium acetate. DNA

was purified using a NucleoSpin Gel and PCR Clean-up Midi kit

(Takara Bio USA, Inc., Mountain View, CA) as previously described

(Kozich et al., 2013). Amplicons were generated from 25–50 ng of

gDNA via PCR with primers (F- GTGCCAGCMGCCGCGGTAA;

R- GGACTACHVGGGTWTCTAAT) targeting the V4 region

(Kozich et al., 2013) along with sequencing adapters and barcodes

to differentiate samples of the bacterial 16S rRNA gene. Amplicons

were then subjected to gel electrophoresis on a 1% low melt agarose

gel containing SYBR Safe DNA Gel Stain (Invitrogen). Bands of 380

bp were excised and purified using a Zymoclean DNA recovery kit

(Zymo Research, Irvine, CA). DNA was sequenced on an Illumina

MiSeq using a v2 2x250 bp paired-end sequencing kit (Illumina, San

Diego, CA), with a final library concentration of 10 pmol/l and a 10%

PhiX Control.
2.3 Data processing

Raw sequencing data were processed in mothur (version 1.43.0)

following a Standard Operating Procedure for MiSeq data (Kozich

et al., 2013). Briefly, contigs (overlapping sequences) were aligned to

the SILVA (v132) database, reads of incorrect length were removed,

and chimeras (determined by UCHIME) and undesirable reads (e.g.,

Archea, Eukaryota, chloroplasts, mitochondria, and unknowns) were

removed. Sequences were assigned to OTUs with a threshold of 97%

similarity using the GreenGenes (version gg_13_8_99) database

(DeSantis et al., 2006; Edgar et al., 2011; Quast et al., 2013). Fastq

files were submitted to NCBI’s Short Read Archive and are publicly

available under accession number PRJNA962543.
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2.4 Statistical analysis

Alpha-diversity was estimated using Observed OTUs, Chao 1,

Shannon, and Inverse Simpson metrics (Shannon, 1948; Simpson,

1949; Chao, 1984), which were calculated using the Phyloseq

package in R (McMurdie and Holmes, 2013). The precision of

OTU quantification was analyzed by coefficient of variation (CV),

which is calculated as the ratio of the standard deviation to the

mean. A higher CV indicates greater dispersion in the variable.

Means were calculated from copy counts in triplicate for each OTU.

The effect of different filtering methods on relative sequence

abundance was assessed by t-test followed by Mann–Whitney

rank sum test. Differences were considered statistically significant

at p < 0.05. Beta-diversity was estimated using Bray–Curtis

dissimilarity, using the vegan package in R, and PERMANOVA

tests were used to calculate proportion of variability explained

by individual.
3 Results

3.1 Microbial composition of samples

Among the triplicate samples from 12 individuals, sequencing

of the V4 region of the 16S rRNA gene resulted in 1,853,072 total

raw reads or an average of 51,474 reads per sample. After filtering

chimeras and removing low-quality reads and sequences of

incorrect length, there were a total of 40,572 (SD = 10,883) reads

per sample (range, 24,776–74,720). These included 3,761 unique

OTUs, 80% of which were annotated at the genus level.

The distribution of OTUs based on relative abundance without

filtering is shown in Figure 1A. The graph represents the mean

(number of OTUs in each category) of all samples. On average,

there were 266 unique OTUs per sample (Figure 1A). Of these, 19

(SE = 4.6) accounted for >80% of the total sequences (blue) with
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each OTU having a relative abundance >1%. For lower abundance

OTUs, 48 (SE = 9.4) were detected between 0.1% and 1% and

accounted for 15.5% of the reads (orange), 77 (SE = 19.4) OTUs had

abundances between 0.01% and 0.1% (gray), and 117 OTUs

had abundances <0.01% (yellow), accounting for ~3% of the total

reads. Phylogenetic classification showed that the Firmicutes were

the most abundant phyla (72.6%), followed by Bacteroidetes

(18.6%), Verrucomicrobia (5.22%), Actinobacteria (2.7%), and

Proteobacteria (0.61%).
3.2 Reliability and variability of OTU
detection in sample replicates

