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Pulmonary tuberculosis is increasingly recognized as a risk factor for COPD.

Severe lung function impairment has been reported in post-TB patients. Despite

increasing evidence to support the association between TB and COPD, only a

few studies describe the immunological basis of COPD among TB patients

following successful treatment completion. In this review, we draw on well-

elaborated Mycobacterium tuberculosis-induced immune mechanisms in the

lungs to highlight shared mechanisms for COPD pathogenesis in the setting of

tuberculosis disease. We further examine how such mechanisms could be

exploited to guide COPD therapeutics.
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1 Introduction

Chronic obstructive pulmonary disease (COPD) refers to chronic lung diseases

characterized by slowly progressive irreversible airflow obstruction. Individuals

diagnosed with COPD have varying degrees of chronic bronchitis, small airway

obstruction, and emphysema (Cruz et al., 2007; Joint United Nations Programme on

HA, 2011; Organization WH, 2015; Venkatesan, 2022). COPD is the third leading cause of

death worldwide (Salvi, 2015; Venkatesan, 2022), with over 65 million people having

moderate to severe COPD (Organization WH, 2015). It is one of the most common non-

communicable diseases (NCDs), affecting over 329 million (Salvi, 2015). In 2012, COPD
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contributed to 6% of all total deaths globally, with more than 90% of

mortalities occurring in low- and middle-income countries

(LMICs) where effective strategies for prevention and control are

not consistently implemented or accessible (Cruz et al., 2007). The

prevalence of COPD, defined by spirometry, is 11.7% worldwide,

and mortality shows an increasing trend (Adeloye et al., 2015).

Globally, over ten million people fell ill with TB disease in 2021,

with over 1.4 million TB-related mortalities among HIV-negative

individuals (Bagcchi, 2023). Men account for more TB cases than

women (Organization WH, 2020; Bagcchi, 2023). Thirty high-TB-

burden countries account for almost 90% of those who fall sick with

the disease annually, with South-East Asia and Africa contributing

to the most significant TB burden (Harding, 2020). Although

cigarette smoking, exposure to pollutants, and HIV infection are

predominant risk factors for COPD, pulmonary tuberculosis

remains an under-recognized risk factor for developing COPD

(Chakrabarti et al., 2007; Caballero et al., 2008; Allwood et al.,

2014; Pefura-Yone et al., 2014; Byrne et al., 2015; Ngahane

et al., 2016; Sarkar et al., 2017; Siddharthan et al., 2019; Kayongo

et al., 2020; Byanova et al., 2021; Kamenar et al., 2021). Respiratory

function is impaired in TB-induced COPD, characterized by

significantly reduced forced vital capacity (FVC) and post-

bronchodilator expiratory volume in 1 second (FEV1) compared

to those with smoke-induced COPD (Anno and Tomashefski, 1955;

Lee and Chang, 2003; Kamenar et al., 2021). Furthermore, the post-

bronchodilator response is significantly reduced in tuberculosis-

induced COPD compared to smoke-induced COPD, indicating the

irreversible nature of airflow obstruction (Lee and Chang, 2003;

Menezes et al., 2007). Tuberculosis-induced COPD risk is higher in

males than females, with adjusted odds ratios of 4.0 and 1.7,

respectively (Menezes et al., 2007). History of prior tuberculosis

has been strongly associated with severe forms of COPD (Menezes
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et al., 2007; Kamenar et al., 2021). According to the Burden of

Obstructive Lung Diseases (BOLD) study, a history of tuberculosis

increases the risk of developing airflow obstruction in later life with

an adjusted odds ratio of 2.5 (Amaral et al., 2015). The frequency

and severity of airflow obstruction in pulmonary tuberculosis

positively correlate with the number of episodes of tuberculosis

(Hnizdo et al., 2000). Structural damage of the lungs increases with

an increasing number of tuberculosis episodes and persists in many

patients despite anti‐tuberculosis treatment (Plit et al., 1998;

Hnizdo et al., 2000).

Several predictors of COPD severity among tuberculosis

patients have been reported, including smear‐positive disease,

extensive pulmonary involvement before anti‐tuberculosis

treatment, reduced radiographic improvement post‐treatment,

and delay in initiating tuberculosis treatment (Chung et al., 2011).

