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Technology, Wuhan, China
Viral myocarditis (VMC), characterized by viral infection-induced inflammation, is a

life-threatening disease associated with dilated cardiomyopathy or heart failure.

Innate immunity plays a crucial role in the progression of inflammation, in which

inflammasomes provide a platform for the secretion of cytokines and mediate

pyroptosis. Inflammasomes are rising stars gaining increasing attention. The

nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-

containing protein 3 (NLRP3) inflammasome, the caspase recruitment domain-

containing protein 8 (CARD8) inflammasome, and the caspase-11 inflammasome

are three inflammasomes that were reported to affect the process and prognosis of

VMC. These inflammasomes can be activated by a wide range of cellular events.

Accumulating evidence has suggested that inflammasomes are involved in different

stages of VMC, including the trigger and progression of myocardial injury and

remodeling after infection. In this review, we summarized the pathways involving

inflammasomes in VMC and discussed the potential therapies targeting

inflammasomes and related pathways.
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1 Introduction

Myocarditis is the inflammation and injury of the myocardium resulting from multiple

infectious or non-infectious factors including viruses, immune system activation, or

exposure to toxins/drugs. Viruses are the main infectious cause of myocarditis, and

increasing evidence proves that excessive host immune responses probably play a more

crucial part in the pathogenic process of VMC (Reyes and Lerner, 1985; Mason, 2003;

Fairweather and Rose, 2007; Basso, 2022). In some patients with VMC, the developing or

persistent myocardial injury can lead to dilated cardiomyopathy and even heart failure

(Sagar et al., 2012). However, the pathogenic mechanisms of VMC have not been

well demonstrated.

Inflammasomes are multimolecular protein complexes assembling in response to

pathogen-associated molecular patterns (PAMPs) or damage/danger-associated
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molecular patterns (DAMPs), resulting in the maturation and

release of interleukin-1b (IL-1b) and IL-18 and an inflammatory

form of cell death named pyroptosis (Rathinam et al., 2012; Latz

et al., 2013; Sharma and Kanneganti, 2021). The IL-1b and IL-18 are
widely involved in inflammatory responses and myocardial injury.

In this review, we summarized relevant literature involving the

roles of inflammasomes in different pathogenic stages of VMC.

Besides, we discussed the possible roles of inflammasomes in

COVID-19-related myocarditis. Furthermore, we proposed

potential therapies targeting the NLRP3 inflammasome-IL-1b axis.
2 Pathophysiology of viral myocarditis

VMC is the main subtype of infectious myocarditis and a

significant cause of dilated cardiomyopathy (DCM) (Cooper,

2009; Pollack et al., 2015; Basso, 2022). VMC can be induced by a

variety of viruses, including coxsackievirus B3 (CVB3),

encephalomyocarditis virus (EMCV), human immunodeficiency

virus (HIV), human parvovirus B 19 (PVB-19) and angiotensin-

converting enzyme 2-tropic cardiotoxic viruses such as severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) (Tschöpe et al.,

2021). Laboratory VMC mouse models are commonly induced by

CVB3 and EMCV. Moreover, COVID-19-related myocarditis has

aroused increasing attention (Siripanthong et al., 2020; Chen et al.,

2020; Inciardi et al., 2020; Long et al., 2020). Although the causative

virus varies, the development of VMC is manifested as an infectious

phase and a post-infectious phase.
Abbreviations: ACE2, angiotensin-converting enzyme 2; Ang II, angiotensin II;

ASC, apoptosis-associated speck-like protein containing a CARD; ATP,

adenosine triphosphate; ATP5A1, ATP synthase-a; CARD8, caspase

recruitment domain-containing protein 8; CDL, CARD domain linker;

COVID-19, Corona Virus Disease 2019; CVB3, Coxsackievirus B3; DAMP,

damage/danger-associated molecular patterns; DCM, dilated cardiomyopathy;

EMCV, encephalomyocarditis virus; ER, endoplasmic reticulum; ERK,

extracellular signal-regulated kinases; GSDMD, gasdermin D; HAEC, human

aortic endothelial cell; ICAM, intercellular cell adhesion molecule; IDL,

interdomain linker; IFN, interferon; IL-18, interleukin-18; IL-1b, interleukin-

1b; LPS, lipopolysaccharide; MEG3, maternally expressed gene 3; miR,

microRNA; MMP, matrix metalloproteinase; mtDNA, mitochondrial DNA;

mtROS, mitochondrial reactive oxygen species; NF-kB, nuclear factor k-light-

chain enhancer of activated B cells; NLRP3, nucleotide oligomerization domain

(NOD)-, leucine-rich repeat (LRR)- and pyrin domain (PYD)-containing

protein3; NLRX1, nucleotide-binding domain and leucine-rich-repeat-

containing family member X1; NOD2, nucleotide-binding oligomerization

domain 2; P2X7R, P2X7 receptor; PAMP, pathogen-associated molecular

patterns; PRR, pattern recognition receptors; RIP, receptor-interacting protein;

SARS-Cov-2, Severe Acute Respiratory Syndrome Coronavirus 2; STAT1, signal

transducer and activator of transcription 1; TLR, toll-like receptor; TMPRSS2,

transmembrane serine protease 2; TNF, tumor necrosis factor; TRAF6, TNF

receptor‐associated factor 6; VCAM, vascular cell adhesion molecule; VMC,

viral myocarditis.
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2.1 Infectious phase

The infectious phase is characterized by viral infection and

subsequent direct damage to myocardium, including myocardial

inflammation deriving from innate and adaptive immune reactions,

necrosis, and apoptosis of cardiomyocytes.

The existing understanding of the pathogenic process of VMC

is mainly derived from the CVB3-induced VMC mouse model.

Coxsackieviruses enter cells through the combined effect of

coxsackievirus-adenovirus receptor (CAR) and decay-accelerating

factor (DAF) (Shenoy-Scaria et al., 1992; He et al., 2001), and

subsequently affect cell function through a variety of viral proteases.

Among the viral proteases, the roles of proteases 2A and 3C in

cleaving cellular proteins stand out, which exacerbate the VMC (Liu

and Mason, 2001; Xiong et al., 2007). The viral infection eventually

leads to apoptosis and necrosis of the cardiomyocytes, increasing

the release of viruses that infect the rest of the cardiomyocytes and

causing damage to the myocardium.

Immune responses after viral infection play key roles in the

development of VMC. On the one hand, the immune responses are

prerequisites for the removal of pathogens; on the other hand,

sustained and excessive immune responses may cause myocardial

damage and even DCM (Sagar et al., 2012). In the context of VMC,

viruses trigger innate immune responses by interacting with a

variety of pathways involving melanoma differentiation-associated

gene 5 (MDA5), toll-like receptors (TLRs), etc. MDA5 is essential

for the production of maximal levels of interferon (IFN)-a in the

early stage of infection. The absence of MDA5 inhibits the type I

IFN production and exacerbates mortality in mice with CVB3-

induced VMC (Wang et al., 2010; Hühn et al., 2010). Macrophages,

neutrophils, dendritic cells, and other cells can recognize viruses

through TLRs (Cooper, 2009; Rivadeneyra et al., 2018) and activate

nuclear transcription factors such as NF-kB, promoting the

production of proinflammatory cytokines including tumor

necrosis factor (TNF), IL-1a, IL-1b, IL-2 and IFN-g (Pollack

et al., 2015; Lasrado and Reddy, 2020). This process involves the

activation of inflammasomes such as the NLRP3 inflammasome.

Furthermore, there is critical cooperation between the MDA5-

mediated pathway and the TLR-mediated pathway on some

occasions, such as the RIG-I/MDA5-type I IFN pathway and the

TLR3-type II IFN pathway for efficient innate antiviral immune

responses (Negishi et al., 2008). After the activation of innate

immune responses, adaptive immune responses set off, initiating

the activation and expansion of T cells and B cells and participating

in the progress of VMC. The immune responses may promote cell

necrosis, cardiac fibrosis, and remodeling, which can further result

in severe arrhythmia, left ventricle dilation, and even heart failure

(Cooper, 2009).