A coefficient of variation (CV) was calculated for each OTU

analyzed within triplicates of the same specimen to estimate the

variability of their quantification (Figure 1B); in general, a lower CV

indicates less dispersion and variability of quantification (Reed

et al., 2002; Hanneman et al., 2011). We found that the CV for

OTUs with >1,000 sequences in each replicate was <0.279; for 100–

1,000 sequences, 0.273; for 10–100 sequences, 0.332; for 1–10

copies, 0.542; and for OTUs that were present in only one or two

of the triplicates with <10 copies, 1.44.

We also found that OTUs with abundances >1%, having on

average >371 sequences, were detected with 100% reliability (%

OTUs detected in all three replicates) with good quantification

accuracy (Figure 1C). OTUs with abundances between 0.1% and

1%, which had 37–371 sequences, were also detected with high

reliability (99.5%) and accuracy. In contrast, reliability of detection

were decreased (84%), while the variability in quantification

increased for lower abundance OTUs detected between 0.01% and

0.1%, with an average number of sequences between 4 and 37.

However, for OTUs with <0.01% abundance, which have <4

sequences on average, there was a lesser reliability (22%), and the

variability in quantification was high (Figure 1B).
A B C

FIGURE 1

The distribution of OTUs and reliability of detection. (A) The average distribution of OTUs based on the relative sequence abundances within
samples. The pie chart shows average number of OTUs in each relative abundance category (blue, >1%; orange, 0.1–1%; gray, 0.01<0.1%; yellow,
<0.01%) and proportion (%) of sequences representing each relative abundance category On average, 19 OTUs with >1% relative abundance
comprised 80% of all sequences within sample; 48 OTUs with 0.1%–1% relative abundance comprised 15.5% of sequences. The majority of OTUs
(194) with <0.1% relative abundance (gray, yellow) comprised 4.5% of sequences. (B) Coefficient of variation (CV) calculated based on the number of
copies for each OTU. (C) The reliability and accuracy of OTU detection. OTUs with higher relative sequence abundance were more reliably and
accurately detected within replicates than lower abundance OTUs.
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3.3 The effect of filtering methods on
reliability of OTU detection

After assessing variability in the unfiltered sample, we then

applied different approaches to filter low-abundance OTUs in order

to determine which filtering method provided the best reliability of

microbiome composition with respect to alpha-diversity metrics.

The cutoff criteria for filtering OTUs were based on the OTU

abundance: 1) in the whole dataset (sequences from all samples

pooled together); 2) within an individual sample (each replicate was

treated as an individual sample); or 3) within a triplicate (Table 1).

Based on these cutoffs, removing low-abundance OTUs

significantly increased the proportion of OTUs reliably detected

across replicates from 44% (no OTUs removed) to up to 100%

(OTUs filtered out if not present in all three replicates). Although

low-abundance OTUs account for the largest proportion of unique

OTUs, they represented only a small proportion of the sequences in

the sample. Filtering methods excluded between 0.21% and 6.97%

of the reads from the analysis (Table 1).
3.4 The effect of filtering methods on
alpha-diversity metrics

Filtering low-abundance OTUs resulted in the removal of

between 29% and 76% of the OTUs from the analysis with

significant impact on alpha-diversity metrics (Table 2). As

expected, the Chao1 estimator, which accounts for both the

presence and abundance of OTUs and is known to be sensitive to

communities with many species with low abundance (Kim et al.,

2017), was significantly affected by all filtering methods. Other

alpha-diversity metrics including Shannon’s and Inverse Simpson’s,
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which account for both richness and evenness, were less affected by

low-abundance OTU removal. Filtering OTUs with <0.1%

abundance in the dataset had the most significant impact on all

alpha-diversity metrics. Most filtering methods did not have

significant effects on the relative abundance of the five major

phyla (Table 3); however, excluding OTUs with <0.1% abundance

in the dataset significantly impacted phyla with smaller relative

abundances, such as Actinobacteria and Proteobacteria.
3.5 The effect of filtering methods
on beta-diversity

Filtering low-abundance OTUs resulted in tighter clustering

between points (reduced BC dissimilarity) compared to the

unfiltered dataset (Figure 2). As expected, filtering based on

overall relative abundance <0.1% (Figures 2B, H) resulted in the

most dramatic reduction in BC dissimilarity between samples.

