
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Jianfeng Wang,
Jilin University, China

REVIEWED BY

Isaura Simões,
University of Coimbra, Portugal
Perle Latre De Late,
University of Missouri, United States

*CORRESPONDENCE

Jere W. McBride

jemcbrid@utmb.edu

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Bacteria and Host,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

RECEIVED 24 January 2023

ACCEPTED 23 February 2023

PUBLISHED 07 March 2023

CITATION

Pittner NA, Solomon RN, Bui D-C
and McBride JW (2023) Ehrlichia effector
SLiM-icry: Artifice of cellular subversion.
Front. Cell. Infect. Microbiol. 13:1150758.
doi: 10.3389/fcimb.2023.1150758

COPYRIGHT

© 2023 Pittner, Solomon, Bui and McBride.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 07 March 2023

DOI 10.3389/fcimb.2023.1150758
Ehrlichia effector SLiM-icry:
Artifice of cellular subversion

Nicholas A. Pittner1†, Regina N. Solomon1†, Duc-Cuong Bui1†

and Jere W. McBride1,2,3,4,5*

1Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States,
2Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston,
TX, United States, 3Center for Biodefense and Emerging Infectious Diseases, University of Texas
Medical Branch, Galveston, TX, United States, 4Sealy Institute for Vaccine Sciences, University of
Texas Medical Branch, Galveston, TX, United States, 5Institute for Human Infections and Immunity,
University of Texas Medical Branch, Galveston, TX, United States
As an obligately intracellular bacterial pathogen that selectively infects the

mononuclear phagocyte, Ehrlichia chaffeensis has evolved sophisticated

mechanisms to subvert innate immune defenses. While the bacterium

accomplishes this through a variety of mechanisms, a rapidly expanding body

of evidence has revealed that E. chaffeensis has evolved survival strategies that

are directed by the versatile, intrinsically disordered, 120 kDa tandem repeat

protein (TRP120) effector. E. chaffeensis establishes infection by manipulating

multiple evolutionarily conserved cellular signaling pathways through effector-

host interactions to subvert innate immune defenses. TRP120 activates these

pathways using multiple functionally distinct, repetitive, eukaryote-mimicking

short linear motifs (SLiMs) located within the tandem repeat domain that have

evolved in nihilo. Functionally, the best characterized TRP120 SLiMs mimic

eukaryotic ligands (SLiM-icry) to engage pathway-specific host receptors and

activate cellular signaling, thereby repurposing these pathways to promote

infection. Moreover, E. chaffeensis TRP120 contains SLiMs that are targets of

post-translational modifications such as SUMOylation in addition to many other

validated SLiMs that are curated in the eukaryotic linear motif (ELM) database.

This review will explore the extracellular and intracellular roles TRP120 SLiM-icry

plays during infection - mediated through a variety of SLiMs - that enable E.

chaffeensis to subvert mononuclear phagocyte innate defenses.

KEYWORDS

Ehrlichia, tandem repeat protein, short linear motif, effector, Notch, Wnt,
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Introduction

In recent years, the obligately intracellular pathogen Ehrlichia chaffeensis has become

recognized for its profound ability to manipulate host cell signaling (Byerly et al., 2021). E.

chaffeensis causes human monocytic ehrlichiosis (HME), a tick borne zoonosis that can

have life-threatening manifestations including acute respiratory distress, meningitis and
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multisystem failure (Patel and Byrd, 1999). E. chaffeensis is an

alpha-proteobacterium (family Anaplasmataceae, order

Rickettsiales) (Dumler et al., 2001) that infects mononuclear

phagocytes (Paddock and Chi lds , 2003) . The family

Anaplasmataceae includes genera Ehrlichia, Anaplasma ,

Neorickettsia, and Wolbachia, which comprise a group of

obligately intracellular bacteria, many of which are emerging

zoonotic human pathogens of public health importance.

Infection of the mononuclear phagocyte by E. chaffeensis is

accomplished by successful evasion of innate immune defenses

which is achieved in part by effector proteins secreted via

membrane bound secretion systems. Type I and type IV secretion

systems (T1SS and T4SS) have been identified and functionally

confirmed (Dunning Hotopp et al., 2006; McBride et al., 2011; Liu

et al., 2012; Yan et al., 2018), and several effectors of these secretion

systems that play a role in infection have been identified (Kumagai

et al., 2010; Liu et al., 2012; Lina et al., 2016).

The T1SS is an ATP-binding cassette (ABC) transporter that

allows for the secretion of effector proteins in a one-step process.

The ehrlichial genome encodes three T1SS components: HylB, the

inner membrane ATP-binding cassette protein (ECH0383), HylD,

the membrane fusion protein (ECH0970), and TolC, the outer

membrane protein (ECH1020) that form the secretion nano-

machine (Delepelaire, 2004). Within the bacterial cytoplasm,

unfolded proteins with a C-terminal type I secretion signal

sequence are recognized by HylB and translocated across the

inner membrane in an ATP-dependent manner. Bacterial

substrates pass through HylD, a homodimeric pore that spans the

periplasm, where it interacts with TolC within the outer membrane

and is released to the cytoplasm of the host cell (Delepelaire, 2004;

Spitz et al., 2019). E. chaffeensis utilizes the T1SS to secrete multiple

tandem repeat effector proteins into the host cell.