In EMCV-induced VMC, there is not much literature about

viral internal izat ion, but recently , a dis integrin and

metalloproteinase 9 domain (ADAM9) has been identified as a

major EMCV dependency factor (Bazzone et al., 2019). In the

pathogenic process of EMCV-induced VMC, the viral protein 2B is

crucial. The protein 2B activates the NLRP3 inflammasome by

promoting calcium (Ca2+) flux from the Golgi apparatus and
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endoplasmic reticulum (ER) into the cytoplasm, along with K+

efflux out of the cytoplasm (De Jong et al., 2008). Inflammatory

responses, including high levels of proinflammatory cytokines in

the heart, can be detected in the early stage of EMCV-induced VMC

and enhance the toxicity of EMCV, further impairing cardiac

function (Shioi et al., 1996; Iwasaki et al., 1999; Matsumori et al.,

2004). SARS-CoV-2 enters cardiomyocytes by binding its spike

protein to angiotensin-converting enzyme 2 (ACE2) with the aid of

transmembrane serine protease 2 (TMPRSS2) (Hoffmann et al.,

2020), possibly providing the premise for the NLRP3

inflammasome activation and leading to subsequent inflammation

and injury.
2.2 Post-infectious phase

The main features of the post-infectious phase, taking CVB3 as

an example, include cardiac remodeling, cardiac fibrosis, and

cardiac dysfunctions. After the infectious phase, some patients

will experience remission, including a reduction of viral titers,

amelioration of inflammation, and complete resolution of

myocardial damage. But some other patients may experience

chronic inflammation and dilated cardiomyopathy due to the

persistence of the viral genome or cross-reactive antibodies (such

as antibodies targeting cardiac myosin) (Fairweather et al., 1998;

Calabrese and Thiene, 2003). If inflammation persists, the release of

proinflammatory cytokines can lead to the activation of matrix

metalloproteinases (MMPs) and the production of pro-fibrotic

cytokines, both of which can cause cardiac remodeling and

fibrosis. Meanwhile, antigenic cross-reactions can also aggravate

cell damage (Sagar et al., 2012).
3 Inflammasomes

Innate immunity is regarded as the first line of defense in the

human immune system, responding to PAMPs and DAMPs with

the assistance of pattern recognition receptors (PRRs) (Karasawa

and Takahashi, 2017). A great number of PRRs are involved in the

proinflammatory process via directly inducing the formation of the

corresponding inflammasome (Figure 1).
3.1 The NLRP3 inflammasome

3.1.1 The structure of the NLRP3 inflammasome
The NLRP3 inflammasome is an oligomeric intracellular

multiprotein complex that contains three parts: NLRP3,

apoptosis-associated speck-like protein containing a CARD

(ASC), and pro-caspase-1 (Karasawa and Takahashi, 2017).

NLRP3 has a general tripartite construction of NOD-like

receptors (NLRs) proteins (Kim et al., 2016), comprising the

central NOD domain (also known as NAIP, CIITA, HET-E, and

TP-2 [NACHT]), the C-terminal leucine-rich repeat (LRR) domain,

and the N-terminal pyrin as the effector domain (Ren et al., 2017).

The LRR domain usually serves as an adaptor to the NACHT
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domain and detector of PAMPs and DAMPs in the NLR family

(Kim et al., 2016). ASC is a speck-like protein consisting of a C-

terminal CARD and an N-terminal PYD (Srinivasula et al., 2002)

that performs as the connection between NLRP3 and pro-caspase-1.

Pro-caspase-1 can perform auto-cleavage and generate cleaved

caspase-1, which is a vital protease in human homeostasis and

inflammatory reactions. Caspase-1 forms an active oligomer,

cleaving pro-IL-1b and pro-IL-18 into mature IL-1b and IL-18

and promoting their release (Guo et al., 2015).

3.1.2 The process of the NLRP3 inflammasome
activation

After TLRs detect PAMPs and DAMPs, the IkB kinase (IKK)

complex in the cytoplasm is activated, leading to the

phosphorylation, ubiquitination, and degradation of the inhibitor

of NF-kB (IkB) and releasing the active NF-kB molecule (Akira

et al., 2006; Solt and May, 2008). Then NF-kB enters the nucleus
FIGURE 1

The mechanism of inflammasome activation. (1) The NLRP3
inflammasome activation. The activation of the NLRP3
inflammasome requires two steps of stimuli. The first signals are
mainly PAMPs or DAMPs, interacting with the PRRs and activating
the NF-kB pathway, thus promoting the transcription of NLRP3,
pro-IL-1b and pro-IL-18. The second signals promote the assembly
and oligomerization of the NLRP3 inflammasome. The efflux of K+,
influx of Na+, mobilization of Ca2+ (from ER and extracellular),
mtROS, mtDNA, lysosomal leakage of H+ and cathepsin B facilitate
the assembly of NLRP3, ASC, and pro-caspase-1. The efflux of Cl-

facilitates the NEK7 attachment and thus the oligomerization. (2)
The CARD8 inflammasome activation. The PAMPs induce the
degradation of CARD8 sensor in proteasome and facilitate the
release of CARD-UPA domain, which recruits pro-caspase-1 and
results in the formation of CARD8 inflammasome. (3) The caspase-
11 inflammasome activation. Under the stimulation of LPS, the
caspase-11 inflammasome is formed, gains proteolytic activity, and
cleave. (4) The AIM2 inflammasome. The AIM2 senses the dsDNA
and then recruits the ASC and pro-caspase-1, facilitating the
assembly and oligomerization of the AIM2 inflammasome. The
oligomerization of pro-caspase-1 facilitates the maturation of
caspase-1. Caspase-1 cleaves pro-IL-1b and pro-IL-18 into mature
IL-1b and IL-18. Besides, the caspase-1 splits GSDMD into two
fragments and the N-terminal fragment form pores on plasma
membrane promoting the release of cytokines. NLRP3, nucleotide
oligomerization domain (NOD)-, leucine-rich repeat (LRR)- and
pyrin domain (PYD)-containing protein3; PAMP, pathogen-
associated molecular patterns; DAMP, damage-associated molecular
patterns; TLR, toll-like receptor; NF-kB, nuclear factor k-light-chain
enhancer of activated B cells; ASC, apoptosis-associated speck-like
protein containing a CARD; NEK7, NIMA-related kinase 7; NIMA,
never in mitosis gene A; ROS, reactive oxygen species; CARD8,
caspase recruitment domain-containing protein 8; LPS,
lipopolysaccharide; AIM2, absent in melanoma 2; GSDMD,
gasdermin D.
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and initiates the transcription of the NLRP3, pro-IL-1b, and pro-IL-
18 (Bauernfeind et al., 2009).

After the first stimuli of PAMPs and DAMPs, the NLRP3 just

released into the cytoplasm is auto-suppressed and inactive. To

generate the NLRP3 inflammasome with full proteolytic activity,

the second stimuli are needed (Bauernfeind et al., 2009), mainly

consisting of ionic flux, reactive oxygen species (ROS) and

mitochondrial dysfunction, and lysosomal damage (Zhou et al.,

2011). Under the second stimuli, NLRP3 tends to undergo the

conformational change of self-oligomerization. The pyrin domain

of NLRP3 binds to ASC, initiating the recruitment of ASC. CARD

on ASC connects with pro-caspase-1 via the homotypic CARD–

CARD interaction, and PYD on ASC also tightly connects with the

PYD on the NLRP3 through the similar PYD-PYD interaction

(Sborgi et al., 2015; Schmidt et al., 2016; Fernandes-Alnemri et al.,

2007). The oligomerization of the pro-caspase-1 on ASC maturates

the caspase-1, inducing subsequent inflammatory processes.

3.1.3 The regulation of the NLRP3 inflammasome
activation

As mentioned above, the NLRP3 inflammasome activation

requires two steps of stimulation. The first signals are mainly

PAMPs or DAMPs, activating the PRRs and inducing the

transcription of the NLRP3, pro-IL-1b, and pro-IL-18 via the NF-

kB pathway. The second signals activate NLRP3 and promote the

assembly of the inflammasome (Bauernfeind et al., 2009), mainly

consisting of ionic flux, reactive oxygen species (ROS) and

mitochondrial dysfunction, and lysosomal damage (Zhou

et al., 2011).

