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Xueli Wang1, Kaili Deng1, Jing Wei1, Jiaxin Yan1

and Ganzhu Feng1,2*

1Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing,
Jiangsu, China, 2Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing
Medical University, Nanjing, Jiangsu, China
Objective: To investigate the distribution differences in the respiratory tract

microbiota of AECOPD patients in different BMI groups and explore its guiding

value for treatment.

Methods: Sputum samples of thirty-eight AECOPD patients were collected. The

patients were divided into low, normal and high BMI group. The sputum

microbiota was sequenced by 16S rRNA detection technology, and the

distribution of sputum microbiota was compared. Rarefaction curve, a-
diversity, principal coordinate analysis (PCoA) and measurement of sputum

microbiota abundance in each group were performed and analyzed by

bioinformatics methods.

Results: 1. The rarefaction curve in each BMI group reached a plateau. No

significant differences were observed in the OTU total number or a-diversity
index of microbiota in each group. PCoA showed significant differences in the

distance matrix of sputum microbiota between the three groups, which was

calculated by the Binary Jaccard and the Bray Curtis algorithm. 2. At the phylum

level, most of the microbiota were Proteobacteria, Bacteroidetes Firmicutes,

Actinobacteria, and Fusobacteria. At the genus level, most were Streptococcus,

Prevotella, Haemophilus, Neisseria and Bacteroides. 3. At the phylum level, the

abundance of Proteobacteria in the low group was significantly higher than that

in normal and high BMI groups, the abundances of Firmicutes in the low and

normal groups were significantly lower than that in high BMI groups. At the genus

level, the abundance of Haemophilus in the low group was significantly higher

than that in high BMI group, and the abundances of Streptococcus in the low and

normal BMI groups were significantly lower than that in the high BMI group.

Conclusions: 1. The sputum microbiota of AECOPD patients in different BMI

groups covered almost all microbiota, and BMI had no significant association

with total number of respiratory tract microbiota or a-diversity in AECOPD

patients. However, there was a significant difference in the PCoA between
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different BMI groups. 2. The microbiota structure of AECOPD patients differed in

different BMI groups. Gram-negative bacteria (G-) in the respiratory tract of

patients predominated in the low BMI group, while gram-positive bacteria (G+)

predominated in the high BMI group.
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Introduction

COPD is a chronic respiratory disease characterized by

persistent and progressive airflow limitation, which causes more

than 3 million deaths worldwide per year (Rabe and Watz, 2017)

and is estimated to become the third leading cause of death

worldwide by 2030 (Fazleen and Wilkinson, 2020). Colonization

and infection with respiratory pathogenic bacteria are considered to

be important causes of acute exacerbation of COPD and a decline in

lung function (Sethi, 2000; Leung et al., 2017). In recent years,

population surveys in nine Asia-Pacific regions found that 46% of

COPD patients had at least one exacerbation in the previous year,

among which 19% required hospitalization. On average, 0.06 to 0.78

acute exacerbations occur per person per year (Ko et al., 2016), and

50-70% of acute exacerbations and disease progression are related

to bacterial infection (Boixeda et al., 2015). The more frequent the

acute exacerbations, the worse the prognosis (Wedzicha et al.,

2013), and exacerbations have cumulative effects on the decline of

lung function (Erhabor et al., 2021). However, classical culture

techniques can only isolate a few pathogenic bacteria in AECOPD

(Dickson et al., 2013), and only 10-20% of species can be detected

(Bathoorn et al., 2017). The 16S rRNA gene is widely present in all

prokaryotic microorganisms, containing 10 conserved regions and

9 variable regions (V1-V9). Variable region V1-V3 amplification

identifies almost all pathogens, and V4-V5 amplification has a

higher specificity of detection (Mendez et al., 2019). 16S rRNA

sequencing can identify and detect all bacteria in clinical practice,

which is not possible with traditional culture technologies (Bador

et al., 2020), and a large number of short nucleotide sequences can

be read in a very short time using high-throughput technologies,

such as Illumina sequencing and 454 pyrosequencing (Lee et al.,

2016; Allali et al., 2017). In addition, the cost of 16S rRNA

sequencing is decreasing with the development of sequencing

technology. Therefore, 16S rRNA gene sequencing technology can

replace sputum culture as an important method for microbial

detection due to its outstanding advantages of high accuracy, high

sensitivity, high throughput and low cost.

