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Jagielski. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 16 March 2023

DOI 10.3389/fcimb.2023.1161905
Phylogenetic relationships of
Mycobacterium tuberculosis
isolates in Poland: The
emergence of Beijing genotype
among multidrug-resistant cases

Zofia Bakuła1, Mateusz Marczak1, Agata Bluszcz1,
Małgorzata Proboszcz2, Justyna Kościuch2, Rafał Krenke2,
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Introduction: The epidemiological situation of tuberculosis (TB) in Poland urges

for its continuous and scrupulous monitoring. The objective of this study was to

explore the genetic diversity of multidrug-resistant (MDR) and drug-susceptible

(DS) Mycobacterium tuberculosis isolates from Poland with a combination of

spoligotyping and high-resolution mycobacterial interspersed repetitive unit-

variable number tandem repeat (MIRU-VNTR) analysis. The results were placed in

the Northern and Eastern Europe context.

Methods: The study included 89 (39 MDR and 50 DS) M. tuberculosis isolates

collected from as many patients between 2018 and 2021 in Poland. The analysis

was done using spoligotyping, and MIRU-VNTR typing at 24 standard loci. The

data were compared to those available on Poland and neighbors and global M.

tuberculosis datasets.

Results: The main identified families were Beijing (28.1%) and Haarlem (16.8%)

while 34.8% of isolates were in the heterogeneous L4-unclassified group.

Although the Beijing family was the most prevalent (61.5%) among MDR-TB

cases, it accounted for only 2% of DS isolates. Among foreign-born patients, a

higher ratio of MDR isolates were observed when compared with those who

Poland-born (64.3% vs. 40%). Furthermore, all patients from the Former Soviet

Union (FSU) countries were infected with MDR-TB.

Discussion:Whereas DSM. tuberculosis population in Poland is dominated by L4

isolates, MDR isolates are mostly of the Beijing genotype. The rise in the

prevalence of the Beijing isolates in Poland, coupled with high proportion of

the Beijing genotype among foreign-born TB patients may reflect an ongoing

transmission of this family, imported to Poland mainly from FSU countries.

KEYWORDS

Mycobacterium tuberculosis, MIRU-VNTR-typing, phylogenetics, spoligotyping, tuberculosis
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1 Introduction

Worldwide, tuberculosis (TB) is still one of the deadliest

infectious diseases, second only to COVID-19. Poland ranks sixth

in terms of the highest TB incidence among the European

Economic Area (EEA) countries (European Centre for Disease

Prevention and Control, 2019). Although in the last 20 years the

prevalence of TB in Poland has decreased threefold, it is still slightly

higher than the EEA average (10 vs. 9.6 per 100 000) (World Health

Organization, 2021). Approximately 1% of TB patients in Poland

have mul t idrug-res i s t an t (MDR)-TB (Koz i ń ska and

Augustynowicz-Kopeć, 2021).

Since the 1990s, when molecular typing methods have become

available for mycobacteriology, a wide array of advanced tools for

an accurate identification and inter-species differentiation has been

developed, allowing a better understanding of TB transmission in

different settings. In general, Mycobacterium tuberculosis has a

clonal population structure and most of the circulating strains

can be divided into four main lineages i.e. Lineage 1 (L1) to

Lineage 4 (L4) (Brites and Gagneux, 2015). The European

phylogenetic structure of M. tuberculosis is shaped mostly by L4

(Euro-American) and L2 (East-Asian). The former (L4) is

hypothesized to have emerged a few millennia ago in the Eurasia

and to have spread in all directions but mainly (from Europe) to

both the Americas and Africa (Mokrousov et al., 2017). Whereas L2

originated in China, and globally expanded during the 20th century.

A major component of L2, the Beijing genotype, is one of the most

transmissible and virulent lineage of M. tuberculosis (Liu

et al., 2019).