Ionic flux is the main trigger of the NLRP3 inflammasome

activation. The efflux of potassium (K+) has been considered a

prevalent ion event triggering the activation of the NLRP3

inflammasome. It has been revealed that a low intercellular K+

concentration was capable of activating the NLRP3 inflammasome

alone, while an increased extracellular K+ concentration held up the

activation (Mohamed, 2015; Kwak et al., 2018). In addition, ATP is

recognized as a vital activator of the NLRP3 inflammasome.

However, previous research found that mice with a genetic lack

of P2X7 receptor (P2X7R) did not release IL-1b in response to ATP

(Solle et al., 2001; Mariathasan et al., 2004). This implies that ATP

alone cannot activate the NLRP3 inflammasome. Instead, it relies

on P2X7R to mediate the activation. P2X7R is a bi-functional ATP-

gated plasma membrane ion channel that allows the efflux of K+ and

the mobilization of calcium (Ca2+) while receiving the stimulus of

ATP (Martıńez-Cuesta et al., 2020). The mobilization of Ca2+ is also

a common ionic event in the cell membrane system, participating in

multiple intracellular signaling pathways (Clapham, 2007). Inositol

1,4,5-trisphosphate receptor (IP3R) is a Ca2+-release channel on the

ER. It can be triggered by IP3, which is the downstream product of

phospholipase C (PLC)-mediated phosphatidylinositol 4,5-

bisphosphate (PIP2) cleavage. Previous evidence showed that

inhibiting either IP3R or PLC could lead to the blockade of the

NLRP3 inflammasome activation without external stimuli (Lee

et al., 2012). Other than K+ and Ca2+, the ionic flux of sodium

(Na+) and chloride (Cl-) plays a similar function in the NLRP3
Frontiers in Cellular and Infection Microbiology 04
inflammasome activation. Na+ influx usually leads to water influx

and cellular swelling, lowering the intracellular K+ concerntration

and promoting K+ efflux which activates the NLRP3 inflammasome

(Schorn et al., 2011). Cl- efflux promotes NLRP3-NEK7 contact and

the subsequent NLRP3-ASC complex formation and ASC

oligomerization, thus facilitating the NLRP3 inflammasome

assembly and activation (Tang et al., 2017).

Mitochondrial dysfunction results in the breakdown of the

oxidation respiratory chain reaction, causing oxidative stress to

accumulate in terms of mitochondrial ROS (mtROS). ROS is a

broad group of substances decomposed by specialized cellular

enzymes, including peroxidases and superoxide dismutases

(Fidanboylu et al., 2011). It has been proved to be a trigger of the

NLRP3 inflammasome activation through experiments with the

application of chemical inhibitors (Dostert et al., 2008). Besides,

another production of mitochondrial dysfunction is mitochondrial

DNA (mtDNA). Multiple screens found that released mtDNA

tended to interact with PRRs such as NLRP3 and AIM2. An in

vitro study with synthesized mtDNA supported the view that

released mtDNA in the cytoplasm would be oxidized into

oxidized mtDNA, which promoted the NLRP3 inflammasome

activation (Zhong et al., 2018).

Lysosomal damage causes two significant consequences:

lysosomal acidification and lysosomal content leakage, both of

which contribute to the NLRP3 inflammasome activation.

Suppressing lysosomal H+
flux with a corresponding inhibitor

resulted in the inhibition of particulate matter-induced NLRP3

inflammasome activation (Hornung et al., 2008), which indicated

that lysosomal acidification was critical to the NLRP3

inflammasome activation. Lysosomal leakage matters are mainly

lysosomal enzymes. Cathepsin B is an important lysosomal enzyme

that is proven to be essential in the secretion of IL-1b, but not the
transcription and maturation. Related findings were obtained from

further studies on cathepsins such as cathepsin L, C, S, and X

(Orlowski et al., 2015).
3.2 The CARD8 inflammasome

The caspase recruitment domain-containing protein 8

(CARD8) inflammasome consists of the sensor CARD8 and the

effector pro-caspase-1 (Jin et al., 2022). The sensor CARD8 has two

domains: the C-terminal CARD and the N-terminal function-to-

find domain (FIIND), which comprises two subdomains named

ZU5 and UPA (Taabazuing et al., 2020). Under the inducement

of specific PAMPs, the FIIND of CARD8 undergoes degradation

in proteasomes and leads to the release of the C-terminal

bioactive subunit UPA-CARD, in which the CARD domain

recruits pro-caspase-1 through CARD-CARD interaction

and then results in the CARD8 inflammasome activation

(Taabazuing et al., 2020; Wang and Shan, 2022). Specifically, it

has been observed that when CVB3 infected aortic endothelial cells

or cardiomyocytes, the CARD8 inflammasome would be activated

and accelerate the viral release to neighboring target cells (Wang

and Shan, 2022).
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3.3 The caspase-11 inflammasome

The non-canonical caspase-11 inflammasome robustly

mediates anti-bacterial innate immune responses of murine by

responding to the bacterial lipopolysaccharide (LPS) (Hagar et al.,

2013; Kayagaki et al., 2013). Caspase-11 comprises two domains

connected by a CARD domain linker (CDL): an N-terminal CARD

and a protease domain, and the protease domain consists of a large

subunit and a small subunit separated by an interdomain linker

(IDL) (Ross et al., 2022). It has been reported that the CARD of

caspase-11 could directly bind to LPS, leading to the

oligomerization and activation of the caspase-11 inflammasome

(Shi et al., 2014). In another research, caspase-11 gained its basal

protease activity by LPS-induced dimerization, which was

inadequate for the cleavage of GSDMD (Ross et al., 2018).

Following the dimerization, the self-cleavage at site D285 on the

IDL of caspase-11 generated the fully active protease species, which

could cleave GSDMD and promote pyroptosis (Ross et al., 2018).

Compared to canonical inflammasomes such as the NLRP3

inflammasome, the activation process of the caspase-11

inflammasome shows distinct features: the caspase-11 directly

binds to the LPS and assembles without the aid of signaling

sensors or adaptors (Shi et al., 2014; Ross et al., 2018).

Furthermore, caspase-11 exists in murine, while caspase-4 and

caspase-5 are the human orthologs of murine caspase-11

(Lamkanfi et al., 2002). It has been observed that caspase-4 and

caspase-5 could also bind to LPS and be activated by the LPS

inducement (Shi et al., 2014), which indicated that caspase-4 and

caspase-5 might undergo their activation in similar ways as

caspase-11.
3.4 The AIM2 inflammasome

Absent in melanoma 2 (AIM2), a double-stranded DNA

sensor, comprises a PYD and a C-terminal HIN domain, which

can recognize and combine with autologous or foreign DNA

(Hornung et al., 2009). When the HIN domain combines

with DNA, the PYD interacts with the PYD of the adaptor ASC,

and the CARD of ASC links to the CARD of pro-caspase-1,

promoting the assembly and activation of the AIM2

inflammasome (Bürckstümmer et al., 2009). The oligomerization

of caspase-1 in the AIM2 inflammasome improves its ability to

process pro-IL-1b into bioactive IL-1b. Besides, caspase-1 can also

split gasdermin D (GSDMD) into two fragments, and the N-

terminal fragment forms large pores on the plasma membrane,

leading to IL-1b release and cell pyroptosis (Lugrin and

Martinon, 2018).
4 The regulation of the inflammasome
activation and inhibition in VMC

During the infectious phase of VMC, multiple categories of

molecules of either host cells or viruses participate in the regulation
Frontiers in Cellular and Infection Microbiology 05
of the inflammasome activation and inhibition, thus influencing the

development of VMC.
4.1 The NLRP3 inflammasome

Extensive research has demonstrated that the NLRP3

inflammasome is the main inflammasome involved in CVB3-

induced VMC (Wang et al., 2018; Wang et al., 2014; Tschöpe

et al., 2017; Wang et al., 2019; Tong et al., 2020; Liu et al., 2022). The

NLRP3 inflammasome is activated through a variety of pathways

during CVB3 infection, promoting the production and secretion of

IL-1b and IL-18 and exacerbating pyroptosis. Several mechanisms

of the regulation of the NLRP3 inflammasome activation in CVB3-

induced VMC are discussed below.