Ehrlichia tandem repeat protein (TRP) T1SS effectors share

similarities with the repeats-in-toxins (RTX) family of proteins such

as exotoxins, lipases, and adhesins, including unique glycine- and

aspartate-rich tandem repeats, ATP transporter homology, and

non-cleavable C-terminal T1SS signals (Wakeel et al., 2011). TRP

effectors are highly immunoreactive, eliciting vigorous host

antibody responses directed at linear antibody epitopes (Byerly

et al., 2021). Investigations have revealed that TRPs interact with

numerous host proteins involved in cell signaling and immune

response, cytoskeletal organization, post-translational

modifications (PTMs), transcriptional and translational

regulation, intracellular trafficking and apoptosis (Byerly et al.,

2021). Specifically, TRP32 interacts with a diverse group of host

cell targets that influence intracellular survival (Luo and McBride,

2012). TRP47 enters the nucleus via a MYND-binding domain-

dependent mechanism and predominantly binds enhancers of host

genes associated with signal transduction, cytoskeletal organization,

and immune response (Kibler et al., 2018). TRP75 has been shown

to interact with host proteins involved in homeostasis, cytoskeleton

organization, and apoptosis regulation to promote infection (Luo

et al., 2018). Notably, TRP120 is the most characterized E.

chaffeensis TRP effector that has a diverse array of interactions

with host proteins and also acts as a molecular mimic to promote

infection and intracellular survival (Byerly et al., 2021). Altogether,
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these investigations indicate that Ehrlichia spp. have evolved

complex mechanisms that act in a context-dependent manner in

part through T1SS TRP effectors to promote infection and

intracellular survival.

Studies of E. chaffeensis proteins, including TRP120, have

defined multi-functional effectors that play important roles in

both extracellular and intracellular contexts. Most recently,

TRP120 has been defined as the first ligand mimic reported to

activate multiple evolutionarily conserved signaling pathways

including Notch, Wnt, and Hedgehog (Hh). As such, E.

chaffeensis TRP120 has become a model to study how effectors

interface with the host cell and exploit various cellular pathways and

molecular processes to promote intracellular survival (Byerly et al.,

2021). This review will provide a comprehensive overview of the

multiple roles TRP120 plays during infection and highlight the

recently defined examples of SLiM mimicry (SLiM-icry).
TRP120 effector functions

Studies over the last decade have molecularly defined the E.

chaffeensis TRP120 effector as a moonlighting protein that has

multiple important functions during infection (Byerly et al.,

2021). Structurally, TRP120 consists of a small N-terminus

domain (51 aa) of unknown function, a central intrinsically

disordered tandem repeat (TR) region (354 aa) consisting of four

nearly identical 80 aa TRs, flanked by partial repeat sequences, and a

C-terminal domain (142 aa) that harbors a type I secretion signal

sequence (~50 amino acids) responsible for secretion through the

T1SS (Figure 1) (Luo et al., 2011; Wakeel et al., 2011; Klema et al.,

2018). TRP120 decorates the surface of infectious dense-cored

ehrlichiae likely through a recently described mechanism in

which secret ion sta l ls before complet ion, creat ing a

pseudoperiplasmic intermediate that is surface-exposed (Popov

et al., 2000). The surface localization of TRP120 on infectious

dense-cored ehrlichiae is known to contribute to host cell entry,

and many studies have documented its intracellular role as a

nucleomodulin with ability to bind host cell DNA and degrade

host nuclear proteins (Popov et al., 2000; Zhu et al., 2011; Zhu

et al., 2017).

Recent investigations have revealed that TRP120 has a

canonical small ubiquitin-like modifier (SUMO) motif and a

functional HECT E3 ligase catalytic domain in the C-terminal

domain (Figure 2) (Dunphy et al., 2014; Zhu et al., 2017).

Interestingly, distinct mechanisms by which E. chaffeensis TRP120

acquires or catalyzes PTMs through SUMOylation and HECT E3

ligase activity have been demonstrated to govern bacterial effector-

host interactions or to dictate the fate of host nuclear proteins,

respectively. Specifically, E. chaffeensis TRP120 is SUMOylated by

the host machinery, which is critical for TRP120 effector-host

interactions (Dunphy et al., 2014). The HECT E3 ligase domain

of TRP120 has been associated with its functions as a

nucleomodulin, mediating auto-ubiquitination as well as

ubiquitination of multiple host substrates (Zhu et al., 2017; Mitra

et al., 2018; Wang et al., 2020; Zhu and McBride, 2021). Moreover,

TRP120 binds a GC-rich DNA motif that is similar to GC-rich
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motifs bound by eukaryotic transcription factors, suggesting a

similar function in mediating host gene transcriptional regulation

(Zhu et al., 2011). It is worth noting that two full-repeat sequences

of the four consecutive TR domains of TRP120 are sufficient to bind

a double-stranded DNA (dsDNA) and oligonucleotide probes

containing GC-rich motifs (Zhu et al., 2011).

A rapidly expanding body of evidence has revealed that E.

chaffeensis TRP120 harbors multiple short linear motifs (SLiMs)

within the tandem repeat domain which serve as ligand mimetics

that activate conserved cellular signaling pathways, including

Notch, Wnt, and Hh (Table 1; Figure 3) (Rogan et al., 2021;

Byerly et al., 2022; Patterson et al., 2022). Wnt signaling has been

linked to cytoskeletal changes and phagocytosis that stimulate

ehrlichial entry (Popov et al., 2000; Kumagai et al., 2010).

Moreover, SLiM sequence-specific ligand-receptor interactions

between TRP120 and Notch and Hh receptors also activate these

pathways to promote ehrlichial infection (Rogan et al., 2021; Byerly

et al., 2022; Patterson et al., 2022). These reports highlight the

important role of TRP120 SLiM-icry in Ehrlichia pathobiology.

Although functions are still unknown, a handful of eukaryotic-like

SLiMs have also been predicted in other bacteria (Sámano-Sánchez

and Gibson, 2020), suggesting a common mechanism through

SLiM-mediated survival strategies employed by many

bacterial pathogens.
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Short linear motifs

Since their discovery in the early 2000s, SLiMs are now

recognized as protein interaction modules that play major roles in

many protein interactions that govern cellular processes (Gouw

et al., 2018). SLiMs are short linear amino acid sequences (3-10 aa)

that are typically found within intrinsically disordered domains

(Davey et al., 2012). Because of their linear and disordered nature,

SLiMs have a high likelihood of arising in nihilo, and allow for high

functional density in a given length of peptide (Davey et al., 2012;

Van Roey et al., 2014). Despite lacking an inherent structure, SLiMs

perform a variety of roles, challenging outdated models that protein

function is tied to a defined tertiary conformation (Dunker et al.,

2001). In general, SLiMs may be functionally divided into two

categories: ligand motifs and PTM motifs. Ligand motifs facilitate

non-catalytic protein interactions for purposes including complex

formation and enzyme recruitment, while PTM motifs enable

catalytic alteration of specific sites (Van Roey et al., 2014; Kumar

et al., 2022). There are over 100,000 SLiMs predicted in the human

proteome that perform a myriad of functions. Some of these SLiMs

have evolved in pathogens to mimic eukaryotic functions (Tompa

et al., 2014; Sámano-Sánchez and Gibson, 2020).