Poland is situated in a region particularly exposed to migration

and refugee flows from outside the EU, posing a potential

epidemiological hazard. Furthermore, the invasion of Ukraine by

Russia in February 2022 and ongoing war have resulted in the

largest refugee migration in Europe since World War II. More than

8 million people are reported to have crossed the border from

Ukraine into Poland since Russian invasion (https://

www.statista.com/statistics/1293228/poland-ukrainian-refugees-

crossing-the-polish-border/). Both, the geographical location and

epidemiological situation of TB urge for continuous and scrupulous

monitoring of the disease in Poland. However, molecular

epidemiology of TB in Poland has been investigated in a limited

number of studies, mainly based on isolates collected more than a

decade ago (Sajduda et al., 2006; Jagielski et al., 2010; Jagielski et al.,

2015; Kruczak et al., 2019). The most recent study dealt with

molecular epidemiology of drug-resistant TB and employed

spoligotyping as the sole typing method (Borkowska-Tatar

et al., 2022).

The aim of this work was to analyze the recent genetic structure

ofM. tuberculosis population in selected regions of Poland with the

results placed in the broader context of Northern and Eastern

Europe. The advantage of this study lies in the combined use of

spoligotyping and high-resolution mycobacterial interspersed

repetitive unit-variable number tandem repeat (MIRU-VNTR)

typing of MDR and drug-susceptible (DS) isolates.
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2 Materials and methods

2.1 Bacterial isolates

The study included a convenience sample of an 89 (39 MDR

and 50 DS) M. tuberculosis isolates, deposited in the culture

collection of the (i) Department of Internal Medicine, Pulmonary

Diseases and Allergy of the Medical University of Warsaw (n=31),

(ii) Mazovian Centre for the Treatment of Lung Diseases and

Tuberculosis in Otwock (n=23) and (iii) Mycobacterium

tuberculosis Laboratory, Krakow (n=35) (Table S2). The sample

covered all MDR isolates retrieved during the study period. Drug-

susceptible isolates were selected based on the availability of medical

records. The isolates were recovered from different pulmonary TB

patients (70 males, 19 females; age range, 19 to 90 years; mean age,

51 ± 16.3 years), diagnosed with TB between 2018 and 2021. The

study sample represented 20.7% and 0.3% of all bacteriologically-

confirmed MDR- and DS-TB cases respectively, reported in Poland

during the survey period. However, a moderate sample size is a

notable limitation of this study.

Primary isolation, culturing, and species identification were

performed with standard mycobacteriological methods (Clinical

& Laboratory Standards Institute, 2018).

All personal data were anonymized, therefore informed consent

of patients was not needed (Medical University of Warsaw Bioethics

Committee decision no. AKBE/22/2019). All experimental

protocols and methods were carried out in accordance with the

guidelines and recommendations of the Medical University

of Warsaw.

Apart from country of birth and place of isolation no other

epidemiological data were available for this study.
2.2 Drug susceptibility testing

Drug susceptibility testing (DST) was performed using either

the standard 1% proportion method on the Löwenstein-Jensen

medium or BACTEC MGIT system (Becton Dickinson, USA),

following the WHO protocols (World Health Organization,

2018). The M. tuberculosis H37Rv reference strain was used as a

quality control. Drug resistance profiles were categorized in

accordance with WHO updated criteria (World Health

Organization, 2020).
2.3 DNA isolation

Extraction of genomicM. tuberculosis DNA was done using the

cetyl-trimethyl ammonium bromide (CTAB) method, as described

elsewhere (de Almeida et al., 2013). The purified DNA was

dissolved in TE buffer and quantified with the NanoDropTM

2000 Spectrophotometer (ThermoFisher Scientific, USA). The

DNA samples were diluted to the required concentration (ca. 10

ng/µL) and stored at –20°C until used.
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2.4 Molecular typing

Spoligotyping was performed using commercial kits (Ocimum

Biosolutions, India) and following the published protocol

(Kamerbeek et al., 1997). All profiles were assessed by two

independent researchers. Spoligotype International types (SITs) of

M. tuberculosis were assigned according to SITVIT2 (http://

www.pasteur-guadeloupe.fr:8081/SITVIT2/).

MIRU-VNTR analysis was done at 24 standard loci, essentially

as described previously (Supply et al., 2006), except that the reaction

components were adjusted as listed in Table S1. DNA fragments

were visualized and analyzed using capillary electrophoresis system

(Qiaxcel, Qiagen, USA) (Qiagen, 2016). VNTR alleles were

considered as discrete variables.

For both, spoligotyping and MIRU-VNTR analysis, M.

tuberculosis H37Rv and M. bovis BCG reference strains were used

as quality controls.