4.1.1 PRRs
PRRs including nucleotide-binding oligomerization domain 2

(NOD2) and TLR4 may play significant roles in the NLRP3

inflammasome activation in CVB3-induced VMC. It has been

reported that in the context of CVB3-induced VMC, NOD2

knockout mice manifested lower NLRP3 and ASC levels in the

left ventricular and serum IL-1b levels in comparison with wild-

type mice. Furthermore, the NOD2-mediated NLRP3

inflammasome activation has been demonstrated to be CVB3-

dependent (Tschöpe et al., 2017). Besides, in mice with CVB3-

induced VMC, TLR4 deficiency has been demonstrated to alleviate

the production of two typical inflammasome related cytokines, IL-

1b and IL-18 (Fairweather et al., 2003). Extensive colocalization

between TLR4 and enterovirus capsid protein VP1 has been

detected in the cytoplasm of cardiomyocytes obtained from DCM

patients (Satoh et al., 2004), which indicated the possible interaction

between the virus and TLR4 in cardiomyocytes. However, the

deta i l ed mechanisms of NOD2/TLR4-re la ted NLRP3

inflammasome activation need further elucidation.

4.1.2 K+ efflux
K+ efflux robustly promotes the NLRP3 inflammasome

activation in CVB3-induced VMC. It has been demonstrated that

in CVB3-infected cardiomyocytes, the NLRP3 inflammasome

activation accounted for CVB3-induced IL-1b secretion, and once

K+ efflux was inhibited by culturing cardiomyocytes in K+-rich

medium, the CVB3-induced caspase-1 activity and IL-1b secretion

were significantly down-regulated (Wang et al., 2014). Furthermore,

to avoid the possibility that the functions of cardiomyocytes might

be influenced not only by the K+ channels but also some voltage-

gated Na+ channels, glibenclamide, an ATP-sensitive K+-channel

inhibitor, was used to block K+ efflux and, in turn, robustly

suppressed IL-1b secretion of CVB3-infected cardiomyocytes

(Wang et al., 2014). These data demonstrated the role of K+ efflux

in the NLRP3 inflammasome activation in CVB3-induced VMC.

4.1.3 Calpain-1
The calpains are a conserved family of Ca2+-dependent cysteine

proteases expressed generally in all cells (Goll et al., 2003), and
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calpain-1 has been demonstrated to be activated in CVB3-induced

VMC to activate the NLRP3 inflammasome through promoting

mitochondrial dysfunction and mtROS production (Liu et al.,

2022). Liu et al. have found that in the cardiomyocytes of mice

with CVB3-induced VMC, calpain was detected to be activated. The

NLRP3 inflammasome activation triggered by CVB3 infection

could be inhibited by overexpression of calpastatin, a natural and

specific endogenous inhibitor of calpain activity. Meanwhile, the

NLRP3 inflammasome activation could also be inhibited by mito

−TEMPO, a mitochondrial-targeted antioxidant in cardiovascular

conditions that could reduce CVB3-induced mtROS level (Liu et al.,

2022). The relationship between calpain-1 and mtROS in CVB3-

induced VMC could be further elucidated by the fact that

mitochondrial function was improved when calpain activity was

inhibited by calpastatin in vivo, and that the GSDMD N-terminus

and caspase-1 exacerbated by CVB3-induced calpain-1

overexpression could be suppressed by mito-TEMPO (Liu et al.,

2022). As the results above showed, excessive calpain-1 activity

could increase mtROS, which activated the NLRP3 inflammasome

in mice with CVB3-induced VMC (Liu et al., 2022). Furthermore,

under CVB3 stimulation, calpain-1 was observed accumulating in

the mitochondria and reducing the expression of ATP synthase-a
(ATP5A1) (Liu et al., 2022), which was significant for

mitochondrial function (Ni et al., 2016), and the reduction of

ATP5A1 led to the NLRP3 inflammasome activation in

cardiomyocytes (Liu et al., 2022). In summary, in the context of

CVB3-induced VMC, CVB3-induced calpain-1 translocation from

the cytoplasm to mitochondria reduces the expression of ATP5A1,

a subunit of mitochondrial ATP synthase 1. The decrease of

ATP5A1 impairs mitochondrial function and increases mtROS

production, which subsequently activates the NLRP3

inflammasome and induces the pyroptosis of cardiomyocytes.
4.1.4 Cathepsin B
Cathepsins are a family of lysosomal cysteine proteases

participating in multiple cellular processes, among which

cathepsin B may play an important role in CVB3-induced VMC.

Wang et al. have observed that cathepsin B was activated in both

acute and chronic stages of CVB3-induced VMC in mice and

intensified cardiomyocyte damage (Wang et al., 2018).

Furthermore, they found that the activated cathepsin B elevated

protein levels of NLRP3, ASC, caspase-1 p20, and IL-1b. More

importantly, the activated cathepsin B exacerbated caspase-1

activity and myocardial pyroptosis, which were both significant

outcomes of the NLRP3 inflammasome activation (Wang et al.,

2018). The results above demonstrated that activated cathepsin B

promoted the NLRP3 inflammasome activation and exacerbated

myocardial symptoms in CVB3-induced VMC.
4.1.5 MicroRNA
In recent years, microRNAs (miRs) have been identified to

regulate gene expression at the transcriptional and post-

transcriptional levels (Li et al., 2019). MiRs induce mRNA

degradation or terminate transcription by binding to the 3’-

untranslated region (UTR) of mRNAs (Bartel, 2004). Multiple
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miRs have been associated with VMC, including miR-1, miR-15,

miR-21, miR-146, miR-155, miR-221, miR-222, and miR-223

(Chau et al., 2007; Rose, 2009; Blauwet and Cooper, 2010; Smith

et al., 2017; Tong et al., 2020; Xue et al., 2020). Among them, miR-

15 and miR-223 play important roles in regulating the NLRP3

inflammasome activation in CVB3-induced VMC.

An experiment demonstrated that the miR-15-NLRX1 axis was

involved in the regulation of the NLRP3 inflammasome activation

in CVB3-induced VMC (Tong et al., 2020). Nucleotide-binding

domain and leucine-rich-repeat-containing family member X1

(NLRX1), a member of the NOD-like receptor family, has been

proved closely associated with inflammatory diseases (Karin et al.,

2006; Kang et al., 2015). The expression of miR-15 dramatically

increased after CVB3 infection, which down-regulated the

expression of NLRX1. Once the expression of the NLRX1 protein

was restrained by increased miR-15, the production of IL-1b and

IL-18 increased through the NLRP3 inflammasome activation

pathway, followed by intensified inflammatory responses, reduced

cell viability, and promoted cell apoptosis. As a result, myocardial

injury was aggravated. In summary, during the CVB3-induced

VMC, the increased miR-15 represses NLRX1, contributing to the

NLRP3 inflammasome activation. This implies a novel pathway for

the NLRP3 inflammasome activation.

In addition to miR-15, the role of miR-223 is also remarkable.

In CVB3-induced VMC mice, the researchers found that the levels

of long non-coding RNA (lncRNA) maternally expressed gene 3

(MEG3) in the myocardium increased, resulting in miR-223 down-

regulation. MiR-223 targets the mRNA of the TNF receptor‐

associated factor 6 (TRAF6), a ubiquitin E3 ligase essential for

IKK activation in the IL-1 and TLR pathways (Lomaga et al., 1999;

Naito et al., 1999; Xue et al., 2020). Furthermore, the researchers

found that the inhibition of miR-223 up-regulated TRAF6 (Xue

et al., 2020). The up-regulation of TRAF6 activated the NF‐kB
pathway to promote the NLRP3 inflammasome activation, elevating

the protein levels of related inflammatory cytokines (Xue et al.,

2020). Besides, another research demonstrated that in CVB3-

infected mice, the treatment of A20, a TRAF6 inhibitor also

known as tumor necrosis factor alpha induced protein 3

(TNFAIP3), effectively alleviated CVB3-induced VMC by down-

regulating TRAF6 (Gui et al., 2012). The role of ubiquitination in

the pathogenic process of VMC is further established, which is

consistent with previous findings that ubiquitination plays

significant roles in regulating the inflammasome function (Xu and

Núñez, 2022).