Pathogen SLiM-icry is a relatively new concept but is not

uncommon. In fact, SLiMs have been identified in secreted
FIGURE 2

Functionally defined E. chaffeensis TRP120 effector SLiMs. Multiple SLiMs present in TRP120 have been identified and functionally characterized
during infection. These include TRP120 Hedgehog, Wnt, and Notch SLiMs that function as receptor ligand mimetics as well as TRP120 SUMO and
HECT E3 SLiMs involved in post-translational modifications.
FIGURE 1

Ehrlichia chaffeensis TRP120 effector structural and disorder prediction. In silico analysis of E. chaffeensis TRP120 by disordered protein prediction
reveals the unstructured region of the tandem repeat domain. The red line indicates disordered protein regions (IUPred3) (Erdős et al., 2021), and the
blue line represents disordered protein binding domains (ANCHOR2) (Dosztányi et al., 2009; Mészáros et al., 2018).
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FIGURE 3

Model of E. chaffeensis TRP120 ligand SLiM activation of Hedgehog, Wnt, and Notch signaling pathways and downstream effects. The TRP120
Hedgehog ligand SLiM binds to the Hedgehog receptor (PTCH) to activate the GLI-1 zinc finger transcription factor. GLI1 translocation to the
nucleus activates the transcription of the anti-apoptosis target genes such as BCL-2. In the canonical Wnt signaling pathway, the TRP120 Wnt ligand
SLiM directly engages Fzd (Frizzled) 5 and recruits coreceptor LRP5/6 (lipoprotein receptor-related protein 5 and 6). Activation of Wnt signaling
results in the disassembly of the b-catenin destruction complex [consisting of Axin, APC (adenomatous polyposis coli), GSK3b (glycogen synthase
kinase 3 beta), and CK1 (casein kinase)], which allows accumulation of b-catenin in the cytoplasm and subsequent nuclear translocation and
activation of Wnt target pro-infection genes and Wnt signaling promotes PI3K (phosphatidylinositol 3-kinase)/Akt signaling and downstream
suppression of autophagy. The TRP120 Notch ligand SLiM interacts with ADAM17 (a disintegrin and metalloproteinase 17) and the Notch1 receptor
resulting in receptor cleavage and nuclear translocation of NICD (Notch intracellular domain), the transcriptionally active form that interacts with
Notch RBPjk (recombinant binding protein suppressor of hairless involved in Notch signaling) and MAML (mastermind-like protein 1) transcription
factors proteins. This transcription complex activates transcription of Notch target genes, resulting in inhibition of ERK1/2 (extracellular signal-
regulated kinases) and p38 MAPK (p38 mitogen-activated protein kinase) phosphorylation pathway and the downstream transcription factor PU.1
expression is repressed, inhibiting TLR2/4 expression and apoptosis.
TABLE 1 Ehrlichia chaffeensis TRP120 functionally defined short linear motifs (SLiMs).

SLiM
sequence Location Eukaryotic ligand/conserved

motif mimetic

Host
target/
receptor

Function/Outcome Reference

Post-translational modification motif

IKEE C-terminus
(431-434)

Canonical consensus SUMO motif
(yKxD/E, where y is a hydrophobic
residue and “x” is any residue)

SUMO2/3
-TRP120-
PCGF5

Enhance bacterial effector-host protein
interactions

(Dunphy et al., 2014)

CCNVSLYF C-terminus
(520-527)

Canonical consensus HECT E3 ligase PCGF5,
ENO-1,
FBW7

Autoubiquitination of TRP120 and
ubiquitination of host cell substrates.

(Zhu et al., 2017; Mitra
et al., 2018; Wang et al.,
2020; Zhu et al., 2021)

Ligand motif

QDVASH TR* Wnt (Wnt3a/5a) Fzd2, 4, 5,
7, 9

Activation of Wnt signaling to promote
infection and inhibit autolysosome
generation and autophagic destruction

(Rogan et al., 2021)

EDEIVSQPSSE TR Notch (Jagged-1, DLL1, DLL4, TSP2) Notch Activation of canonical Notch signaling to
downregulate TLR2/4 expression and
promote intracellular survival

(Patterson et al., 2022)

NPEVLIKD TR Hedgehog (Hh) PATCH2 Activation of Hh signaling to engage a BCL-
2 anti-apoptotic cellular program that
eventually promote infection

(Byerly et al., 2022)
F
rontiers in Cellul
ar and Infecti
on Microbiology
 04
*TR, tandem repeat domain.
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effector proteins in a variety of bacterial pathogens (reviewed in

(Sámano-Sánchez and Gibson, 2020)). SLiM-mediated virulence

mechanisms and associated pathogens include, but are not limited

to, tyrosine phosphorylation by Anaplasma phagocytophilum, actin

remodeling by Listeria monocytogenes, and adaptor protein

recruitment by Mycobacterium tuberculosis (Sámano-Sánchez and

Gibson, 2020). While all these bacteria utilize SLiM-icry during

infection, a growing body of evidence illustrates that E. chaffeensis is

especially adept at utilizing this motif-driven infection strategy. In

particular, TRP120 has emerged as the master manipulator of cell

signaling utilizing multiple distinct SLiMs to mimic sequences

found in human Notch, Wnt, and Hh ligands (Table 1). TRP120

interacts directly with respective receptors to activate host cell

signaling (Figure 3) (Rogan et al., 2021; Byerly et al., 2022;

Patterson et al., 2022). Moreover, there are numerous PTM

SLiMs in TRP120 (Dunphy et al., 2014; Rogan et al., 2021; Byerly

et al., 2022; Patterson et al., 2022). Ligand motifs have long been

recognized as mediators of protein-protein interactions, but SLiMs

that initiate signaling pathways via direct receptor activation were

unknown until discovered in TRP120.