Phylogenetic clades, i.e. lineages and families were assigned

according to SITVIT2 (http://www.pasteur-guadeloupe.fr:8081/

SITVIT2/) and MIRU-VNTRplus databases (https://www.miru-

vntrplus.org/), on the basis of spoligotyping and MIRU-VNTR

typing results, respectively.

Multi-locus VNTR analysis (MLVA) types were designated

based on MIRU-VNTR profiles and MIRU-VNTRplus database.

The adopted hierarchy of clades, from the highest to lowest rank,

states as follows: lineage, family, SIT (or MLVA type), spoligotype (or

MIRU-VNTR type). A spoligotyping cluster was defined as two or

more isolates sharing identical spoligotypes. The same criteria, i.e. exact

match at 24 MIRU-VNTR loci was applied for a MIRU-VNTR cluster.

The discriminatory power of spoligotyping and MIRU-VNTR

at all loci was calculated with the Hunter and Gaston discriminatory

index (HGDI), using the following formula:

DI = 1 − ½ 1
N(N−1)�onj(nj − 1), where N is the total number of

isolates, and nj is the number of isolates representing each type

(Hunter and Gaston, 1988).
2.5 Dendrogram and minimum spanning
tree construction

Dendrogram was constructed based on MIRU-VNTR typing

data, using MIRU-VNTRplus software and UPGMA algorithm

(Allix-Béguec et al., 2008) and a dataset of 186 MIRU-VNTR

profiles, deposited in the database as a reference.

Minimum spanning trees (MST) were drawn based on MIRU-

VNTRplus software (Allix-Béguec et al., 2008). Single-locus

variants (SLVs) within MSTs were defined as isolates which

differed from the ancestral isolate at one of the MIRU-VNTR

locus. Those SLVs formed MST clusters.
2.6 Family assignment

Based on the position of the isolates on MIRU-VNTR

phylogenetic tree (Figure S1) and single VNTR-locus signatures
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of LAM sublineages, essentially described elsewhere (Mokrousov

et al., 2014) (Figure S1), the isolates were assigned to the final

genetic families (Table S2).

Since T family is known as ill-defined, polyphyletic, and

heterogeneous group (Coll et al., 2014), its designation was not

used. Isolates grouped within L4 lineage, with undefined families

were designated as L4-unclassified.
3 Results

3.1 Genetic diversity of Mycobacterium
tuberculosis isolates

In total, 40 spoligotypes were identified, split into 10 clusters

(n=59, 66.3%, 2-19 isolates per cluster) and 30 (33.7%) unique

patterns (Tables 1, 2). Fourteen (15.7%) isolates had patterns not

deposited previously in the SITVIT2 database, and thus were called

orphan types. Six of them formed two new STs, A and B, with 4 and

2 isolates, respectively. Other 8 orphan types were labeled as

Orphan C-H (Table 1).

Four MIRU-VNTR clusters were described, shared by 2 to 9

isolates, totaling 15 (16.8%) isolates (Table 2). The largest cluster

(n=9) consisted of 6 MDR and 3 pre-extensively drug resistant (pre-

XDR) isolates, all but one isolated from Polish patients in Masovian

voivodeship (one was from Ukraine, isolated in Lesser Poland).

Second cluster included two pre-XDR isolates from polish patients,

yet obtained in different voivodeships (Masovian and Lesser

Poland). In the third cluster there was one MDR and one pre-

XDR isolate, from patients born in Poland or Georgia, retrieved in

the same voivodeship (Lesser Poland). Fourth cluster comprised

two susceptible isolates from polish patients, isolated in Masovian

voivodeship. The remaining 74 (82.2%) isolates had unique

patterns. MIRU-VNTR-based phylogenetic tree is depicted in

Figure S1.
3.2 Population structure

At the lineage level, the isolates belonged mostly to L4 (n=62;

69.7%), followed by L2 (n=25; 28.1%), L3 (n=1; 1.1%), and L1

(n=1; 1.1%).

At the family level, half (31/62; 50%) of the L4 isolates, were

defined as L4-unclassified. The other isolates were classified as

Beijing (n=25; 28.1%), Haarlem (n=15; 16.8%), LAM (n=11;

12.3%), Ural (n=3; 3.4%), TUR (n=2; 2.2%), CAS (n=1; 1.1%),

and EAI (n=1, 1.1%) (Table 1; Table S2).