As discussed above, multiple molecules participate in the

regulation of the NLRP3 inflammasome activation in the VMC,

including PRRs, K+, calpain-1, cathepsin B and microRNA, all of

which participate in the development of the VMC. Interestingly, it

has been reported that CVB3 protease 3C could degrade NLRP3

(Wang et al., 2019). Meanwhile, CVB3 protease 3C could also

degrade receptor-interacting protein (RIP)1/RIP3, two molecules

contributing to the NLRP3 inflammasome activation through the

RIP1-RIP3-dynamin-re la ted prote in 1(DRP1)-NLRP3

inflammasome pathway (Wang et al., 2014; Wang et al., 2019).

CVB3 might adopt this cleavage method to ameliorate the NLRP3

inflammasome activity in order to escape the host immune
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response. However, it is more widely observed that, upon CVB3

infection, various kinds of molecular events promote rather than

inhibit the activation of the NLRP3 inflammasome, thereby

exacerbating the symptoms of VMC.
4.2 The CARD8 inflammasome

Apart from the NLRP3 inflammasome, the CARD8

inflammasome can be activated by CVB3 proteases and

participate in the progress of CVB3-induced VMC. Nadkarni

et al. have demonstrated that in CVB3-infected human aortic

endothelial cells (HAECs), CVB3 2A protease and 3C protease

could cleave the CARD8 N-terminus. The cleaved CARD8 neo-N-

terminus underwent degradation by proteasomes, releasing the

bioactive UPA-CARD domain, which could interact with pro-

caspase-1 and promote the CARD8 inflammasome assembly.

Then the CARD8 inflammasome facilitated GSDMD cleavage,

cell pyroptosis, and viral release to adjacent target cells (Nadkarni

et al., 2022). Importantly, the researchers also demonstrated that

CARD8 knockout HAECs protected the underlying cardiomyocytes

from CVB3 infection (Nadkarni et al., 2022), indicating that the

CARD8 inflammasome activity in CVB3-infected endothelial cells

might increase the risk of viral infection in myocardium and even

cause VMC. Furthermore, in CVB3-infected cardiomyocytes,

knockout of CARD8 led to a reduction of cleaved GSDMD and

ameliorated cell death (Nadkarni et al., 2022), suggesting that the

CARD8 inflammasome also directly participated in the pyroptotic

progress of CVB3-infected cardiomyocytes. In summary, the

CARD8 inflammasome may participate in pyroptosis in different

cell types and exacerbate the VMC after the viral infection.
4.3 The caspase-11 inflammasome

Besides the canonical inflammasomes mentioned above, the

non-canonical caspase-11 inflammasome also participates in the

VMC. Calpain has been frequently observed up-regulated in hearts

of mice with CVB3-induced VMC (Yu et al., 2020; Liu et al., 2022).

Yu et al. have found that calpain was strongly activated and

exacerbated pyroptosis in hearts of CVB3-infected mice (Yu et al.,

2020), while in the calpastatin transgenic mouse strain (Tg-CAST)

that overexpressed calpastatin, a natural and specific endogenous

inhibitor of calpain, the severity of VMC was significantly lower

than in the wild-type mice (Yu et al., 2020). The researchers further

found that in the hearts of CVB3-infected mice, the inhibition of

calpain not only down-regulated the expression of canonical

NLRP3 inflammasome components, including NLRP3, ASC, and

caspase-1, but also significantly suppressed the expression of

caspase-11 (Yu et al., 2020). The results suggested that the

activation of the non-canonical caspase-11 inflammasome might

participate in the VMC as a downstream molecular event of calpain

activation. However, more evidence is needed to elucidate the

detailed mechanisms of caspase-11 inflammasome activation in

the context of VMC. Although the involvement of the caspase-4

inflammasome in myocardial diseases such as myocardial
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reperfusion-induced microvascular injury has been reported (Sun

et al., 2021), the roles of the caspase-4 inflammasome and the

caspase-5 inflammasome in VMC have not been established and

need more exploration.
4.4 The AIM2 inflammasome

The AIM2 inflammasome activation has been reported to

exacerbate symptoms in multiple cardiac conditions, such as

heart failure and myocardial infarction (Onódi et al., 2021; Liao

et al., 2022). Although there has been no evidence that the AIM2

inflammasome directly participated in the VMC, Furrer et al.

reported that AIM2 could inhibit NF-kB p65 acetylation and

phosphorylation in cardiomyocytes, thus directly suppressing

proinflammatory cytokine transcription (Furrer et al., 2016). The

researchers also found that AIM2 inhibited inflammatory cytokine

(including IL-6, IP-10, and TNF-a) transcription in cardiomyocytes

indirectly via limiting phosphorylation of signal transducer and

activator of transcription 1 (STAT1), an important regulator in the

NF-kB pathway (Furrer et al. , 2016). Interestingly, in

cardiomyocytes, knockout of caspase-1 and AIM2 manifested the

same profile of proinflammatory cytokine transcription as the mere

knockout of AIM2 (Furrer et al., 2016), indicating that the AIM2-

mediated suppression on proinflammatory cytokine production in

cardiomyocytes possibly followed a caspase-1/inflammasome-

independent manner (Furrer et al., 2016). The research above

suggested that, apart from acting as an inflammasome sensor,

AIM2 might play other potential roles in VMC. Besides, AIM-2

co-immunization has been reported to ameliorate symptoms of

CVB3-induced VMC via multiple mechanisms, such as promoting

specific multifunctional CD8 T cell induction, facilitating protective

secretory immunoglobulin A (SIgA) response and increasing

prophylactic efficacy of chitosan-DNA vaccine (Chai et al., 2014;

Chai et al., 2015), all of which seemingly showed the potential of

AIM2 in preventing VMC. However, the mechanisms underlying

the AIM2 activity in VMC are not fully established, and further

investigations are needed.
5 The effects of the inflammasome
activation in VMC

Among the downstream molecules of inflammasomes, IL-1b
participates in multiple cellular events in both infectious and post-

infectious phases, indicating that inflammasomes can influence the

development of VMC through the secretion of IL-1b. (Figure 2).
5.1 The effects of IL-1b secretion in the
infectious phase of VMC

The activation of extracellular signal-regulated kinases 1 and 2

(ERK1/2), two significant molecules in IL-1b pathway, has been

demonstrated to facilitate viral replication, exacerbate viral

infectivity, and decrease cell survival in Hela cells (Luo et al.,
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2002; Weber et al., 2010). High levels of ERK1/2 were observed in

the hearts of CVB3-infected mice, and ERK1/2 expression was

detected spatially identical with myocardial damage and

inflammation (Kraft et al., 2019), which were consistent with the

results in Hela cells. However, in mice with CVB3-induced VMC,

neutralization of IL-1b with IL-1b antibody led to the reduction of

both viral replication and myocardial damage (Kraft et al., 2019).