E. chaffeensis TRP120 is the only bacterial effector known to act

as a ligand mimic and possess multiple SLiMs that directly activate

distinct signaling pathways. As such, TRP120 represents the first

example of what may be a more ubiquitous type of bacterial effector

protein with such capability. Usurpers of cell signaling can provide

enormous insight to SLiM functionality, role in disease pathology,

potential drug and vaccine targeting, and fundamental

understanding of molecular ligand-receptor interactions resulting

in biosignaling. Developing E. chaffeensis TRP120 as a model for

investigating SLiM-icry will accelerate our understanding of the role

SLiMs play in interkingdom interactions leading to the

development of effective countermeasures and therapeutics for

many diseases.
Post-translational modification SLiMs

TRP120 SUMOylation mediates effector-
host interactions

While some SLiMs may serve as sites for structural modification

or proteolytic cleavage, perhaps the most well-known SLiMs are

those that function as recognition sites for the addition of

modifications such as phosphate and ubiquitin. As these

modifications can dramatically change protein function and

interactions, pathogens also utilize PTMs to interface with the cell

and function in the eukaryotic environment (Sámano-Sánchez and

Gibson, 2020; Kumar et al., 2022). One such TRP120 SLiM allows

for the conjugation of SUMO, which influences Ehrlichia-host

interactions (Dunphy et al., 2014; Mitra et al., 2018).

SUMOylation of E. chaffeensis TRP120 with SUMO2/3 occurs in

the C-terminal at K432, part of a known SLiM that serves as a

SUMOylation site. The full motif sequence (IKEE) found in

TRP120 consists of only four residues and is consistent with the

canonical SUMOylation consensus sequence (F(K)xD/E), where F
denotes a hydrophobic amino acid and x denotes any amino acid
Frontiers in Cellular and Infection Microbiology 05
(Table 1, Figure 2) (Rodriguez et al., 2001; Dunphy et al., 2014;

Kumar et al., 2022). This particular SLiM is curated in the ELM

database and is also found in many SUMOylated proteins such as

human glutamate receptor interacting protein 1, progesterone

receptor, and Sp3 transcription factor (Abdel-Hafiz et al., 2002;

Kotaja et al., 2002; Sapetschnig et al., 2002; Kumar et al., 2022). The

canonical SUMOylation SLiM is the sole SUMO conjugation site in

TRP120 as alanine substitution of K432 or E434 both abolish

TRP120 SUMOylation. Furthermore, abrogation of TRP120

SUMOylation via alanine substitution significantly hinders

association with SUMO-interacting motif (SIM)-containing host

interaction partners, g-actin, myosin-X, and Golgi-localizing, g-
adaptin ear domain homology, and the ADP ribosylation factor

(ARF)-binding proteins (Luo et al., 2011; Dunphy et al., 2014).

SUMOylation machinery is exclusive to eukaryotes, but bacteria

and viruses are known to modulate host SUMOylation machinery

during infection (Ribet and Cossart, 2010; Srikanth and Verma,

2017; Fan et al., 2022). Pathogens disrupt SUMOylation through

various mechanisms such as the degradation of host SUMOylation

machinery by L. monocytogenes or the mimicry of SUMO

deconjugation proteins by Xanthomonas campestris (Hotson

et al., 2003; Ribet et al., 2010; Hamon et al., 2012). However,

while numerous viral proteins are known SUMO substrates, few

SUMO substrates have been described in bacteria (Ribet and

Cossart, 2010; Srikanth and Verma, 2017; Fan et al., 2022).

Notably, TRP120 is the first of only three SUMOylated bacterial

effectors ever reported, the others being APH1387 (AmpA) and

APH0032 of A. phagocytophilum (Dunphy et al., 2014; Beyer et al.,

2015; Oki et al., 2016). As the interactome of TRP120 includes many

eukaryotic proteins containing SIMs, SUMOylation of TRP120 is

responsible for facilitating interactions with host proteins that are

crucial for bacterial survival (Figure 4) (Luo et al., 2011; Dunphy

et al., 2014; Mitra et al., 2018).

SUMOylation can also influence protein-protein interactions

independent of SIMs. Polycomb group ring finger protein 5

(PCGF5), a strong interaction partner of TRP120, interacts with

the tandem repeat domain of TRP120, but does not possess a SIM.

Nevertheless, the interaction between PCGF5 and TRP120 is

significantly impaired after the disruption of TRP120

SUMOylation (Luo et al., 2011; Dunphy et al., 2014). PCGF5 and

other isoforms are components of the polycomb repressive complex

(PRC) which negatively regulates gene expression through histone

modifications (Aranda et al., 2015). The degradation of PCGF5 via

TRP120-facilitated ubiquitination during E. chaffeensis infection

results in the increased expression of Hox genes that are regulated

by PRC (Zhu et al., 2017).

The importance of TRP120 SUMOylation by host cell

machinery is further illustrated by its influence on ehrlichial

infection. A pretreatment with anacardic acid, an inhibitor of

SUMOylation machinery, significantly decreases bacterial load in

addition to TRP120/PCGF5 colocalization and interaction.