These factors imply that host-tuberculosis immune interactions in

the lung microenvironment during active tuberculosis disease

predominantly drive COPD pathogenesis. In this Review, we

draw on well-described tuberculosis immune responses in the

lung microenvironment to discuss immunological processes that

could underlie the pathogenesis of COPD in the setting of

tuberculosis disease (Figure 1). We further examine the extent to

which such immunological processes could be exploited to guide

tuberculosis-associated COPD therapeutics (Figure 2).
2 Organization of the immune system
in the respiratory system

Distinct immune cell populations reside in the respiratory

system, reflecting specialization along the tract to suit differing

intensities of exposure to airborne antigens and airway microbiome
FIGURE 1

Immune-mediated mechanisms of TB-associated COPD. Alveolar macrophages engulf M.tb in the alveolar space. 2. Infected alveolar macrophages
migrate from the alveolar space into the interstitium in an IL-1R-dependent manner. 3. M.tb replicate within alveolar macrophages. 4. M.tb induce
infected macrophage apoptosis and expression of host lytic proteins in an ESX-1-dependent manner. 5. Newly recruited alveolar macrophages
engulf infected cell debris. 6. Lung infiltrating neutrophils move by chemotaxis towards the growing granuloma, engulfing dying infected cells and
killing bacteria through NETosis and release of lytic enzymes. 7. M.tb-specific T cells arrive at the granuloma and produce IFN-g to enhance the
microbicidal activity of alveolar macrophages. However, activated T cells are walled off from accessing the inner core of the granuloma, and their
effect is dampened by the cytokine TGFb. 8. Alveolar macrophage necrosis leads to granuloma rupture and release of M.tb into the extracellular
space. Subsequent induction of lytic proteins causes granuloma cavitation and release of Mtb into the airways. 9. In the post-TB stage following
treatment, extensive lung fibrosis and emphysema reduces lung compliance and are observed as reduced lung function. 10-11. Extensive fibrosis and
calcification further reduce lung compliance and worsens COPD. 12. Periodic insults such as bacterial, viral, and fungal infections and air pollution or
smoking trigger periodic COPD exacerbations after that. Created with Biorender.com.
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in the transition between the upper and lower respiratory tract

(Holt et al., 2008; Huffnagle et al., 2017). In conducting airways, the

mucosal epithelial lining comprises ciliated cells interspersed with

goblet cells, providing mucociliary clearance of inhaled antigens

and locally secreted immunoglobulin A (IgA) (Holt et al., 2008;

Hewitt and Lloyd, 2021). The mucosa contains dense networks of

macrophages and dendritic cells (DCs) (Kopf et al., 2015). Airway

macrophages are the most predominant cells residing on the

mucosa and continuously sample airborne antigens (Cohen et al.,

2018). The airway DC population comprises both myeloid DCs

(mDCs) and plasmacytoid DCs (pDCs), with a predominance of

mDCs (Kopf et al., 2015). A specialized group of DCs known for

immune surveillance is strategically located within and directly

below the mucosa (Holt et al., 2008). These DCs extend their

protrusions into the airway mucosa, routinely sampling microbial

antigens (Jahnsen et al., 2006). Another population of cells referred

to as innate lymphoid cells (ILCs) resides within lymphoid tissue at

airway branch points (Sonnenberg and Hepworth, 2019). They co-

localize with CD4+T cells, DCs, and specialized stromal cells, which

provide activating cytokines (Sonnenberg and Hepworth, 2019).

Three ILC subsets closely mirroring the transcriptional and

functional biology of CD4+T helper (Th) cells (i.e., ILC1, ILC2,

and ILC3) have been described elsewhere (Sonnenberg and

Hepworth, 2019).

T cells are also found in relatively high numbers in the mucosa

and within the underlying lamina propria (Holt et al., 2008). Most

intra-epithelial T cells express CD8, whereas CD4+T cells are more
Frontiers in Cellular and Infection Microbiology 03
frequently found in the lamina propria (Holt et al., 2008). Both cell

subtypes have effector and memory cell phenotypes defined by the

expression of CD45RO (Holt et al., 2008). The submucosa also

harbors B, mast, and plasma cells, mainly producing polymeric IgA

(Brandtzaeg, 2015). In addition to their role in antibody production,

airway B cells contribute to local antigen presentation. As described

elsewhere (Holt et al., 2008), the airway mucosa also contains

bronchial-associated lymphoid tissue (BALT), comprising discrete

lymphoid-cell aggregates underlying a specialized epithelium,

similar to Peyer’s patches in the gut. Under homeostasis, several

immune cells, including interstitial macrophages, DCs, T cells, B

cells, and mast cells, populate the lung parenchyma, whereas large

numbers of T cells sequester in the lung parenchymal vascular bed

(Holt et al., 2008). In the setting of inflammation, other cells, such as

neutrophils and monocytes, infiltrate and predominate the lung

parenchyma (Cohen et al., 2018). The contribution of bronchial

epithelial cells, fibroblasts, and the extracellular matrix in airway

immune response has been described elsewhere (Kitamura et al.,

2011; Gao et al., 2015; Hewitt and Lloyd, 2021).
3 Immunological relationship between
tuberculosis and COPD