Previous studies on respiratory tract microbiota in COPD have

rarely been reported. In 2010, Hilty et al (Hilty et al., 2010; Moffatt

and Cookson, 2017). conducted 16S rRNA gene sequencing and

bacterial community analysis of oral pharynx, nasopharynx and left

upper pulmonary bronchial mucosal brush samples from healthy

people, asthma patients and COPD patients and found that the
02
complex microbial community of the lower respiratory tract exists

not only in patients suffering from respiratory diseases but also in

healthy people. In the last decade, scholars have used sequencing

technology to study the respiratory tract microbiota of COPD

patients and found that in the overall microbiome, the most

abundant bacteria belonged to 4 main phyla, Proteobacteria,

Firmicutes, Bacteroidetes and Actinobacteria, as well as 7 main

genera, Streptococcus, Haemophilus, Moraxella, Prevotella,

Acinetobacter, Neisseria and Fusobacterium (Cabrera-Rubio et al.,

2012;Wang et al., 2016; Yang et al., 2022).Wang et al (Lee et al., 2016;

Wang et al., 2016; Wang et al., 2019; Sun et al., 2020). examined the

correlation between COPD risk factors, lung function grades and

respiratory tract microbiota distribution and found that smoking

status, the frequency of acute exacerbations and the Global Initiative

for Obstructive Lung Disease (GOLD) grade of lung function were

closely related to the diversity and abundance of respiratory

microbiota, including changes in a-diversity and differences in the

abundance of Proteobacteria, Firmicutes as well as Haemophilus,

Moraxella, Streptococcus, Staphylococcus, and Veillonella.

Although smoking has long been considered to be the most

important risk factor for COPD, approximately 25-45% of COPD

patients have no smoking history, which indicates that other factors

may play important roles in the occurrence and development of COPD

(Mannino and Buist, 2007; Salvi and Barnes, 2009; Barczok, 2019).

Recent clinical studies have shown that low BMI is an important

independent risk factor for poor prognosis in COPD patients (Schols

et al., 1998). It is well known that overweight or obesity is closely related

to the disease process and prognosis of diabetes, hypertension, coronary

heart disease and cerebrovascular stroke (Kinlen et al., 2018). In contrast,

overweight or obesity is largely protective against acute exacerbation and

even prognosis in subjects suffering from COPD to a large extent (Spelta

et al., 2018). Zapatero et al. (2013) conducted a retrospective study of

310,000 hospitalized COPD patients and found that obesity significantly

reduced the readmission rate of acute exacerbation and the risk of death

during hospitalization. Wei et al (Wei et al., 2017; Sun et al., 2019).

emphasized that low BMI increases the frequency of exacerbations partly

and accelerates the decline of FEV1 in COPD patients. Obviously, BMI is

an important risk factor for COPD progression. Findings indicate that

respiratory tract pathogen infection is the key factor leading to AECOPD,

so it is meaningful to explore the correlation between BMI and

respiratory tract microbiota in AECOPD patients.

Few studies on COPD microbiome have reported the correlation

between BMI and microbiota distribution. Here, we performed a
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prospective 16S rRNA-based microbiome survey on sputum samples

collected from patients with AECOPD of different BMI groups,

sequenced the number and species of operational taxonomic units

(OTUs) of the respiratory tract in each group by 16S rRNA detection

sequencing technology, and analyzed the diversity and abundance of

bacteria by bioinformatics methods. In this article, we explored the

relationship between BMI and the distribution of respiratory tract

microbiota in AECOPD, and to provide a reference for the clinical

diagnosis and treatment of AECOPD patients with different BMIs.
Methods

Subjects and samples

Sputum samples of 38 patients with AECOPD were collected

from the Department of Respiratory and Critical Care Medicine, Sir

Run Run Shaw Hospital of Nanjing Medical University and Second

Affiliated Hospital of Nanjing Medical University from October

2020 to June 2022, and clinical data, including sex, age, height,

weight, smoking status and frequency of acute exacerbation in the

previous year, were collected.

Inclusion criteria: All patients met the Global Initiative for

Chronic Obstructive Lung Disease (GOLD) diagnostic criteria for

COPD and were in an acute exacerbation. Hospitalization was

required for related treatment. Exclusion criteria: There was a

medical history of severe pulmonary diseases or combined with

other chronic respiratory diseases such as bronchial asthma, cystic

fibrosis, severe bronchiectasis and other structural pulmonary

diseases. There was a history of diabetes or autoimmune diseases.

Suffering from malignant tumor within 5 years. There was a history

of acute exacerbation of COPD or pulmonary infection as well as

antibiotics use within 3 months before the study.

The patients were divided into three groups according to BMI

(kg/m2), low BMI (13 patients, BMI ≤ 18.5 kg/m2), normal BMI (13

patients, BMI 18.5-23.9 kg/m2) and high BMI (12 patients,

BMI≥24.0 kg/m2) (Zhu et al., 2020). All groups underwent

Brilliance iCT and spirometry to exclude other chronic

respiratory diseases, such as bronchial asthma, cystic fibrosis,

severe bronchiectasis and other structural lung disease, and to

confirm the presence of airway obstruction. All subjects met the

condition of forced expiratory volume in the first second/forced

vital capacity (FEV1/FVC) <70% and the predicted percentage of

FEV 1 (FEV 1%) <80% (Celli and Macnee, 2004).This study was

approved by the Medical Ethics Committee of the Sir Run Run

Shaw Hospital of Nanjing Medical University (2021-SR-020).