Significant decreases in ehrlichial inclusions per cell were also

observed in anacardic acid-treated cells compared to vehicle

control (Dunphy et al., 2014). Therefore, the mimicry of a

eukaryotic SUMOylation SLiM by TRP120 plays a significant role

in effector-host interactions during infection.
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SLiM-mediated ligand mimicry and
evasion of innate defenses

TRP120 Notch SLiM ligand mimicry and
regulation of pattern recognition receptors

The Notch signaling pathway is classically defined as an

evolutionarily conserved regulator of cell-fate and is particularly

active during early development and tissue homeostasis (Siebel and

Lendahl, 2017). Notch signaling also plays important roles in major

histocompatibility complex (MHC) class II expansion, B and T cell

differentiation, and innate immune mechanisms that involve

autophagy and apoptosis (Palaga et al., 2013). Activation and

modulation of Notch signaling by bacterial pathogens (e.g.,

Salmonella typhimurium, Mycobacterium bovis, Bacillus anthracis,

Pseudomonas aeruginosa, and Staphylococcus aureus) influence

cellular changes such as the upregulation of A disintegrin and

metalloprotease 17 (ADAM17), that cleaves the Notch receptor,

and upregulation of suppression of cytokine signaling 3 (SOCS3), a

negative regulator of numerous cytokines and toll-like receptors

(TLRs) (Gómez et al., 2004; Gómez et al., 2005; Narayana and
Frontiers in Cellular and Infection Microbiology 06
Balaji, 2008; Larabee and Ballard, 2014). Yeast two hybrid (Y2H)

analysis revealed that TRP120 interacts with proteins involved in

activating and regulating Notch signaling, including ADAM17 and

F-BOX and WD repeat domain-containing 7 (FBW7) (Luo et al.,

2011). Canonical Notch activation occurs in response to Notch

ligands (Delta-like ligand (DLL)1/-3/-4 and Jagged 1/-2) engaging

the Notch extracellular domain (NECD) expressed on neighboring

cells followed by receptor cleavage by ADAM17 and g-secretase
(Lina et al., 2016; Patterson et al., 2022). The cleaved Notch

intracellular domain (NICD) translocates to the nucleus where it

binds transcriptional co-activators, recombination binding protein

suppressor of hairless (RBPjK) and mastermind-like protein

(MAML), resulting in Notch gene transcription. A recent

investigation demonstrated that TRP120 activates Notch signaling

via SLiM-icry. Studies have shown that an 11 amino acid peptide

(EDEIVSQPSSE) located in the TR domain of TRP120 can activate

Notch and upregulate Notch target gene expression (Table 1).

Notably, as a result of Notch activation, the expression of classical

pattern recognition receptors (PRRs) and TLR2/4 is downregulated.

Mechanistically, TRP120-mediated Notch activation results in

inhibition of the extracellular signal regulated kinase (ERK) 1/2
FIGURE 4

Model of E. chaffeensis TRP120 effector E3 ubiquitin ligase activity and PTM SLiMs that mediate effector-host interactions. During infection, TRP120
is SUMOylated at canonical SUMO motif by host cell PTM machinery UBC9 (ubiquitin conjugating enzyme 9), which promotes direct interaction of
TRP120 with PCGF5 (polycomb group RING finger protein 5). Possessing intrinsic HECT E3 Ub ligase activity, TRP120 physically interacts with host
NEDD4L (neural precursor cell expressed developmentally downregulated gene 4-like) to mediate self and substrate ubiquitination. Within the host
nucleus, TRP120 utilizes its HECT E3 Ub ligase activity to target multiple host cell substrates, including FBW7 (F-box and WD repeat domain-
containing 7), PCGF5 and ENO-1 (alpha-enolase 1) for Ub-mediated degradation. TRP120 binds to Notch negative regulator, FBW7, and ubiquitinates
FBW7 with K48-Ub chains, resulting in the proteasomal degradation of FBW7 and upregulation of Notch genes and oncoproteins involved in cell
survival. SUMOylated TRP120 binds and ubiquitinates PCGF5 resulting in PCGFs degradation and the upregulation of Hox genes. TRP120-mediated
ENO-1 ubiquitination and subsequent degradation disrupts the glycolytic flux and promotes infection.
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and p38 mitogen-activated protein kinase (MAPK), which are

required for expression of PU.1, an essential transcription factor

that regulates expression of TLR2/4 (Figure 3) (Lina et al., 2016).
TRP120 Notch SLiM-icry and apoptosis
regulation

Apoptosis is an innate defense mechanism activated to

eliminate intracellular pathogens (Sly et al., 2003), but E.

chaffeensis has evolved a multifaceted strategy to inhibit apoptosis

to prolong host cell survival. The process of programmed cell death

(apoptosis) is usually engaged during early stages of infection, but E.

chaffeensis successfully regulates host cell apoptosis, in part, by

upregulating anti-apoptotic proteins such as myeloid cell leukemia

sequence 1 protein (MCL-1), immediate early response 3 (IER3),

baculoviral IAP repeat containing 3 (BirC3), and B-cell lymphoma

2 (BCL-2), while simultaneously downregulating inducers of

apoptosis such as hematopoietic cell kinase (HCK), Bcl-2-

interacting killer (BIK), and BCL2/Adenovirus E1B 19-Kd

protein-interacting protein 3 (BNIP3L) (Zhang et al., 2004; Luo

et al., 2011). In addition to decreasing TLR2/4 expression to avoid

recognition, E. chaffeensis TRP120 activates Notch signaling and

degrades the nuclear tumor suppressor FBW7, which is a negative

regulator of major oncoproteins such as NICD, MCL-1, c-Jun, and

cMYC. Through TRP120 HECT E3 Ub ligase activity, FBW7 is

ubiquitinated leading to proteasomal degradation, which stabilizes

NICD and other oncoproteins (Figure 4) (Wang et al., 2020). This

finding supports previous data which demonstrated that siRNA

knockdown of FBW7 results in the enhancement of infection,

indicating that the TRP120-FBW7 interaction is associated with

E. chaffeensis survival (Wang et al., 2020). Interestingly, E.

chaffeensis has evolved a multifaceted utilization of Notch

signaling. Ehrlichia-induced Notch activation has recently been

linked to stabilization of the X-linked inhibitor of apoptosis

(XIAP), which prevents intrinsic apoptosis during infection

(Patterson et al., 2023). The SLiM-mediated activation and

repurposing of Notch signaling demonstrates the power of SLiM-

icry for intracellular pathogen survival.
TRP120 Wnt SLiM-icry and ehrlichial entry