More importantly, IL-1b blockade robustly down-regulated the

ERK1/2 expression (Kraft et al., 2019), which provided a

reasonable explanation for the ameliorated viral replication. It can

be deduced from the facts above that IL-1b matured by
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inflammasomes may exacerbate symptoms of CVB3-induced

VMC by promoting viral replication.
5.2 The effects of IL-1b secretion in the
post-infectious phase of VMC

5.2.1 Immune cell infiltration
The intercellular cell adhesion molecule (ICAM) and vascular

cell adhesion molecule (VCAM) are vital for the adhesion and

infiltration of leukocytes (Seko et al., 1996). It has been reported that

both ICAM-1 and VCAM-1 were up-regulated in cardiomyocytes

and participated in the development of myocarditis in mice with

CVB3-induced VMC (Seko et al., 1993; Seko et al., 1996). Kraft et al.

found that in the hearts of CVB3-infected mice, IL-1b antibody

treatment in the acute stage of VMC down-regulated adhesion

molecules, including ICAM-1 and VCAM-1, in the chronic stage of

VMC, and inhibited infiltration of immune cells, including Mac3+

macrophages and CD3+ T cells, thus alleviating the CVB3-induced

inflammation (Kraft et al., 2019). It is reasonable to deduce that in

CVB3-induced VMC, IL-1b secretion via the inflammasome

pathway can exacerbate the inflammatory responses by

promoting the adhesion molecule expression and immune cell

infiltration, which might promote enduring inflammation and

cardiac symptoms.
5.2.2 Fibrosis
In hearts, IL-6 is mainly produced by macrophages and

fibroblasts, and it can be up-regulated under IL-1b stimulation

(Ma et al., 2012; Althof et al., 2018; Kishimoto and Kang, 2022). The

reduction of IL-6 has been reported to ameliorate cardiac fibrosis

(Ma et al., 2012; Segers et al., 2018). Kraft et al. reported that in mice

with CVB3-induced VMC, neutralization of IL-1b by IL-1b
antibody in the acute stage of VMC robustly suppressed both the

IL-6 expression and collagen type I deposition and inhibited the

cardiac fibrosis process in the chronic stage (Kraft et al., 2019),

which was consistent with previous publications. These studies

indicate that the inflammasome-induced IL-1b secretion may

promote IL-6 expression, thus exacerbating cardiac fibrosis

during the chronic VMC.

Matricellular proteins are nonstructural proteins binding to the

extracellular matrix and participate in the regulation of cell survival,

differentiation, and mobilization (Zohar et al., 2004; Harris et al.,

2011). Among them, osteopontin (OPN), tenascin C (TN-C), and

periostin (POSTN) can accelerate cardiac fibrosis (López-Sánchez

et al., 2017; Abdelaziz Mohamed et al., 2019; Mohammadzadeh

et al., 2020). It has been demonstrated that the three matricellular

proteins mentioned above were highly expressed in the hearts of

CVB3-infected mice, while they were all down-regulated in the

chronic stage by treating with IL-1b antibody during the acute stage

of VMC (Kraft et al., 2019). Therefore, the inflammasome-induced

IL-1b secretion may exacerbate cardiac fibrosis by up-regulating the

matricellular proteins.
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FIGURE 2

Activation and effect of inflammasome pathway in VMC induced by
CVB3. (1) CARD8 inflammasome pathway. The 2A and 3C proteases
of CVB3 promote the cleavage of CARD8 to form the CARD8
inflammasome, which provides a platform for the maturation of
pro-caspase-1. Caspase-1 cleaves GSDMD, and the transfer of the
GSDMD N-terminal fragment to the cell membrane increases the
permeability of the cell membrane, thereby promoting the release
of replication-generated CVB3. (2) NLRP3 inflammasome pathway.
CVB3 is recognized by NOD2, activating the NF-kB pathway, leading
to the transcription of NLRP3, pro-IL-1 and pro-IL-18. CVB3-
induced NLRP3 inflammasome activation in VMC is mediated by
potassium efflux, release of cathepsin B caused by lysosomal
damage, and ROS and mitochondrial dysfunction due to the transfer
of calpain-1 to mitochondria. The NLRP3 inflammasome promotes
the maturation of pro-IL-1b and pro-IL-18 and the cleavage of
GSDMD. IL-1b plays a significant role in the development of VMC.
MicroRNAs, including miR-15/223, are also involved. MiR-15 is up-
regulated to repress NLRX1, while miR-223 is down-regulated to
elevate the TRAF6, both contributing to the NLRP3 inflammasome
activation. (A) IL-1b induces high expression of ERK1/2, facilitating
viral replication, leading to damage and inflammation of cardiac
tissue. (B) IL-1b promotes transcription of MMP12 in myocytes, thus
leading to cardiac remodeling. (C) IL-1b promotes the expression of
OPN, TN-C, POSTN, and IL-6, contributing to cardiac fibrosis. (D)
IL-1b enhances the expression of ICAM and VCAM, promoting the
infiltration of immune cells, including Mac3+ macrophages and
CD3+ T cells. (3) Caspase-11 inflammasome pathway. The calpain
activation induced by CVB3 can also activates caspase-11
inflammasome, which may participate in the pathogenesis of VMC.
VMC, viral myocarditis; CVB3, coxsackie virus B3; CARD8, caspase
recruitment domain-containing protein 8; GSDMD, gasdermin D;
NLRP3, nucleotide oligomerization domain-, leucine-rich repeat-,
and pyrin domain-containing protein 3; NOD2, nucleotide-binding
oligomerization domain 2; TLR, toll-like receptors; NF-kB, nuclear
factor k-light-chain enhancer of activated B cells; ROS, reactive
oxygen species; miR, microRNA; NLRX1, Nucleotide-binding domain
and leucine-rich-repeat-containing family member X1; TRAF6, TNF
receptor‐associated factor 6; ERK 1/2, extracellular signal-regulated
kinases 1 and 2; MMP12, matrix metalloproteinase 12; OPN,
osteopontin; TN-C, tenascin C; POSTN, periostin; ICAM, intercellular
cell adhesion molecule; VCAM, vascular cell adhesion molecule.
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5.2.3 Cardiac remodeling
Matrix metalloproteinases (MMPs) are a group of proteolytic

enzymes whose main function is the regulation of extracellular

matrix reconstruction (Spinale, 2007). Previous studies showed vital

involvement of MMPs in the cardiac remodeling process after the

CVB3 infection (Westermann et al., 2010). Among multiple MMPs,

MMP12 was observed remaining at a high transcription level while

the other MMPs decreased after the acute stage of CVB3-induced

VMC (Westermann et al., 2010), which indicated the possible

involvement of MMP12 in the cardiac remodeling process. Kraft

et al. found high expression levels of MMP12 in the hearts of mice

during the chronic stage of CVB3-induced VMC, while MMP12

expression in the chronic stage was down-regulated significantly by

IL-1b antibody in the acute stage (Kraft et al., 2019). The results

above indicated that IL-1b secretion via the NLRP3 inflammasome

pathway might contribute to the cardiac remodeling process by

regulating the MMP12.
6 Roles of inflammasomes in COVID-
19-related myocarditis

A wide variety of cardiovascular diseases after SARS-Cov-2

infection have been reported, including myocarditis (Boukhris et al.,

2020; Irabien-Ortiz et al., 2020; Sawalha et al., 2021), and the

NLRP3 inflammasome may be activated by SARS-Cov-2 infection

and participate in the progression of Corona Virus Disease 2019

(COVID-19)-related myocarditis. Viral presence has been observed

in the myocardium after SARS-Cov-2 infection by endomyocardial

biopsy (EMB) and autopsy (Albert et al., 2020; Fox et al., 2020;

Lindner et al., 2020), which indicated possible viral infection of

cardiomyocytes in the COVID-19 context. Angiotensin-converting

enzyme 2 (ACE2) is a host cellular receptor that can bind to the

spike (S) protein of SARS-Cov-2 and facilitate viral entry into the

host cell with the aid of TMPRSS2 (Fox et al., 2020; Quagliariello

et al., 2020). Both ACE2 and TMPRSS2 have been demonstrated to

be expressed in the heart (Feng et al., 2021; Chen et al., 2020;

Clerkin et al., 2020; Nicin et al., 2020). Meanwhile, ACE2 can also

cleave angiotensin (Ang) II to generate Ang- (1-7), thus reducing

the level of Ang II (Santos et al., 2018). From the facts above, it is

reasonable to deduce that with increasing viral infection and

replication in myocardium, the S protein-ACE2 interaction and

internalization of ACE2 after the interaction are enhanced, thus

ameliorating the ACE2-Ang II interaction. The possible inhibition

of the ACE2-Ang II interaction may suppress Ang II degradation

and lead to Ang II accumulation. Importantly, it has been

demonstrated that excessive Ang II could induce cardiomyocyte

pyroptosis and cardiac fibrosis through activating the NLRP3

inflammasome (Pinar et al., 2020; Zhu et al., 2021), which

manifested similar features of myocarditis. Thus, it is reasonable

to suggest that SARS-Cov-2 infection may participate in COVID-

19-related myocarditis by activating the NLRP3 inflammasome.