Sputum (2-3 ml) was collected from each subject and stored at

−80°C until further use before antibiotics and other treatments on

the day after admission. 16S rRNA gene amplicon sequencing and

analysis were conducted by OE Biotech Co., Ltd. (Shanghai, China).
DNA exacerbation and PCR amplification

Bacterial DNA was isolated from the sputum using a MagPure

Soil DNA LQ Kit (Magen, Guangdong, China) following the
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manufacturer’s instructions. DNA concentration and integrity

were measured by a NanoDrop 2000 spectrophotometer (Thermo

Fisher Scientific, Waltham, MA, USA) and by agarose gel

electrophoresis, respectively. The genomic DNA was used as a

template for PCR amplification with barcoded primers and Tks

Gflex DNA Polymerase (Takara). For bacterial diversity analysis,

the V3-V4 variable regions of 16S rRNA genes were amplified with

universal primer pairs (343F: 5′-TACGGRAGGCAGCAG-3′; 798R:
5′-AGGGTATCTAATCCT-3′). The reverse primer contained a

sample barcode, and both primers were tagged with an Illumina

sequencing adapter.
Library construction and sequencing

The amplicon quality was visualized using gel electrophoresis.

The PCR products were purified with Agencourt AMPure XP beads

(Agencourt) and quantified using a Qubit dsDNA assay kit. The

concentrations were then adjusted for sequencing. Sequencing was

performed on an Illumina NovaSeq6000 with two paired-end read

cycles of 250 bases each (Illumina Inc., San Diego, CA; OE Biotech

Company; Shanghai, China).
Bioinformatics analysis

Raw sequencing data were in FASTQ format(All raw data has

been uploaded to NCBI database:PRJNA934046). Paired-end reads

were then preprocessed using Trimmomatic software to detect and

cut off ambiguous bases (N). Low-quality sequences with average

quality scores below 20 were also cut off using a sliding window

trimming approach. After trimming, paired-end reads were

assembled using FLASH software. The parameters of assembly

were 10 bp of minimal overlapping, 200 bp of maximum

overlapping and 20% of maximum mismatch rate. Sequences

were further denoised as follows: reads with ambiguous sequences

or homologous sequences and reads of less than 200 bp were

abandoned. Reads with 75% of bases above Q20 were retained.

Then, reads with chimaeras were detected and removed. These two

steps were achieved using QIIME software (version 1.8.0).

Clean reads were subjected to primer sequence removal and

clustering to generate operational taxonomic units (OTUs) using

Vsearch software with a 97% similarity cut-off. The representative

read of each OTU was selected using the QIIME package. All

representative reads were annotated and blasted against Silva

database Version 138 (www.arb-silva.de) using RDP classifier

with a 70% confidence threshold (Yilmaz et al., 2014).
Biodiversity and community similarity
analyses

The absolute and relative abundance of the sequence number of

each OTU in each sputum sample were calculated using R language,

and the OTUs of each sample were ranked according to the

abundance value at the phylum and genus levels. a-Diversity
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analysis was used to assess microbiota diversity within the group,

including Shannon, Simpson, Chao1 and Coverage indices. The b-
Diversity analysis was used to assess the similarity and difference in

microbiota between different BMI groups and was followed by

principal coordinates analysis (PCoA). Binary Jaccard and Bray

Curtis algorithms were used to calculate the distance matrix of each

group, and multivariate variance analysis (Adonis) was used to

determine significant differences in microbiota between different

BMI groups.
Statistical analysis

SPSS 25.0 and GraphPad Prism 9.0 were used for data analysis.

Fisher’s exact test was used to compare the sex distribution

between groups. Age, FEV1%pred and FEV1/FVC satisfied

asymptotic normality and were compared by ANOVA. BMI,

frequency of acute exacerbation, absolute abundances of

bacteria, the Shannon, Simpson, Observed Species, and

Coverage indices of a-diversity did not meet asymptotic

normality, so Kruskal-Wallis nonparametric (K-W) test was

used to calculate P values for them between groups. The

absolute abundances of bacteria were presented as M(IQR),

representing the median (interquartile range). After K-W test

was used to calculate the differences of bacteria between different

BMI groups, rank-converted was performed for the distribution

among groups, and ANOVA was used to calculate the P value. P

<0.05 indicates that the difference is statistically significant.
Results

Subjects

The clinical characteristics of the 38 patients enrolled in this

study are presented in Table 1. All subjects ranged in age from 61 to

88 years, with an average age of 72.3 years, including 33 males and 5

females. According to BMI, the patients were divided into low BMI

(13 subjects), normal BMI (13 subjects) and high BMI (13 subjects)

groups. There were no significant differences in sex, age, FEV1/

FVC, EFV1%, BMI or frequency of acute exacerbation.
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Rarefaction curve of sputum microbiota

A total of 2367303 usable 16S rRNA sequences were obtained

from all samples by Illumina sequencing, with an average of 62297

sequences per sample. Then, 13067 OTUs were delineated at a 97%

similarity level after quality decontamination and filtering.