Despite tighter clustering, PERMANOVA analyses revealed that

the proportion of variability attributable to an individual (i.e., R2)

was 0.94 (p = 0.001), regardless of the filtering method. This

suggests that all filtering methods were able to reduce variation in

overall microbiome signatures, without losing important biological

signals such as the individual providing the sample.
4 Discussion

While gut microbiome research has significantly expanded over

the last decade, there are no broadly accepted consensus protocols

that would ensure the reproducibility and reliability of study

outcomes. The Microbiome Quality Control (MBQC) project and
TABLE 1 The effect of filtering method on the reliability of OTU detection within triplicates.

% OTUs in three replicates
(SE)

% OTUs in
two

replicates
(SE)

% OTUs in
one

replicate
(SE)

% of reads filtered out
(SE)

No filtering

All OTUs included 44.1 (0.9) 15.6 (0.3) 40.2 (0.8) 0

Based on OTU abundance in whole dataset (pool of all samples) *

OTU filtered if abundance <0.1% in dataset 87.7 (0.6) 4.3 (0.3) 8.1 (0.5) 6.97 (0.24)

OTU filtered if without >10 copies in at least one sample
in dataset

70.3 (0.7) 13.6 (0.4) 14.6 (0.5) 0.88 (0.02)

Based on OTU abundance in individual sample **

Filter OTUs with one copy 56.1 (0.9) 13.3 (0.3) 30.6 (0.8) 0.21 (0.01)

Filter OTUs with <10 copies 73.1 (0.8) 12 (0.5) 16.1 (0.5) 1.12 (0.03)

Based on OTU abundance in triplicates **

Filter OTUs without ≥10 copies in at least one of the
three replicates

96.8 (0.2) 2.2 (0.2) 0.9 (0.1) 0.88 (0.02)

Filter OTUs if not present in all three replicates 100 (0) 0 0 0.53 (0.02)
*OTUs fulfilling the filtering criteria were removed from all samples.
**OTUs were removed only from samples fulfilling the filtering criteria.
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other initiatives have identified methodological differences in

sample collection, storage conditions, DNA extraction methods,

sequencing technologies, and data analysis as key sources of

variability among studies that may conceal or dilute assessment

of true biological effects (Goodrich et al., 2014; Sinha et al., 2015;

Sinha et al., 2017). The estimates of microbiome composition that

rely on PCR and sequencing technologies are sources of

methodological artifacts that may lead to the detection of

spurious OTUs (Acinas et al., 2005; Sipos et al., 2007; Aird et al.,

2011; Goodrich et al., 2014) and thus complicate downstream

analyses given their overwhelming contributions to the diversity

of a sample (Ley et al., 2008; Goodrich et al., 2014). However, to

distinguish spurious and rare OTUs is challenging, especially in
Frontiers in Cellular and Infection Microbiology 05
situations where only one subsample per subject is analyzed. To

circumvent this problem, low-abundance OTUs are often excluded

from the analysis. However, filtering approaches vary among

studies, and there is no agreed-upon consensus as to what

filtering threshold should be employed.

To address the methodological question of how best to filter and

the implications of filtering in study outcome measures, we

sequenced three replicates from 12 human specimens to

determine the reliability of OTU detection. Only 44% of the

OTUs were shared by all three replicates, and over 40% of the

OTUs were found only in one of the replicates. OTUs that were

detected sporadically within triplicates had very low abundances,

usually with <10 copies, and had low accuracy of quantification, as
TABLE 3 The effects of filtering method on the relative sequence abundance of the top 5 phyla.