Cytokine release syndrome is a systemic inflammatory response

triggered by adverse external factors such as viral infection

(Shimabukuro-Vornhagen et al., 2018). The migration of
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activated CD8 T cells to the heart triggers cytokine release

syndrome, leading to cardiac injury. This inflammatory cytokine

storm is considered to be the main mechanism of acute COVID-19-

related myocarditis (Chimenti et al., 2022). Furthermore, possible

roles of the NLRP3 inflammasome in this process were also well-

discussed. After SARS-CoV-2 infection, the NLRP3 inflammasome

can be activated by multiple stimuli, including Ca2+ mobilization,

K+ efflux, ROS production, Ang II accumulation induced by the S

protein-ACE2 pathway, and the complement cascade induced by

SARS-CoV-2 infection (Zhao et al., 2021). As the NLRP3

inflammasome-induced proinflammatory cascade progresses, IL-

1b and IL-18 promote the release of other cytokines, including IL-6,

which is hypothesized to be a central mediator of cytokine storm.

IL-6 coordinates the proinflammatory responses of immune cells to

further promote the release of inflammatory cytokines and achieve

the positive feedback regulation that induces the cytokine storm,

thus contributing to the cytokine release syndrome (Coomes and

Haghbayan, 2020). Moreover, it has been suggested that

suppressing the NLRP3 inflammasome with inhibitors such as

MCC950 could effectively prevent the development of the

cytokine storm. This study demonstrated the significant

participation of the NLRP3 inflammasome in inducing the

inflammatory cytokine storm, the main pathogenic mechanism of

COVID-19-related myocarditis (Ratajczak et al., 2021), and

provided ideas for the treatment of COVID-19-related myocarditis.
7 Potential therapies targeting
inflammasomes and related pathways

The well-established roles of inflammasomes, especially the

NLRP3 inflammasome, in the VMC provide multiple ideas for

possible therapies for VMC targeting the inflammasome pathway.

Several drugs inhibiting the NLRP3 inflammasome or its

downstream IL-1b are reported to be promising therapies for

VMC in a variety of case reports, clinical trials, and animal

experiments (Table 1).
7.1 Anakinra

Anakinra is the recombinant form of the naturally occurring IL-

1 receptor antagonist (IL-1Ra) and inhibits the activity of both IL-

1a and IL-1b. The effectiveness of anakinra in the treatment of

myocarditis has been revealed by many animal experiments and

case reports, indicating the possible involvement of the NLRP3

inflammasome/IL-1b pathway. As far as we know, the earliest case

report of anakinra applied to myocarditis dates back to 2016. A

previously healthy 36-year-old Italian woman was admitted to the

hospital due to fulminant myocarditis. Because previous treatment

was ineffective, from the sixth day of admission, she was given

anakinra 100 mg daily, and a dramatic remission was observed

within 24 hours. The fever was alleviated and the neutrophil count

reduced, along with the normalization of CRP, troponin T, ECG,

and LVEF. With 4 days of anakinra treatment, sustained clinical
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1149911
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


TABLE 1 Overview of case reports, clinical trials and animal experiments targeting the inflammasome pathway to treat VMC.
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Results first
posted year

PMID or N

Anakinra Versus Placebo for the
Treatment of Acute MyocarditIS
(ARAMIS)

anakinra Inhibiting IL-
1b

120 Number of
days alive free
of any
myocarditis
complications

unknown unpublished NCT03018

Canakinumab in Covid-19 Cardiac
Injury (The Three C Study)

canakinumab Inhibiting IL-
1b

45 Number of
Participants
With Clinical
Improvement
at Day 14

unknown 2021 NCT04365

IFN and thymic hormones in the
therapy of human myocarditis and
idiopathic dilated cardiomyopathy

IFN-a Inhibiting
NLRP3
inflammasome
activation

40 unknown none 1995 8682086

Interferon-beta treatment eliminates
cardiotropic viruses and improves left
ventricular function in patients with
myocardial persistence of viral
genomes and left ventricular
dysfunction

IFN-b Inhibiting
NLRP3
inflammasome
activation

22 unknown none 2003 12771005

Animal experiments

Animal experiments Intervention Target of
therapy

Year of
publication

PMID

Blocking the IL-1b signalling pathway
prevents chronic viral myocarditis and
cardiac remodeling

Canakinumab Inhibiting IL-
1b

2019 30673858

Mitochondrial calpain-1 activates
NLRP3 inflammasome by cleaving
ATP5A1 and inducing mitochondrial
ROS in CVB3-induced myocarditis

MCC950 Inhibiting
NLRP3
inflammasome
activation

2022 35997820

Microtubule-driven spatial
arrangement of mitochondria promotes
activation of the NLRP3 inflammasome

Colchicine Inhibiting
NLRP3
inflammasome
activation

2013 23502856

Colchicine prevents disease progression
in viral myocarditis via modulating the

Colchicine Inhibiting
NLRP3

2022 35178861
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improvement allowed weaning from ECMO and removal of the

percutaneous LVAD (Cavalli et al., 2016). Yoshihiro Noji et al.

accordingly suggested that anakinra targeted IL-1 to treat fulminant

myocarditis (Noji, 2016).

The anakinra vs. Placebo for the Treatment of Acute

Myocarditis (ARAMIS) trial (ClinicalTrials.gov identifier:

NCT03018834) has been completed as of June 15, 2022. Although

the results have not been posted yet, the clinical application of

anakinra in acute myocarditis is promising.

In addition, the safety of anakinra has been demonstrated by

extensive research. It is significant to know that anakinra is

associated with an increased risk of infection (mainly upper

respiratory infections), but not with increased infection-related

mortality (Fleischmann et al., 2006). The evidence above indicates

that anakinra may have great potential in the treatment of VMC.
7.2 Canakinumab

Canakinumab is an IL-1b-neutralizing antibody that reduces

inflammation in patients with autoimmune diseases. Compared

with anakinra, it has a longer half-life and can be administered once

a month, showing better clinical operability (Abbate et al., 2020). In

the treatment of heart diseases, canakinumab is effective in reducing

myocardial infarction in high-risk groups (Ridker et al., 2017).

In a CVB3-induced VMC mouse model, canakinumab’s

counterpart was shown to prevent chronic VMC and cardiac

remodeling. A total of 36 ABY/SnJ mice were divided into three

control groups and three experimental groups. The control groups

were infected with CVB3 alone, while the experimental groups were

infected with CVB3 first, followed by neutralizing IL-1b with

antibodies on days 1–14, 3–14, and 14–28, respectively.

Significant reductions in myocardial injury and inflammation

were observed in all three experimental groups. At 28 days post-

infection, robust cardiac fibrosis and remodeling were observed in

the three control groups, whereas the three corresponding

experimental groups all showed a marked reduction in the degree

of fibrosis during the same period (Kraft et al., 2019).

In a case report of fulminant myocarditis, significant remission

was observed when anakinra was applied. After discharge, anakinra

was switched to canakinumab because of the difficulty in

maintaining daily injections of anakinra. Canakinumab was

initiated six months after discharge at a dose of 4 mg/Kg q4wk

and then gradually tapered down. Up to 24 months, the disease had

been in clinical remission on medication (canakinumab 4 mg/Kg

q6wk) (Meneghel et al., 2020). This case not only revealed

canakinumab’s effectiveness, but also highlighted its advantage of

less frequent injections than anakinra, which had a shorter half-life.