The Wnt signaling pathway is an evolutionarily conserved

eukaryotic signaling cascade that not only regulates cell fate,

development, and cell polarity, but also mediates innate immunity-

associated events, including autophagy, cytokine expression, and

phagocytosis (Schaale et al., 2011; Kim et al., 2013; Petherick et al.,

2013). Canonical Wnt signaling is the most well-studied Wnt

pathway that is also referred to as the b-catenin-dependent
signaling pathway (Nusse and Clevers, 2017). Typically, the

activation of the pathway is triggered through interactions between

Wnt ligands and Frizzled (Fzd) receptors and the canonical pathway

co-receptor lipoprotein receptor-related protein 5/6 (LRP5/6). The
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initial signal is then transduced to the intracellular mediator

Disheveled (Dvl) followed by the recruitment of the b-catenin
destruction complex consisting of Axin, adenomatous polyposis

coli (APC), glycogen synthase kinase 3b (GSK3b), and casein

kinase 1 (CK1) to the Fzd-Dvl complex at the plasma membrane,

therefore freeing b-catenin from degradation. This leads to the

accumulation of b-catenin in the cytoplasmic pool and

translocation into the nucleus where it binds T-cell factor (TCF), at

the Wnt response element (WRE) and activates transcriptional

expression of the Wnt target genes (Nusse and Clevers, 2017).

Although dysregulation of the pathway has been implicated in

multiple cancer types, growing investigations indicate that bacterial

pathogens manipulate Wnt signaling through numerous secreted

effectors to enhance infection (Rogan et al., 2019). Moreover, siRNA

inhibition of the Wnt signaling pathway blocks the uptake of

microspheres coated with recombinant TRP120 (Luo et al., 2016),

supporting previous studies that suggested TRP120 functions as an

E. chaffeensis adhesin that stimulates bacterial entry by activating

Wnt signaling. Moreover, siRNA silencing of Wnt signaling

components, including b-catenin, CK1, Fzd5, Fzd9, and LRP6,

significantly decreases E. chaffeensis infection, while silencing Wnt

antagonist Dickkopf-related protein 3 (DKK3) promotes infection

(Luo et al., 2016). Notably, other bacteria such as S. enterica, M.

tuberculosis, Clostridium difficile, P. aeruginosa, and Escherichia coli

also exploit the Wnt signaling pathway (Rogan et al., 2019),

implicating evolutionarily conserved Wnt signaling as an

important pathway for pathogen manipulation and infection.

E. chaffeensis TRP120 plays a major role in directly

manipulating Wnt signaling that ultimately promotes infection.

The interactions of TRP120 with various components of the Wnt

signaling pathway, including positive regulators such as protein

phosphatase 3 regulatory subunit B alpha (PPP3R1) and vacuolar

protein sorting protein 29 (VPS29), and negative regulators such as

AT-rich interactive domain-containing protein 1B (ARID1B),

centrosomal protein 164 (CEP164), Kelch-like protein 12

(KLHL12), interleukin enhancer-binding factor 3 (ILF3), and LIM

domain only 2 (LMO2), were identified by using a Y2H system (Luo

et al., 2011). More importantly, a recent investigation has

ascertained the molecular mechanism by which E. chaffeensis

TRP120 effector utilizes sequence-specific Wnt SLiM-icry to

activate Wnt signaling in human monocytes (Rogan et al., 2021).

Specifically, strong colocalization between E. chaffeensis and Fzd2,

4, 5, 7, and 9 was confirmed by the direct binding between TRP120

and these Fzd receptors. A 6 amino acid SLiM (QDVASH) was

identified in TRP120 that is homologous to Wnt ligands. Further

investigation using mutant SLiM peptides and an a-TRP120-Wnt-

SLiM antibody demonstrated that the TRP120 Wnt SLiM activates

the canonical Wnt pathway and promotes E. chaffeensis infection

(Rogan et al., 2021). Notably, an antibody specific to the Wnt SLiM

inhibited both recombinant TRP120 and E. chaffeensis activation of

Wnt signaling. These findings revealed the molecular basis of Wnt

activation by E. chaffeensis and identified a previously undefined

Wnt SLiM that has broader implications for infection as well as our

general understanding of Wnt ligand-receptor biology.
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TRP120 Wnt SLiM-icry regulation of
autophagic destruction

Autophagy is an evolutionarily conserved pathway that

regulates lysosomal degradation of intracellular components

(Mizushima, 2018; Levine and Kroemer, 2019). Although this

process is activated during stress conditions to maintain cellular

homeostasis by removing misfolded or aggregated proteins, and

clearing damaged organelles, such as mitochondria, endoplasmic

reticulum and peroxisomes (Glick et al., 2010), autophagy plays a

key role in innate immune defense against microbial infection by

directly targeting these invaders for autophagic destruction in the

lysosomes, thereby preventing intracellular infection (Deretic et al.,

2013; Tominello et al., 2019).

The autophagic process is characterized by the regulated

induc t ion and format ion o f the doub l e membrane

autophagosomes in the cytoplasm. Phagophores recognize and

encapsulate tagged cytoplasmic components or intracellular

pathogens for cellular homeostasis or host defense purposes.

Phagophores mature into autophagosomes which then fuse with

lysosomes to form single-membrane autolysosomes. The

autolysosomes degrade autophagic cargos to recycle proteins and

generate cellular energy (Li et al., 2019; Nakatogawa, 2020). The

major signaling protein mediating the autophagic process is

mechanistic target of rapamycin (mTOR) kinase which is tightly

regulated by several signal transduction pathways including the

Wnt and phosphoinositide 3-kinase (PI3K)/ATP dependent

tyrosine kinase (Akt) signaling pathways (Yuan et al., 2013; Ma

et al., 2017). Specifically, mTOR is activated downstream of Akt and

PI3K kinases to inhibit autophagy (Manning and Cantley, 2007).