Rarefaction curves of a-diversity were obtained while increasing

the number of sequences (Figure 1).
Profiles of sputum microbiota OTUs

The sputummicrobiota OTUs of each BMI group were calculated.

There were 8973 OTUs in the low BMI samples, 7006 OTUs in the

normal BMI samples and 8507 in the high BMI samples, and 3575

OTUs existed in the three groups simultaneously. There was no

statistically significant difference in OTU numbers between groups

using analysis of variance (ANOVA) for comparison (Figure 2).

Afterwards, the abundance of each OTU was counted using R

language, and the most abundant OTUs were selected to construct

an evolutionary tree, among which Actinobacteria, Bacteroidetes,

Campilobacterota, Fusobacteria, Firmicutes and Proteobacteria had

the highest abundance (Figure 3). Based on the overall bacterial

phyla composition, the most abundant bacteria belonged to one of

five bacterial phyla: Proteobacteria (30.0%), Bacteroidetes (27.5%),

Firmicutes (27.5%), Actinobacteria (9.5%), and Fusobacteria (2.6%).

At the genus level, the most abundant bacteria were Streptococcus

(11.3%), Prevotella (10.3%), Haemophilus (5.7%), Neisseria (5.4%),

and Bacteroides (3.2%), all of which are typical members of the lung

microbiota. Rothia, Escherichia-Shigella and Muribaculaceae were

also common (Figure 4).
Microbial diversity of sputum microbiota in
different BMI groups

The Shannon, Simpson, Chao I and Coverage indices were

calculated to evaluate the a-diversity of bacteria in different BMI

groups. There was no significant difference in the a-diversity of

sputum bacteria between the three groups (P>0.05,Figure 5).

Adonis analysis was used for PCoA based on the Binary Jaccard
TABLE 1 Comparison of general clinical data of patients in different BMI groups.

low BMI group normal BMI group high BMI group P value

Gender (M:F) 11/2 12/1 10/2 0.85
5a

BMI (kg/m2) 17.73 (0.81) 21.66 (1.70) 25.95 (3.05) <0.001b

Age 76.69 ± 4.31 72.85 ± 7.20 76.33 ± 5.76 0.201c

FEV1/FVC 52.54 ± 2.80 56.25 ± 3.06 56.83 ± 2.29 0.495c

FEV1% 49.46 ± 3.44 57.11 ± 5.38 59.89 ± 2.36 0.176c

Frequency 2.31 (1.00) 1.38 (1.00) 1.75 (1.75) 0.015b
aFisher’s exact test.
bKruskal-Wallis test.
cAnalysis of variance (ANOVA).
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and Bray-Curtis algorithms, and the results showed significant

differences in respiratory tract microbiota between the BMI

groups (R2 = 0.080, P=0.008; R2 = 0.087, P=0.028, Figure 6).
Abundance difference of main sputum
microbiota OTUs in different BMI groups

The absolute abundance of the main OTUs in different BMI

groups was compared. The Kruskal-Wallis test was used to calculate

the differences of bacteria in different BMI groups, after the

distribution, pairwise comparison was rank-converted, and

ANOVA was used to calculate the P value.

At the phylum level, the absolute abundances of Proteobacteria

in the low, normal and high BMI groups were 23938 (15870), 13940
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(6972) and 15133 (14700), respectively, and there were significant