Lineage-specific MSTs are depicted in Figures 1A–D. Most (18/

25; 72%) of the Beijing isolates were separated by difference at one

of the MIRU-VNTR locus (Figure 1A) and thus were SLVs.

Approximately two-thirds (n=11; 61.1%) of those isolates were

either 94-32 or 94-15 MLVA type. On the contrary, LAM isolates

were mostly distantly related, with a 2-12-locus difference

(Figure 1B). Most (13/15; 86.7%) of the Haarlem isolates were

also distant (difference of 2-5 loci). The only exception were two (2/
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TABLE 1 Diversity and drug susceptibility profiles of 89 M. tuberculosis isolates under the study.

Isolates as per

diversity of:* drug resistance profile:**

Lineage Family SIT Spoligotype DS MDR pre-XDR

Lineage 1 EAI 11 477777777413071 1

Lineage 2
Beijing 1 000000000003771 1 11 7

Beijing 265 000000000003371 5 1

Lineage 3 CAS 26 703777740003771 1

Lineage 4 Haarlem 45 777777764020771 1

Haarlem 46 777777770000000 1

Haarlem 47 777777774020771 3

Haarlem 50 777777777720771 4

Haarlem 207 767777777720771 1

Haarlem 511 777777700020771 1

Haarlem 746 777777777520771 1

Haarlem Orphan_A 757777776000731 1

Haarlem Orphan_B 777737774020711 1

Haarlem Orphan_C 700000007720771 1

LAM 42 777777607760771 1 1

LAM 44 777777757760771 1

LAM 254 777760007760771 1

LAM 264 777740003760771 1 1

LAM 803 777740007760771 1

LAM 872 773777623760771 1

LAM 891 777777607660771 1

LAM New Type B 777757607660771 1 1

L4-unclassified 37 777737777760771 2

L4-unclassified 39 777777347760471 1

L4-unclassified 46 777777770000000 1

L4-unclassified 51 777777777620771 1

L4-unclassified 52 777777777760731 1

L4-unclassified 53 777777777760771 10 5

L4-unclassified 62 777777774020731 1

L4-unclassified 1564 777776737760571 1

L4-unclassified 2890 777777761760771 1

L4-unclassified New Type 777777000020711 4

L4-unclassified Orphan_D 775717577760771 1

L4-unclassified Orphan_E 770000717760771 1

L4-unclassified Orphan_F 600000777760771 1

TUR 44 777777757760771 1

TUR 390 777777777620771 1

(Continued)
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15; 13.3%) isolates which varied at one locus (Figure 1C). Similarly,

the vast majority (28/31; 90%) of the L4-unclassified isolates were

distantly related, with a difference from 3 to 10 loci. The other three

(3/31; 10%) isolates had difference at one locus (Figure 1D).
3.3 Drug resistance

The drug susceptibility patterns detected among analyzed

spoligotypes, and families are depicted in Table 1. Whereas the

Beijing family was the most prevalent (24/39; 61.5%) among MDR-

TB cases, it accounted for only 2% (1/50) of DS isolates (Figure 2).

On the contrary, L4-unclassified group was the most abundant (26/

50; 56%) among DS isolates, and accounted only for 12.8% (5/39) of

the MDR isolates.

Almost all (24/25; 96%) Beijing isolates were MDR or pre-XDR

(Figure 2). Resistance was found also among all families of Lineage

4, with somewhat higher presence of MDR among LAM (5/11;

45.4%) and L4-unclassified SIT53 (5/15; 33.3%) isolates when

compared to other molecular types. The only two CAS and EAI

isolates were of DS phenotype (Table 1).
3.4 Patient origin

Most (84.3%; 75/89) of the patients were born in Poland. Of the

14 foreign-born patients, 9 were from the Former Soviet Union
Frontiers in Cellular and Infection Microbiology 05
(FSU) countries, i.e. Ukraine (n=6), Moldova (n=2), and Georgia

(n=1), 4 were from Asian countries, i.e. India (n=2), Vietnam (n=1),

and Nepal (n=1), and one was from Africa (Guinea) (Table S2).