Filtering method Firmicutes
% (SE)

Bacteroidetes
% (SE)

Verrucomicrobia
% (SE)

Actinobacteria
% (SE)

Proteobacteria
% (SE)

Based on abundance in whole dataset

All OTUs included 72.6 (0.8) 18.6 (0.7) 5.22 (0.6) 2.70 (0.2) 0.610 (0.03)

Filter out OTUs with <0.1% abundance in dataset 72.5 (0.8) 18.9 (0.7) 5.72 (0.7) 2.48* (0.2) 0.367** (0.04)

Filter out OTUs without count >10 in at least one sample
in dataset

72.6 (0.8) 18.6 (0.7) 5.24 (0.6) 2.70 (0.2) 0.599 (0.04)

Based on abundance in individual sample

Filter out OTUs with one read 72.6 (0.8) 18.6 (0.7) 5.23 (0.62) 2.70 (0.2) 0.60 (0.04)

Filter out OTUs with count ≤ 10 72.5 (0.8) 18.7 (0.7) 5.27 (0.6) 2.68 (0.2) 0.564 (0.04)

Based on abundance in triplicate

Filter out OTUs without count >10 in at least one of the
three replicates

72.6 (0.8) 18.7 (0.7) 5.26 (0.6) 2.68 (0.02) 0.571 (0.04)

Filter out OTUs if not present in all three replicates 72.6 (0.8) 18.6 (0.7) 5.24 (0.6) 2.70 (0.02) 0.574 (0.04)
*p < 0.05 vs. all OTUs included.
**p < 0.001 vs. all OTUs included.
TABLE 2 The effect of filtering method on different a-diversity metrics.

Filtering method
Observed
OTUs

Mean (SE)
Chao1

Mean (SE)
Shannon
Mean (SE)

IInverse
Simpson
Mean (SE)

No filtering

All OTUs included 266 (4.5) 380.9 (7.6) 3.243 (0.02) 13.289 (0.49)

Based on OTU abundance in whole dataset

Filter OTUs with <0.1% abundance in dataset 65 (0.6)** 67.9 (0.7)** 2.922 (0.03)** 11.299 (0.38)*

Filter OTUs without >10 reads in at least one sample in dataset 189 (2.1)** 219.0 (2.6)** 3.218 (0.03) 13.196 (0.49)

Based on OTU abundance in individual sample

Filter OTUs with one read 188 (2.7)** 188 (2.7)** 3.2 (0.03) 13.2 (0.5)

Filter OTUs with < 10 reads 106 (1.3)** 106 (1.3)** 3.164 (0.03)* 12.955 (0.48)

Based on OTU abundance in triplicate

Filter OTUs without ≥10 reads in at least one of the three replicates 121 (1.4)** 121.4 (1.4)** 3.180 (0.03) 13.029 (0.48)

Filter OTUs if not present in all three replicates 169 (2.2)** 182.2 (2.6)** 3.206 (0.03) 13.141 (0.49)
*p<0.05 vs All OTUs included, **p<0.001 vs All OTUs included.
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assessed by CV. In contrast, OTUs with >0.1% abundance within a

sample were reliably detected with good accuracy of quantification.

Overall, our data indicate that OTUs with lesser abundance had

greater CVs, suggesting lower detection accuracy. The CV is

commonly used to determine intra- and inter-assay variability

(Reed et al., 2002) to assess pipetting techniques, user effect, batch
Frontiers in Cellular and Infection Microbiology 06
effect, and lab to lab variability. In such studies, a CV < 0.1 for intra-

assay variability and CV <0.15 for inter-assay variability is

considered excellent. Although the same scale may not be

applicable to evaluate the accuracy of OTU detection by 16S

sequencing because the sources of quantification errors are

different, the increasing CV values with decreasing OTU
A B

D

E F

G H

C

FIGURE 2

The beta-diversity, based on Bray–Curtis dissimilarity for various filtering methods, including (A) no filtering, all OTUs included, (B) OTUs with relative
abundance <0.1% removed, (C) OTUs with >10 copies in at least one sample in the dataset removed, (D) OTUs with one copy filtered from individual
replicates, (E) OTUs with <10 copies filtered from individual replicates, (F) OTUs with <10 copies in at least one of three replicates filtered from all
replicates, (G) OTUs not present in all three replicates filtered, and (H) a zoomed-in plot (B), where OTUs with relative abundance <0.1% were
filtered. Each color represents an individual; three dots of the same color represent three replicates from the individual.
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abundance provides better understanding of limitation of low-

abundance OTU detection by 16S sequencing.