In addition, a clinical trial, Canakinumab in COVID-19 Cardiac

Injury (The Three C Study), was conducted in 2021 and revealed

the role of canakinumab in the treatment of myocardial injury in

the context of COVID-19 (ClinicalTrials.gov Identifier:

NCT04365153). It indicated that canakinumab could ameliorate

SARS-CoV-2-associated acute myocardial injury, but the doses

remain to be explored and the side effects are less clear. In
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summary, it is suggested that canakinumab has great potential in

the treatment of VMC. Nevertheless, more clinical studies are

needed to explore the efficacy and safety of canakinumab in

treating VMC, in order to better guide its application in the

management of VMC patients.
7.3 MCC950

MCC950, also known as CRID3 and CP-456,773, is a widely

studied specific NLRP3 inflammasome inhibitor. Liu et al. proved

that in mice with CVB3-induced VMC, intra-peritoneal injection of

MCC950 could effectively inhibit CVB3-induced pyroptosis and

inflammation by inhibiting the NLRP3 inflammasome activation

pathway. Six 4 or 5-week-old male mice were equally divided into

three groups: the sham group injected with PBS; the CVB3 group

injected with CVB3; and the MCC950+CVB3 group injected with

10 mg/kg MCC950 daily extraperitoneal for six consecutive days

and infected with CVB3 on the second day from MCC950 injection

initiation. Western blot analysis indicated that the MCC950+CVB3

group showed a significant reduction in GSDMD N-terminus and

cleaved caspase-1 compared with the CVB3 group. Moreover,

cardiomyocyte viability was higher in the CVB3 +MCC950 group

than in the CVB3 group (Liu et al., 2022). This revealed the

promising prospect of MCC950 for the treatment of VMC as a

specific inhibitor of the NLRP3 inflammasome activation.
7.4 Colchicine

Colchicine has been reported to inhibit the NLRP3

inflammasome activation via blocking microtubule assembly

(Misawa et al., 2013). Pappritz et al. have reported that in

C57BL6/j mice with CVB3-induced VMC, colchicine applied in

the early stage of CVB3 infection could inhibit the splenic NLRP3

inflammasome activity, accompanied by alleviated immune cell

infiltration, decreased cardiac troponin-1, and improved left

ventricular function (Pappritz et al., 2022). These results could be

explained by the fact that colchicine inhibited the infiltration of

NLRP3-active inflammatory cells from the spleen to the heart

(Pappritz et al., 2022). Furthermore, in vitro experiments

demonstrated that colchic ine suppressed the NLRP3

inflammasome activity in CVB3-infected HL-1 cardiomyocytes

and fibroblasts, inhibiting their pro-inflammatory and pro-fibrotic

capacities respectively (Pappritz et al., 2022). Importantly,

colchicine applied to the CVB3-infected mice showed no

exacerbation of CVB3 load, indicating that the colchicine might

have little negative impact on anti-viral reactions of host cells and

could be applied during viral persistence (Pappritz et al., 2022).

However, previous research reported that colchicine injection could

up-regulate the level of cardiac CVB3 mRNA and exacerbate CVB3-

induced myocarditis, resulting in severe discomfort and higher

mortality 3 days post-infection in CH3 mice (Smilde et al., 2016),

which might partially be explained by the sensitivity difference

between the two strains of mice, but indicated the potential
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cytotoxicity of colchicine. In summary, colchicine showed

promising potential for balancing the modulation of excessive

inflammation and the clearance of viruses. However, clinical

studies, including follow-up biopsies to quantify myocardial

inflammation and viral activity, are needed to evaluate the safety

and efficacy of colchicine in human settings.
7.5 Interleukin-37

Interleukin-37 (IL-37), a member of the IL-1 cytokine family,

has been demonstrated to alleviate CVB3-induced VMC in mice by

suppressing the NF-kB pathway activation and inhibiting the

NLRP3 inflammasome activity (Sun et al., 2022). In the well-

constructed CVB3-induced VMC model of mice, IL-37 injection

improved cardiac functions, manifesting as significantly higher

LVEF, LVFS, IVSs and IVSd and significantly reduced the level of

cardiac troponin I. Furthermore, the IL−37 treatment alleviated

CVB3−induced inflammatory cell infiltration and fibrosis

deposition in myocardium (Sun et al., 2022), which indicated the

potential of IL-37 in ameliorating chronic inflammation and cardiac

fibrosis. Though IL-37 has shown protective effects in CVB3-

induced VMC, the mechanisms and possible side effects of IL-37

in treating VMC remain to be elucidated. More animal experiments

are needed to confirm its safety and efficacy before admitting

clinical application.
7.6 Interferons

Interferons (IFNs) are a class of broad-spectrum antiviral agents

that can limit the proliferation of many viruses in the human body

and treat the diseases caused by virus infection. IFN-a and IFN-b
exert antiviral effects mainly through IFN-stimulated genes (ISGs).

ISGs respond to IFN-a and IFN-b produced upon infection, thus

initiating the antiviral state in bystander cells. The main

mechanisms involve myxovirus resistance 1 (MX1), IFN-inducible

double-stranded RNA-dependent protein kinase (PKR; encoded by

EIF2AK2), 2′-5′-oligoadenylate synthetase (OAS), etc (McNab

et al., 2015).

IFNs have long been used in the treatment of VMC, and their

effectiveness has been demonstrated in several clinical trials (Mirić

et al., 1995; Kühl et al., 2003) and case reports (Daliento et al., 2003;

Canales Siguero et al., 2021). In the past, people often attributed the

effect of IFN treatment on VMC to its broad-spectrum antiviral

activity. However, recent studies have shown complex interactions

between IFNs and the NLRP3 inflammasome. IFNs inhibit the

NLRP3 inflammasome activation by several mechanisms involving

the phosphorylation of STAT1 transcription factor and the

promotion of IL-10 transcription (Guarda et al., 2011), thus

alleviating the inflammatory responses caused by the virus and its

subsequent adverse symptoms. In addition, some experiments have

shown that IFN-g could rescue mice with chronic VMC by reducing

IL-1b levels. In another experiment, IFN-g-deficient and wild-type

BALB/c mice were inoculated with CVB3 on day 0. Hearts were

collected for analysis on day 35, and a dramatic increase in IL-1b
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level in IFN-g-deficient mice was observed (Fairweather et al.,

2004). This suggests that IFN-g may achieve the purpose of

alleviating VMC by inhibiting the NLRP3 inflammasome activity.

The results above indicate that part of the demonstrated

effectiveness of IFNs in treating VMC is through the NLRP3

inflammasome pathway.

From what we have discussed above, a variety of drugs

suppressing the NLRP3 inflammasome activation or inhibiting

the IL-1b activity may be potential therapies for VMC, while the

safety and efficacy of some drugs need further elucidation by more

comprehensive animal experiments and clinical trials. Apart from

chemical drugs targeting the NLRP3 inflammasome-IL-1b axis,

NLRP3 knockout might also be a potential therapy for VMC.

However, Wang et al. demonstrated that NLRP3 knockout in

CVB3-infected mice exacerbated viral infection, cardiac injury,

and cardiac dysfunction (Wang et al., 2019), which indicated the

potential risks of NLRP3 knockout in treating VMC. More research

is needed to assess the safety and efficacy of NLRP3 knockout as a

therapy for VMC.
8 Conclusion

At present, the roles of inflammasomes, mainly the NLRP3

inflammasome, in VMC are well established. During the infectious

phase, the NLRP3 inflammasome is activated, induces the release of

IL-1b and IL-18 and promotes pyroptosis, participating

significantly in the development of VMC. Based on the

inflammasome activation pathways, we proposed possible

therapies. Although the efficacy and safety of some therapies

remain to be further tested, we believe that therapies targeting the

inflammasome pathways are promising in treating VMC.

Nowadays, the interaction between SARS-Cov-2 and myocarditis

has received a lot of attention. Myocarditis is regarded as a rare

complication of COVID-19, and the pathogenic process of COVID-

19-related myocarditis also indicates the involvement of the NLRP3

inflammasome. However, there is a lack of direct evidence on the role

of the NLRP3 inflammasome in COVID-19-related myocarditis, and

further research is needed to better understand COVID-19-

related myocarditis.
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