Glycogen synthase kinase-3 (GSK3) inhibits the mTOR pathway by

phosphorylating tuberous sclerosis complex 2 (TSC2) in a manner

dependent on AMPK-priming phosphorylation (Inoki et al., 2006).

Further, the Akt-mediated GSK3 phosphorylation depends on

activation of Wnt signaling (Ma et al., 2011). Therefore, Wnt

signaling appears to play an essential role in the inhibition of

autophagy by regulating activation of the mTOR pathway

(Petherick et al., 2013; Fu et al., 2014).

Indeed, an investigation demonstrated that E. chaffeensis

TRP120-mediated activation of Wnt-PI3K-mTOR signaling

inhibits autolysosome generation and autophagic destruction to

establish a favorable niche for intracellular replication (Lina et al.,

2017). Either E. chaffeensis infection or treatment with recombinant

TRP120 protein activates Wnt and PI3K/Akt pathways as well as

mTOR signaling and regulation of nuclear translocation of

transcription factor EB (TEFB), inhibiting lysosomal biogenesis

and autolysosomal fusion with E. chaffeensis-containing vacuole

(Lina et al., 2017). During E. chaffeensis infection, phosphorylation

of PI3K and Akt is increased, while phosphatase and tensin

homolog (PTEN), a PI3K/Akt pathway inhibitor, decreases over

the course of infection, implicating an essential role for PI3K/Akt

pathway activation during infection (Lina et al., 2017). Further,

siRNA knockdown of Rheb, a GTPase that activates mTOR,

confirmed a role for mTOR signaling during infection.

Knockdown of both Rheb and phospho-p70 S6 kinase decreased

E. chaffeensis infection (Lina et al., 2017). Thus, the activation of
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Wnt, PI3K/Akt and mTOR signaling is required for E.

chaffeensis survival.

Wnt signaling regulates the PI3K/Akt pathway via GSK3.

Specifically, GSK3, a negative regulator of Wnt/b-catenin, is a

critical downstream element of the PI3K/Akt pathway and

regulates mTOR by inducing TSC2, an mTOR negative regulator

(Inoki et al., 2002; Inoki et al., 2006; Zhang et al., 2006; Vigneron

et al., 2011). During E. chaffeensis infection, an increased level of

phosphorylated GSK3 was detected which is abrogated following

the treatment with a specific Wnt-Dvl inhibitor, while the level of

TSC2 was decreased (Lina et al., 2017). Additionally, treatment with

either an Akt inhibitor or GSK3 inducer resulted in a significant

decrease of E. chaffeensis-infected cells. Notably, an increased level

of phosphorylated GSK3 was detected in cells stimulated with

recombinant TRP120 (Lina et al., 2017), suggesting that E.

chaffeensis TRP120 simultaneously activates the PI3K/Akt

pathway while inactivating GSK3 to inhibit TSC2. Therefore,

GSK3 serves to integrate PI3K/Akt and Wnt signals in the

induction of the mTOR pathway during E. chaffeensis infection.

Further, TSC2 inhibition leads to activation of mTORC1 and

subsequent phosphorylation and inhibition of the nuclear

translocation of TFEB, a transcription factor that coordinates

expression of lysosomal hydrolases, membrane proteins and genes

involved in autophagy signaling. Indeed, the localization of TFEB

was observed in the cytoplasm during E. chaffeensis infection and

was modulated by E. chaffeensis-mediated Wnt activation (Lina

et al., 2017). These findings indicate that E. chaffeensis exploits Wnt-

PI3K-mTOR signaling in part to regulate mTOR signaling and

TFEB nuclear localization, thereby inhibiting autolysosomal

generation and subsequent autophagic destruction to

survive intracellularly.
TRP120 Hh SLiM-icry and apoptosis
regulation

The Hh signaling pathway plays vital roles in embryogenesis as

well as cell differentiation, proliferation, and survival and has been

extensively studied in the context of developmental biology

(Ingham and McMahon, 2001; Jia et al., 2015). The Hh signaling

pathway is initiated by the binding of hedgehog family ligands

(Sonic hedgehog, Indian hedgehog, or Desert hedgehog) to the

Patched receptor (PTCH). In the absence of Hh ligand, PTCH

continually represses the Smoothened (SMO) protein; however, this

activity is disabled upon Hh ligand-binding, enabling SMO to

activate members of glioma-associated oncogene (GLI) family of

transcription factors (GLI-1, GLI-2, and GLI-3). This conserved

pathway culminates in the regulation of the genes controlling

various cellular processes including immune response, autophagy,

and apoptosis (Taipale et al., 2002; Lee et al., 2016; Lan et al., 2017;

Smelkinson, 2017).

Because the Hh pathway regulates aspects of innate immunity

and cell survival, both viral and bacterial pathogens exploit Hh

signaling during infection. The Hh pathway is activated by Epstein-

Barr virus and Helicobacter pylori, amongst other pathogens, but

the precise mechanisms and purposes behind this activity are
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unclear (Smelkinson, 2017). E. chaffeensis has emerged as one of the

best understood modulators of Hh signaling as it uses SLiM-icry to

activate the Hh pathway and inhibit apoptosis. Protein alignments

revealed that a short repeated sequence in the TRP120 TR domain

exhibits homology with Hh ligands (Byerly et al., 2022). The

identified Hh SLiM (NPEVLIKD) was consistent in size and

location (TR domain) with that of other SLiMs (Wnt and Notch)

involved in SLiM-icry (Rogan et al., 2021; Byerly et al., 2022;

Patterson et al., 2022).