Among patients who were foreign-born, a higher ratio of MDR

isolates were observed when compared with those who were born in

Poland, i.e. 64.3%; (9/14) vs. 40% (30/75). Furthermore, all patients

from the FSU had MDR-TB.

At the family level, L4-unslassified (26/45; 57.8%) and Beijing

(9/30; 30%) were the most common families among Polish DS- and

MDR-TB patients, respectively. Approximately half (8/14; 57.1%) of

the foreign-born patients were infected with Beijing strains,

compared to one-fourth (22.7%; 17/75) of Polish natives. Single

isolates of CAS-Delhi (n=1) and CAS (n=1) families were detected

in an India-born and Nepal-born patient, respectively. Importantly,

the isolates from the two patients were the only representatives of

L1 and L3 in the study sample.
4 Discussion

The rise and expansion of DR-TB, galvanized by the increased

migration flows, represents one of the main challenges of TB

control in Europe. However, molecular epidemiological studies of

TB in eastern European countries, including Poland, are seriously

lacking. The present study provides an important insight into the

genetic diversity of DS and MDRM. tuberculosis strains circulating

in Poland.
TABLE 1 Continued

Isolates as per

diversity of:* drug resistance profile:**

Lineage Family SIT Spoligotype DS MDR pre-XDR

URAL 262 774777777420771 1

URAL Orphan_G 770337777420771 1

URAL Orphan_H 777737700420771 1
fr
* Lineages and families as per expert analysis; SIT, Spoligotype International Type;
**DS, drug-susceptible; MDR, multidrug resistant; pre-XDR, pre-extensively drug resistant.
TABLE 2 Spoligotyping and VNTR-typing summary.

Lineage (Family)
No. of.:

Spoligoprofiles Spoligo-clusters* MLVA types VNTR-clusters*

L2 (Beijing), n= 25 2 25 (2 types: 19, 6) 15 13 (3 types: 2, 2, 9)

L4 (LAM), n= 11 8 6 (3 types: 2, 2, 2) 11 0

L4 (Haarlem), n=15 10 7 (2 types: 3, 4) 15 0

L4-unclass (L4), n=31 13 21 (3 types: 2, 4, 15) 30 2 (1 type)

Other, n=7 7 0 7 0

Total, n=89 40 59 (10 types) 78 15 (4 types)

HGDI** 0.92 0.99
*In brackets, a number of types and isolates per type was given;
**HGDI, Hunter Gaston Discriminatory Index.
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4.1 Phylogeny of TB in Poland

Among the whole population studied, L4 predominated

(69.7%), with a prevalence of 94% and 38.5% for DS- and MDR-

TB isolates, respectively. This is consistent with previous studies

from Poland, in which the L4 lineage accounted for a similar

proportion of isolates (69.5% and 71%) (Krawczyk et al., 2011;

Kruczak et al., 2019). However, the previously reported L4

prevalence among MDR-TB isolates was 2-fold higher, and

reached 65.2% (Jagielski et al., 2010). L4 has been repeatedly

identified as a major lineage in countries neighboring Poland,

such as Latvia (67.6%) (Pole et al., 2020) and Belarus (51.5%)

(Zalutskaya et al., 2013). At the family level, MDR was found among

all families of L4, with somewhat higher prevalence among LAM

and L4-unclassified SIT53 compared to other molecular types. This

finding is unsurprising, as previous studies have reported the

associations of SIT53 and different LAM genotypes with increased

drug resistance and MDR-TB (Sheen et al., 2013; Ioannidis

et al., 2017).
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The second largest phylogenetic group included L2 isolates, all

of the Beijing family, and comprised 28.1% of the analyzed isolates.

This lineage was found with a much higher prevalence (61.5%)

among MDR-TB cases compared to DS-TB (2%) (P<0.05).

According to previous reports, the frequency of the Beijing family

isolates was strikingly lower in Poland 10-15 years ago, and

accounted for 3.9% and 8% among DR population (Sajduda et al.,

2006; Jagielski et al., 2010). On the contrary, high proportion of this

family among TB is characteristic for FSU countries, such as

Ukraine (33%) (Dymova et al., 2011) and Russia, Kaliningrad

(45.6%) (Mokrousov et al., 2009).