differences between the different groups (low BMI group vs. normal

BMI group, P=0.031 and low BMI group vs. high BMI group,

P=0.023). The absolute abundances of Firmicutes in the low, normal

and high BMI groups were 14625 (4927), 15566 (11220.5) and

17530.5 (14885.75), respectively, and significant differences were

found between the low BMI group and the high BMI group

(P=0.012) as well as between the normal BMI group and the high

BMI group (P=0.030). At the genus level, the absolute abundances

of Haemophilus in the low, normal and high BMI groups were 581

(2487), 320 (624) and 280.5 (513.25), respectively, and the

difference between the low BMI group and the high BMI group

was significant (P=0.013). The absolute abundance of Streptococcus

in the low, normal and high BMI groups were 4405 (3106.5), 3847

(2760.5) and 8971.5 (12534), respectively, and the absolute

abundance of Streptococcus in high BMI group was significantly

higher than that in the low BMI group (P=0.049) and normal BMI

group (P=0.014). There was no significant difference in the

abundance of other OTUs between BMI groups (Figure 7).
Discussion

COPD is a chronic pulmonary disease characterized by

irreversible airflow limitation. With the progression of the disease,

complications, such as pulmonary heart disease and respiratory

failure, may occur, which significantly affects the quality of life of

patients and greatly increases the economic burden of disease

treatment (Toraldo and Conte, 2019). The drugs currently used to

treat COPD mainly include b2 receptor agonists, M3 receptor

blockers and glucocorticoids (Viniol and Vogelmeier, 2018). In

recent years, great progress has been made in the half-lives, dosage

forms, administrationmethods, devices, etc. of these drugs, which has

greatly improved patient symptom relief (Fujimoto, 2014). Despite of

these advancements, FEV1%pred and FEV1/FVC are still decreasing

progressively in COPD patients (Tantucci and Modina, 2012).

Studies have demonstrated that recurrent airway infection plays a
BA

FIGURE 2

Comparison of bacterial OTU numbers in different groups. (A) Venn diagram of the OTUs in the respiratory tract specimens of the three groups.
(B) Boxplots of the OTU numbers in respiratory tract specimens among the three BMI groups. (ANOVA, ns: P<0.05, there were no statistical
differences between different groups.).
FIGURE 1

The rarefaction curve of 38 respiratory tract microbiota. Shannon-
Wiener analysis of 38 respiratory samples. The x-coordinate is the
number of sequences per sample, and the y-coordinate is the
Shannon rarefaction measure. The higher the y value is, the higher
the community a-diversity is.
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key role in alveolar structure destruction and airway remodelling in

COPD patients (Wang et al., 2018). Therefore, effective reduction or

control of respiratory tract infection is crucial to improve the disease

course and even prognosis of COPD patients. The respiratory tract is

an open airway in which microorganisms from the surrounding

environment coexist, colonize or infect when immune function

declines. Obviously, it is of great significance to carry out relevant

studies on the respiratory microbiome of COPD patients in different

states to understand the occurrence, development, prevention and
Frontiers in Cellular and Infection Microbiology 06
control of the disease. Studies have shown that BMI affects the

diversity and abundance of intestinal microbiota (Stanislawski

et al., 2019). Other studies have demonstrated bidirectional

regulation between the intestinal microbiota and respiratory

microbiota, which is a famous theory of the “intestinal-lung axis”

proposed in recent years (He et al., 2017). Therefore, BMI may affect

the respiratory tract microbiota more or less. In recent years, with the

rapid development of sequencing technology, the conditions for

carrying out respiratory tract microbiome research have become

increasingly mature. In this study, we used 16S rRNA sequencing

technology to study the differences and correlations of microbiome

distribution in AECOPD with different BMIs. 16S rRNA sequencing

technology uses next-generation sequencing technology (NGS) of 454

pyrophosphate or Illumina to sequence millions of gene fragments

(Kozich et al., 2013). Some sequences of bacterial ribosomal RNA

(rRNA) can be used to identify the genetic differences of

microorganisms, and rRNA can be divided into three types

according to the sedimentation coefficient, 5S, 16S and 23S. The 5S

rRNA gene has a short sequence and little genetic information, and

the 23S rRNA gene has a long sequence and a high base mutation

rate. Only the 16S rRNA sequence is suitable in length and copy

number for species identification by sequencing; it not only runs well

in sequencing technology platforms but also reflects the distribution

difference of microbiota. The V3-V5 variable region of 16S rRNA is

highly specific and can reflect the characteristics of microbial

community components through PCR amplification, high-
A

B

FIGURE 4

The relative abundance of phyla and genera derived from sequencing of each sputum sample. (A) Bar plot of relative abundance in each sample at
the phylum level; (B) Bar plot of relative abundance in each sample at the genus level.
FIGURE 3

Phylogenetic tree diagram of the top 50 OTUs. Phylogeny studies
the formation and evolution history of species. In this Circle Tree,
the top 50 species with the highest abundance during evolution are
clustered into six phyla.
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throughput sequencing and bioinformatics analysis (Holm et al.,

2019). In this study, OE Biotech Co., Ltd, which we collaborated with,

performed 16S rRNA genetic testing using the next-generation

sequencing method of llumina. Compared with the traditional PCR

method, it intercepts more specific sequences for analysis. Compared

with the first-generation sequencing methods such as Sanger, large-

scale parallel sequencing can be carried out simultaneously, instead of

only sequencing one DNA fragment. Compared with the whole

genome shotgun sequencing (WGS) method, it has a longer

sequence number and is more attractive in terms of cost-

effectiveness. Compared with metagenome sequencing, it has

obvious advantages in run time and sequencing cost (Ranjan

et al., 2016).