Informational spectrum method (ISM) also predicted a similar

function between Desert and Indian Hh ligands and the TRP120 TR

domain containing the Hh SLiM. TRP120 was shown to interact

with PTCH2 via colocalization and co-immunoprecipitation

studies. Importantly, this interaction was also found to activate

the PTCH2 receptor, as treatment of THP-1 cells with recombinant

TRP120 elicited GLI-1 activation and Hh gene expression

consistent with recombinant Sonic Hh ligand. Additionally,

inhibiting TRP120 Hh SLiM-icry by antibody or mutating with

alanine/glycine substitutions prevents GLI-1 activation, confirming

that TRP120 Hh SLiM (NPEVLIKD) mediates activation of Hh

signaling (Table 1). Therefore, E. chaffeensis activates Hh, Notch,

and Wnt signaling during infection via SLiM-icry (Byerly

et al., 2022).

This unique cellular signaling reprogramming mechanism is

particularly important for ehrlichial infection. Knocking down Hh

pathway members such as PTCH2, SMO, and GLI-1 all significantly

decreased E. chaffeensis infection. The decreased ehrlichial burden

was attributed to the absence of an anti-apoptotic profile typically

induced by Hh pathway activation during infection. E. chaffeensis

was shown to increase expression of the anti-apoptotic protein,

BCL-2, in THP-1 cells, which countered etoposide-induced

apoptosis. However, ehrlichial infection in the presence of a Hh

signaling inhibitor, vismodegib, resulted in significantly lower levels

of BCL-2 and increased caspase activation and apoptosis (Byerly

et al., 2022).

SLiM-mediated mimicry of Hh ligand is a powerful and unique

bacterial survival strategy. Multiple TRP120 SLiMs converge on

signaling pathways that inhibit apoptosis and other host cell defense

mechanisms. Through SLiM-icry, TRP120 effectively usurps

normal cellular signaling processes to induce a cellular

environment that is beneficial for the replication and persistence

of E. chaffeensis in mononuclear phagocytes.
Conclusions and future directions

Through coevolution with the host cell, obligately intracellular

bacterial pathogens have evolved a variety of mechanisms to evade

detection by innate host defenses. Molecular mimicry of eukaryotic

ligands is a novel mechanism that enables Ehrlichia to subvert

innate immune defenses to promote intracellular survival. An array
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of TRP120 SLiMs engage distinct host receptors to simultaneously

activate and regulate conserved cellular signaling pathways,

including Hedgehog, Wnt, and Notch. Moreover, the

contributions of SLiMs that are involved in post-translational

modifications such as SUMOylation also contribute to this

molecular strategy of cellular exploitation. TRP120 SLiM-icry as a

survival strategy to repurpose eukaryotic pathways to benefit

infection by E. chaffeensis highlights the importance of this

mechanism in pathobiology. Thus, defining these molecular

motifs and cellular interactions during infection will likely lead to

the development of novel antimicrobials and therapeutics.

Current knowledge regarding TRP120 SLiM-icry only scratches

the surface of a broader and far more complex area of study. The

Eukaryotic Linear Motif (ELM) resource annotates and detects

SLiMs by providing both a repository of annotated,

experimentally validated SLiM data and an open access database

which can be used to identify SLiMs in protein sequences (Kumar

et al., 2022). Of the 3,953 experimentally validated SLiMs curated in

the ELM database, 45 unique SLiMs and 184 instances are identified

in TRP120 (Figure 5). For example, the experimentally validated

TRP120 SUMO motif was identified by the ELM database

(MOD_SUMO_for_1). However, there are newly discovered

SLiMs that have not been curated in the ELM database such as

the Wnt, Notch, and Hh SLiM ligands, suggesting that there are

numerou s SL iMs r ema in ing t o be d i s cove r ed and

functionally characterized.

Many of these ELM predicted TRP120 SLiMs are phosphorylation

s i te s for k inases inc lud ing MAPK fami ly members

(DOC_MAPK_MEF2A_6), Src Homology 2 (SH2) family members

(LIG_SH2_STAP1, LIG_SH2_STAT3, and LIG_SH2_STAT5), GSK3

(MOD_GSK3_1), calcineurin kinases (DOC_PP2B_Pxlxl_1), and casein

kinase (MOD_CK1_1 and MOD_CK2_1). Other notable predicted

SLiM candidates include phosphatase docking motifs

(DOC_PP1_RVXF_1) and SLiMs that mediate interactions with

tumor suppressor proteins such as breast cancer type 1 susceptibility

protein (LIG_BRCT_BRCA1_1) and retinoblastoma protein

(LIG_Rb_LxCxE_1), as well as other proteins important in the

regulation of cell growth and division (LIG_HCF-1_HBM_1).

Additionally, functional SLiMs described in other Ehrlichia TRP

effectors, such as a MYND-binding domain integral in the nuclear

translocation of TRP47 (Kibler et al., 2018) are also predicted in TRP120,

but there are many more that need to be experimentally validated.

The vast array of validated and predicted SLiMs in TRP120

illustrates their capacity to impart a significant amount of control

over cellular signaling to a single effector. As demonstrated by

TRP120, this phenomenon has tremendous cellular reprogramming

potential and must be understood to develop countermeasures for

intracellular pathogens. Further work is necessary to fully

characterize the predicted SLiMs in TRP120, identify novel

SLiMs, and map out the complex effects that TRP120 has on

cellular signaling pathways and beyond. The knowledge acquired
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from using TRP120 as a model for study will inevitably lead to the

discovery of other artifice effectors that extend our understanding of

SLiM-icry by pathogens and provide insight into the complex and

multifaceted roles of TRP120 that have yet to be explored.
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FIGURE 5

Ehrlichia chaffeensis TRP120 effector SLiMs identified by the ELM resource. In silico analysis by the Eukaryotic Linear Motif (ELM) resource (http://
elm.eu.org/) reveals over 45 unique SLiM classes for a total of 184 SLiM instances in TRP120. Experimentally verified SliMs include
MOD_SUMO_for_1 (bolded). Most of the predicted SLiMs are classified into either Ligand (LIG) or Modification (MOD) classes, while Docking (DOC),
Cleavage (CLV), and Degradation (DEG) motifs are also represented.
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