Amplicon sequencing of soil samples found even smaller OTU

overlap in three replicates (8.2%), suggesting low reproducibility of

amplicon-sequencing-based microbiome composition (Zhou et al.,

2011). Others have attributed such low reproducibility to several

factors, one of them being non-representative subsampling (Zhou

et al., 2008). Beyond analytic variability, some variability may also

be due to inadequate mixing of fecal sample before taking

subsamples for DNA extraction that are not representative and

would disproportionally affect rare taxa.

In general, the approaches we used to filter low-abundance

OTUs improved the reliability of microbiota composition estimates,

but there are several factors to consider when choosing the

appropriate filtering methods. We found that methods based on

OTU abundance in the whole dataset (e.g., pooling all sequences

from all samples) provided good reliability (% OTUs detected in all

three replicates), but they are affected by study sample size, and

thus, the threshold for OTU removal may differ among studies. For

example, when filtering OTUs with <0.1% abundance, the threshold

is 10,000 copies for a dataset with 10,000,000 sequences but only

1,000 copies in smaller dataset with 1,000,000 sequences. Therefore,

the microbiota composition estimates of the same sample will be

different in different datasets.

Removing OTUs based on the number of copies within

individual samples also improved the reliability of replicates while

retaining higher proportions of rare OTUs. This method is

independent of sample size and would thus be more consistent

from study to study. Our data suggest that OTUs with <10 copies in

the samples are less reliably and accurately detected and are

randomly distributed within triplicates. Therefore, it is reasonable

to remove these OTUs from analyses.

Filtering methods significantly affected beta-diversity.

Removing OTUs based on the copy number in individual

samples retained relatively larger beta-diversity compared to

filtering by relative abundance in the dataset. The distance and

relative position in the Bray–Curtis dissimilarity plot among

individuals are dependent on the filtering method, further

underlying the significance of analytical approach, which may

contribute to low reproducibility and reliability of gut microglial

studies. Although the most optimal filtering method would depend

on overall study goals, based on our analysis, we would recommend

censoring OTUs with <10 copies in individual samples during

analysis of 16S rRNA gene sequencing. However, the best

reliability of microbiota composition estimates is achieved when

at least two replicates of the same specimen are analyzed; this

approach would be recommended when low-abundance OTUs are

important to consider.

The study has several strengths in that it analyzes repeated

human microbiome samples and considers numerous ways of

filtering and comparison of results. While sample size could be

considered a limitation of this study, the analysis of 12 individuals

with three replicates provided sample size with sufficient statistical

power for the analyses. While many consider whole genome
Frontiers in Cellular and Infection Microbiology 07
sequencing (WGS) the gold standard alternative to 16s

sequencing, WGS has other analytic challenges and can be very

cost prohibitive. The use of 16s amplicon sequencing is not suitable

to annotate taxa at the species level, which is a limitation. However,

it is a cost-effective method and will likely remain to be widely used

to annotate the microbiome.
5 Conclusions

The aim of the study was to evaluate the reliability of OTU

detection and to assess the impact of different filtering methods on

microbiome alpha- and beta-diversity and composition. To increase

the reliability of microbial composition, we advise removing OTUs

with <10 copies in individual samples, particularly in studies where

only one subsample per specimen is available for analysis. Excluding

very low-abundance OTUs has a significant impact on alpha-

diversity metrics sensitive to the presence of rare species but had

little impact on relative abundance of major phyla and families and

alpha-diversity metrics accounting for both richness and evenness.
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