In this study, almost all (96%) Beijing isolates were MDR. The

Beijing strains are epidemiologically important since they have been

associated with an increased acquisition of drug resistance,

enhanced virulence, and high transmissibility (Mokrousov et al.,

2006; Lasunskaia et al., 2010; Barbier and Wirth, 2016).

Furthermore, as the predominant genotype in East Asia, the

Beijing family has been emerging in various areas of the world

and is often associated with disease outbreaks (Luo et al., 2014; Erie
A B

DC

FIGURE 1

(A–D). Minimum spanning trees illustrating the potential evolutionary relationships of the M. tuberculosis isolates of (A) Beijing, (B) LAM, (C) Haarlem
and (D) L4-unclassified families, identified in this study. The lengths of the branches indicate the levels of changes on MIRU-VNTR-code. Solid lines
represent a single or double change, while dotted lines represent 3 or more changes (a precise number of changes is indicated on the line). For
foreign-born patients’ country of birth is shown next to the node. MDR-isolates are marked in yellow, pre-extensively drug resistant isolates are
marked in red. Isolates IDs are marked within circles. MLVA types are markes next to the circles. SLVs are marked with grey shading. ID of isolates
within the nodes of panel (A) (MLVA 94-32): A: D-PL-21, KR-PLM-11; C: (MLVA type 9363-32): KR-PLM-13, KR-PLM-9; C: (MLVA 94-15): D-PL-11, D-
PL-12, D-PL-13, D-PL-14, D-PL-2, D-PL-4, D-PL-8, D-PL-9, KR-PLM-4. ID of isolates within the nodes of Panel (D) (?-15): A: WAW-PL-18, WAW-
PL-20.
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et al., 2017; Perdigão et al., 2020). The increasing prevalence rate of

the Beijing family in Poland might be attributed to its importation

from FSU and its local active circulation and/or within-

country transmission.

Single M. tuberculosis isolates of L1 and L3 were DS and were

recovered from patients born in India and Nepal. This is consistent

with studies from Czech Republic, Germany, and Slovakia, where

the two lineages (L1 and L3) accounted for less than 2.5% of the

study sample (Roetzer et al., 2011; Kozińska et al., 2019; Pinková

et al., 2019). Strains of the L1 and L3 are characteristic mainly for

the Asian continent and usually are imported to European countries

with migration flows.

Phylogenetic analysis using MST revealed the presence of four

MST clusters. The first was formed by nearly 75% of the Beijing

isolates, mostly of 94-32 or 94-15 MLVA type (Figure 1A).

Importantly, the 94-32 MLVA type, also known as Central-Asian

Russian cluster, is indistinguishable by MIRU-VNTR from the

Central Asia Outbreak (CAO) cluster (Merker et al., 2020). The

isolates within this cluster were obtained from patients from different

cities, had two different SITs (1 and 265) and different resistance
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profiles (MDR or pre-XDR). All these findings may indicate a local

evolution of Beijing isolates or transmission in a distant past, rather

than a recent transmission event. Type 94-15 differs at one MIRU-

VNTR locus when compared to type 94-32, one of the major Beijing

types, circulating in Russia (Shitikov et al., 2017). Interestingly, type

94-15 was not found in the largest global Beijing dataset (Merker

et al., 2015) nor in the recent large study in six provinces of

Northwestern Russia (Vyazovaya et al., 2023). Thus, the 94-15 type

might be a newly formed local clone. The second MST cluster was

formed by two MDR-TB Beijing isolates of different MLVA types,

with either Georgian or Ukrainian origin. The third MST cluster

comprised two Haarlem isolates, of different SITs (50 and 207). The

fourthMST cluster was formed within the L4-unslassified group, with

three isolates of “?-15” MLVA type (Figure 1D). The isolates within

this cluster were all DS, harbored identical SIT, and were recovered

from patients living in the same city. Apart from the domicile, no

other epidemiological links were revealed to support a direct

transmission between the patients within MST clusters.