In this study, a total of 38 AECOPD patients were enrolled and

divided into a low BMI group, normal BMI group and high BMI

group. Previous studies showed that diabetes and autoimmune

diseases such as systemic lupus erythmatosus, rheumatoid

arthritis,etc. are related to the microbiota disorder in human
Frontiers in Cellular and Infection Microbiology 07
intestine and other organs (Xu et al., 2021).Zhang et al.

indicated that microbiota-host interactions are important in

regulating the malignant transformation of cancer cells and

cancer-related immunity (Zhang et al., 2022). And Budden

showed that chronic respiratory diseases such as asthma, cystic

fibrosis and bronchiectasis were associated with changes in

mi c rob i a l d i v e r s i t y o r abundance (Budden e t a l . ,

2019).Therefore, in our research, we excluded patients who

combined with diabetes, autoimmune diseases, tumors and

structural lung diseases. To avoid an effect of antibiotics on

prokaryotic 16S rRNA results, we excluded patients who

received any antibiotics within three months when we selected

enrollees. And to date, the effects of other drug such as ICS

therapy on the airway microbiome in COPD are unclear, some

scholars believe that ICS lead to a relative reduction in a-diversity
(Leitao et al., 2021), other studies showed that there was no

significant differences in bacterial a diversity index with or

without ICS inhaled in chronic lung disease (Huang et al.,
B

C D

A

FIGURE 5

Violin diagrams of a-diversity on Shannon, Simpson index, Chao I and Coverage indices from each BMI group. (A, B) Violin diagrams of microbiota
on Shannon and Simpson indices respectively, representing the diversity of microbiota within the group. (C) Violin diagram of microbiota on Chao1
indice, representing the richness of microbiota within the group. (D) Violin diagram of microbiota on Goods coverage indice, representing the
sequencing depth of microbiota within the group.(K-W test, ns: P<0.05, there were no statistical differences between different groups.).
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2022). Therefore, we temporarily ignored the influence of inhaled

drugs on the conclusion. In the follow-up study, we can expand

the sample and carry out a systematic study. Subjects in this study

were selected from the respiratory and critical care departments of

two local teaching hospitals, Sir Run Run Shaw Hospital

of Nanjing Medical University and Second Affiliated Hospital of

Nanjing Medical University. There was no significant difference in

general clinical data, such as sex and age, indicating that the

sample selection in this study was random. There was no

significant difference in FEV1%pred or FEV1/FVC of AECOPD

patients in the different BMI groups, but the annual frequency of

acute exacerbation in the low BMI group was significantly higher

than that in the normal BMI group.

Airway samples were obtained from spontaneous or induced

sputum of AECOPD patients. To avoid oral background bacteria,
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such as Firmicutes, Actinomyces and Spirochaetes (Verma et al., 2018),

we asked patients to gargle with warm water and H2O2 repeatedly

before taking samples, which could reduce oral colonization bacterial

contamination to a large extent and ensure the reliability of respiratory

tract microbiota detection. The literature has demonstrated that the

microbiota composition of bronchoalveolar lavage fluid (BALF) is

very similar to that of bronchial mucosa and can represent the

structure of respiratory tract microbiota (Cabrera-Rubio et al.,

2012). Some studies have also suggested that after repeated oral

cleaning to remove the influence of colonized bacteria in the oral

cavity, sputum can represent the respiratory microbiota to some

extent (Holz et al., 2000). Indeed, sputum is more susceptible to

upper respiratory tract microbiota contamination than BALF, and

there are certain limitations in selecting sputum rather than BALF for

studies of the respiratory microbiota. In fact, most patients with
A B

FIGURE 7

Correlation analysis between BMI and absolute abundance of core bacterial OTUs (A) Comparison of the absolute abundance of core OTUs at the
phylum level between BMI groups. (B) Comparison of the absolute abundance of core OTUs at the genus level between BMI groups. (K-W test, #:
P<0.05, there was a significant difference between S3 and S1 in absolute abundance; *:P<0.05, there was a significant difference between S2 and S1
in absolute abundance; +:P<0.05, there was a significant difference between S3 and S2 in absolute abundance).
BA

FIGURE 6

PCoA between different BMI groups. (A) The binary Jaccard algorithm was used to calculate the distance matrix of each group, and Adonis was used
to analyze the difference between the presence or absence of species. (B) The Bray Curtis algorithm was used to analyze the difference in
microbiota abundance. (The circle represents the 95% confidence interval of each group. Points farther away indicate greater differences by
visualization). (*:P<0.05, there was a significant difference between the three groups in the distance matrix; **:P<0.01, there was a great significant
difference between the three groups.).
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AECOPDwere breathless and even complicated with heart failure and

other diseases. Invasive examinations, such as bronchoscopy and

alveolar lavage, had risks of hypoxia, airway spasm and arrhythmia,

which reduced the safety of the operation and affected the collection of

samples (Melo-Dias et al., 2022). Therefore, in this study, sputum

samples were used instead of BALF to study the distribution of

respiratory tract microbiota.