Concerning the origins of the isolates, the L4 strains circulating

in Poland were only isolated from Polish patients. On the other

hand, the L2 Beijing genotype was more frequently found among

foreign-born patients (P<0.05). Overall, the high prevalence of the

Beijing isolates in Poland evidenced in this study, coupled with a

high proportion of the Beijing genotype among foreign-born TB

patients may reflect an ongoing circulation of this genotype

imported to Poland mainly from FSU countries (Niemann et al.,

2010; Konstantynovska et al., 2019). Of note, one patient born in

Poland was infected with type MLVA 1071-32, which has been

recently described as an emerging resistant Beijing variant that is

circulating in Siberia. This variant has been rarely found in the

European part of Russia and only sporadically in Balkan countries

(Mokrousov et al., 2021).

Interestingly, a patient from Moldova was infected with MDR

L4 Ural strain of SIT262. This spoligotype was recently shown to be

associated with pre-XDR-TB and belongs to the Ural family

circulating in Moldova since the 1990s (Sinkov et al., 2018).
4.2 Mycobacterium tuberculosis
phylogeography in Poland and
Western/Central Europe

To place our results in a wider phylogeographic context, the

main genotype families from this study were compared with those

observed previously in Poland and neighboring countries (Sajduda

et al., 2006; Konstantynovska et al., 2019; Pinková et al., 2019;

Merker et al., 2020; Yang et al., 2022) or deposited in the SITVIT2

database (Figure 3). In total, there are 434 isolates from Poland in

the SITVIT2 database. All were deposited between 2000 and 2004

and were mostly resistant to isoniazid and streptomycin, or had no

detailed drug resistance profile.

In previous studies from Poland, the Beijing prevalence among

DR-TB population was remarkably lower than in this study (61.5%),

and varied from 3.9% in 2006 up to 20.6% in 2015 (Sajduda et al., 2006;

Jagielski et al., 2010; Kozińska and Augustynowicz-Kopeć, 2015). As

depicted in Figure 3, Beijing is one of the most common genotypes of
FIGURE 2

Distribution of genotype families in multidrug-resistant and
susceptible isolates.
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M. tuberculosis in the FSU countries. Data of patient origin might

suggest that migrants from FSU are significant source of Beijing isolates

and thus MDR-TB in Poland.

The prevalence of the mainly DS-TB Haarlem strains in Poland

has slightly decreased between 2010 and the present, i.e. from 36.4%

% to 16.8% (Krawczyk et al., 2011). A similar trend was observed in

Estonia, between 1999 and 2015 (Pole et al., 2020). It can be only

speculated that infections with Haarlem isolates are associated with

better treatment outcomes, and thus are easier to eradicate, if low-

transmissible (Reiling et al., 2013). Haarlem is a “European”

genotype with a clear geographically increasing East-to-West

gradient (Smit et al., 2014; Pichat et al., 2016; Vluggen et al.,

2017; Pole et al., 2020), and low prevalence in FSU countries.

During the past 20 years, the proportion of LAM isolates in Poland

remained at a similar level. Most of LAM isolates in Poland belong to

the LAM-RUS branch that was described in Russia and Kazakhstan

and in Latvia and Estonia, too. Interestingly, the XDR isolates of SIT266

(LAM family), highly-prevalent in Belarus, were not found in this study

(Zalutskaya et al., 2013). This SIT remains also at a low prevalence in

Russia (Mokrousov et al., 2021). This might be largely explained by the

lack of mass migration from Belarus to Russia and to Poland.
5 Conclusions

This work describes the recent genetic diversity of MDR and DS

M. tuberculosis strains circulating in Poland, assessed with a
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combination of spoligotyping and 24-loci MIRU-VNTR-typing.

There are two major findings from the study. First, the populations

of DS- and MDR-TB isolates differed significantly. The DS-TB was

dominated by L4-unclassified isolates, whereas the MDR-TB isolates

were mostly of the Beijing genotype. Second, the rise in the prevalence

of Beijing isolates in Poland, along with high proportion of Beijing

genotype among foreign-born TB patients may reflect an ongoing

and successful transmission of this family, imported to Polandmainly

from FSU countries. An ongoing local circulation of the Beijing

family is supported by its genetic structure, i.e. most of the Beijing

isolates were SLVs. On the contrary, significant distance of LAM,

Haarlem, and L4-unclassified strains may be due to divergent sources

of some recently imported isolates but can also be explained by their

long-term local evolution in Poland.
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