16S rRNA detection technology was used to analyze sputum

samples, and a large number of sequences were obtained. The

number of sequences continuously increased until the rarefaction

curve approached the plateau, indicating that the number of sequences

was sufficient to cover most of the OTUs. Although some additional

sequences may generate some new OTUs, the index of a-diversity
would not change significantly. OTU abundance obtained by sputum

sequencing showed that Proteobacteria, Bacteroidetes, Firmicutes,

Actinobacteria, Fusobacteria and Prevotella, Streptococcus, Neisseria,

Haemophilus, Bacteroidetes were the main OTUs of COPD patients,

and the most dominant phylum identified in the sputum samples was

Proteobacteria, accounting for 30% of the microbiome, which was

basically consistent with the report of Leiten et al (Leiten et al., 2020;

Su et al., 2022). No significant differences were found in the total OTU

quantity or a-diversity of sputum in the different BMI groups,

indicating that the BMI of AECOPD patients does not affect the

quantity of respiratory tract microbiota; the microbiota were shown to

be rich and even in all groups. PCoA of the microbiota in different

BMI groups showed that the presence or absence of bacterial species

and their species abundance distance matrix were significantly

different, suggesting that the BMI of AECOPD patients was

correlated with the species and abundance of respiratory microbiota.

The binary Jaccard and Bray Curtis algorithms are the two distance

matrix calculation algorithms of PCoA. The former represents the

difference between the presence or absence of species, while the latter

not only represents the difference in the presence or absence of species

but also the difference in microbiota abundance. Combined

application of the two methods can fully reflect the differences in

species and abundance between groups.

Next, we found differences in the microbiota abundance in

different BMI groups by analyzing the correlation between BMI and

microbiota abundance in each group. Proteobacteria abundance

was significantly increased in the low BMI group compared to the

high and normal BMI groups, especially for the genusHaemophilus.

Firmicutes abundance was significantly higher in the high BMI

group than in the low BMI group and normal BMI group, with

Streptococcus being dominant. Proteobacteria is an important

phylum, and all Proteobacteria are gram-negative (G-). The

bacterial cell membrane has an outer and an inner membrane.

The peptidoglycan wall is thin and is coated by lipopolysaccharide

(LPS) biofilms (Sommer et al., 2013; Supuran et al., 2013). The

common clinical bacteria genera in this phylum mainly include

Haemophilus,Moraxella, Pseudomonas, Enterobacter, Neisseria and

other pathogenic bacterial groups (Guan et al., 2018). A large

number of studies have shown that G- bacteria can induce an

inflammatory response through a series of virulence factors, such as
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LPS and lipooligosaccharide (LOS), leading to vascular endothelial

injury, tissue necrosis and even multiple organ failure (Bassetti and

Shorr, 2018). The reasons for low BMI in COPD patients may be

multifaceted, including their own genetic factors and chronic

gastroesophageal diseases (such as chronic gastritis, oesophageal

reflux disease, etc.) and the course of COPD itself, which is also a

critical factor. With the prolongation of the course of the disease,

the lung function of COPD patients progressively declines, resulting

in an increased breathing rate to meet the body’s demand for

oxygen during activities and even at rest, thereby increasing the

work of breathing muscles and reducing patient BMI. According to

the clinical data of this study, we noticed that although there were

no significant differences in the lung function indices FEV1% and

FEV1/FVC between the low BMI group and the normal and high

BMI groups, there was a downwards trend, which reflected the

increase in respiratory muscle work in the low BMI group to a

certain extent. In addition, the results of this study show that the

average annual frequency of acute exacerbations in the low BMI

group was significantly higher than that in the normal BMI group,

which is consistent with other studies (Steriade et al., 2019).

Although the mechanism of the increased frequency of acute

exacerbations in patients with low BMI is not very clear, most of

them are considered to be related to the decline in lung function,

and a severe decline in lung function is associated with more

obvious remodelling of airway structure, which provides an

anatomical basis for the colonization or infection of

Proteobacteria (Yilmaz et al., 2021). Therefore, in clinical practice,

the possibility of G- bacterial infection should be given high

consideration in the diagnosis of AECOPD patients with low BMI

at the initial stage of admission. It is recommended that empiric

antibiotic treatment covering Proteobacteria should be

administered prior to obtaining the results of respiratory

aetiology tests. Firmicutes are mostly gram-positive (G+), and

only a few pathogens, such as Mollicutes (e.g., Mycoplasma),

cannot be stained by the Gram method due to their lack of a cell

wall. Firmicutes have a monolayer cell wall structure surrounded by

a thick peptidoglycan layer and include pathogenic bacterial groups,

such as Streptococcus and Staphylococcus, as well as probiotics, such

as Lactobacillus and Lactococcus (Megrian et al., 2020; Padayachee

et al., 2020; Taib et al., 2020). Studies on metabolic diseases have

found that the Firmicutes/Bacteroidetes ratio plays an important

role in maintaining the balance of the normal intestinal

environment, and an increase or decrease in the ratio can lead to

intestinal ecological disorders. Obesity is positively correlated with

the presence of Firmicutes in the intestinal tract (Stojanov et al.,

2020). In this study,the results showed that compared with the low

BMI group, the Firmicutes detection level in the respiratory tract in

the normal and high BMI groups was significantly higher, which

suggested the existence of crosstalk between the intestine and lung,

namely, the gut-lung axis. What is the exact reason for the increase

in Firmicutes in the respiratory tract of patients with a high BMI?

Do the Firmicutes bacteria come from the intestinal tract? This

remains to be studied.
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This study has the following limitations:
Fron
1. The sample size of each group included in the study was

relatively low, which made the study prone to bias to a

certain extent.

2. Most of the included patients had poor lung function and

could not undergo BALF sampling after bronchoscopy.

Sputum was used to replace BALF for the study, which may

be disturbed by oropharyngeal microbiota to some extent.
Data availability statement

The data presented in the study are deposited in the NCBI

repository, accession number: BioProject: PRJNA934046.
Ethics statement

The studies involving human participants were reviewed and

approved by Medical Ethics Committee of the Sir Run Run Hospital

of Nanjing Medical University(2021-SR-020). The patients/

participants provided their written informed consent to

participate in this study.
tiers in Cellular and Infection Microbiology 10
Author contributions

YC, XC, and LShu conceived and designed the study and take

responsibility for the integrity of the data and the accuracy of the data

analysis. LShi, MW, KD, JW, XW, and JY assisted in data collection,

extraction, and evaluation of the eligibility of the original data. YC and

LShu analyzed the data. YC, XC, and GF interpreted the data and

contributed to the writing of the final version of the manuscript. All

authors contributed to the article and approved the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References

Allali, I., Arnold, J. W., Roach, J., Cadenas, M. B., Butz, N., Hassan, H. M., et al.

(2017). A comparison of sequencing platforms and bioinformatics pipelines for
compositional analysis of the gut microbiome. BMC Microbiol. 17 (1), 194. doi:
10.1186/s12866-017-1101-8

Bador, J., Nicolas, B., Chapuis, A.Varin V., Dullier-Taillefumie, N., Curraize, C., et al.
(2020). 16S rRNA PCR on clinical specimens: impact on diagnosis and therapeutic
management. Med. Mal Infect. 50 (1), 63–73. doi: 10.1016/j.medmal.2019.09.014

Barczok, M. (2019). COPD - smoking is not the only risk factor. MMW Fortschr
Med. 161 (13), 66–68. doi: 10.1007/s15006-019-0718-y

Bassetti, M., and Shorr, A. F. (2018). Update on epidemiology and appropriate
treatment of life-threatening gram-negative infections. Curr. Opin. Infect. Dis. 31 (6),
553–554. doi: 10.1097/QCO.0000000000000501

Bathoorn, E., Groenhof, F., Hendrix, R., Molen, T., Sinha, B., Kerstjens, H. A., et al.
(2017). Real-life data on antibiotic prescription and sputum culture diagnostics in acute
exacerbations of COPD in primary care. Int. J. Chron Obstruct Pulmon Dis. 12, 285–
290. doi: 10.2147/COPD.S120510

Boixeda, R., Almagro, P., Diez-Manglano, J., Cabrera, F. J., Recio, J., Martin-Garrido,
I., et al. (2015). Bacterial flora in the sputum and comorbidity in patients with acute
exacerbations of COPD. Int. J. Chron Obstruct Pulmon Dis. 10, 2581–2591. doi:
10.2147/COPD.S88702

Budden, K. F., Shukla, S. D., Rehman, S. F., Bowerman, K. L., Keely, S., Hugenholtz,
P., et al. (2019). Functional effects of the microbiota in chronic respiratory disease.
Lancet Respir. Med. 7 (10), 907–920. doi: 10.1016/S2213-2600(18)30510-1

Cabrera-Rubio, R., Garcia-Nunez, M., Seto, L., Antó, JM, Moya, A, Monsó, E, et al.
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