Several authors have described the pathogenesis of COPD with

emphasis on cigarette smoke, biomass exposure, and HIV infection

(Hogg, 2004; Chung and Adcock, 2008; Churg et al., 2008;
FIGURE 2

Targets for host-directed therapy (HDTs) for TB-associated COPD. A select list of immune-based therapies could offer benefits for patients with TB-
associated COPD. Several agents have been developed or are under development that target (i) the innate immune sensors such as Toll-like
receptors (TLRs) and their signaling pathway; (ii) the inflammasome activation pathway, their executioner Gasdermin D and pro-inflammatory
cytokines IL-1b and IL-18; the cGAS-STING pathway and their effector cytokines, type I interferons as well as (iv) pro-inflammatory cytokines such as
IL-6, TNF, IL1b and type I and II interferons. Such agents include antagonists of TLRs, NLRP3, and STING; inhibitors of the signaling molecules and
enzymes such as tyrosine kinase (Tyk), PI3 kinase (PI3K), Phosphokinase C (PKCq), phospholipase C (PLCg), calcineurin, IP3, DAG, NFAT, and NEMO.
Cytokine antagonists include anti-IL6, anti-TNF, IL-1R inhibitors, and inhibitors of type I interferons. Other agents target acute inflammation, such as
corticosteroids, disease-modifying antirheumatic drugs (DMARDs), anti-TNF, Phosphodiesterase 4 (PDE4) inhibitors, Leukotriene BLT1-receptor
antagonists, anti-TNF- therapies, TNFa-converting enzyme inhibitors, statins, PPARg inhibitors, COX selective and non-selective inhibitors, TGFb-1
receptor kinase antagonists, anti-IL-8 neutralizing antibody, CXCR2 inhibitors, CXCR3 antagonists, anti-Reactive Oxygen Species (ROS), anti-ICAM/
VCAM and anti-CXCL5/8 and inhibitors. Other molecules target macrophage phagocytic receptors, autophagy, executioner machinery, and
phagosome maturation. These include metformin, Imatinib as enhancers of phagosome maturation and autophagy induction, mammalian target of
rapamycin (mTOR) inhibitors, Vitamin D, and inhibitors of lytic proteins and enzymes in phagolysosomes. cDCs, T and B cell activation also
contribute molecules that orchestrate tissue damage. Such molecules can be targeted for therapeutic purposes. These include inducers of DC
maturation like FLT3L, immune checkpoint inhibitors, inducers of Treg cells, inducers of iNOS, inhibitors of granzymes, anti-TGFb, and finally,
inhibitors of chromatin remodeling such as HDAC inhibitors. Created with Biorender.com.
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Rajendrasozhan et al., 2008; Atkinson et al., 2011; Milara et al.,

2013; Pichavant et al., 2014; Agustı ́ and Celli, 2017; Yoshida et al.,

2019; Byanova et al., 2021). Other post-TB sequelae, such as

bronchiectasis and bronchopulmonary aspergillosis, cannot be

underestimated (Meghji et al., 2021). Whereas the role of innate

and adaptive immune cells in COPD has been extensively described

elsewhere (Barbu et al., 2011; Ezzati Givi et al., 2012; Craig et al.,

2017; Le Rouzic et al., 2017; Ni and Dong, 2018), in this review, we

describe how immune mechanisms in the setting ofMycobacterium

tuberculosis infection intersect with known COPD-immune

mechanisms and possibly contribute to immuno-pathology in

TB-associated COPD. To date, literature describing the

immunological relationship between tuberculosis and COPD

remains limited (Radovic et al., 2011; Cao et al., 2012; Allwood

et al., 2019; Chin et al., 2019; Singh et al., 2022). Recent evidence

suggests that tuberculosis orchestrates chronic lung inflammation

and tissue necrosis, with resultant airway fibrosis and remodeling

observed in COPD (Radovic et al., 2011; Cao et al., 2012; Sarkar

et al., 2017; Stek et al., 2018; Allwood et al., 2019; Chin et al., 2019;

Singh et al., 2022). The immune response, particularly in the distal

airways, is characterized by activation of alveolar macrophages,

dendritic cells, innate lymphoid, and gd-T cells, which promote

recruitment and activation of neutrophils, monocytes, as well as

cells of the adaptive immune response (B cells, Th1, Th17, and

cytotoxic T-cells). Further interaction between immune cells and

the airway epithelial cells, fibroblasts, and the extracellular matrix

culminates into granuloma formation, which upon degeneration

(caseation), orchestrates lung inflammation and tissue necrosis

coupled with fibrosis and airway remodeling (Chung and Adcock,

2008). Although the immune mechanisms of lung parenchymal

damage in tuberculosis have been extensively described and the role

of host-directed therapy elucidated elsewhere (Ravimohan et al.,

2018; Stek et al., 2018), this review focuses on the immunologic

sequence of events in early versus late tuberculosis disease that

orchestrate COPD immunopathology (Figure 1).
3.1 Mtb-induced innate immunity and
implications on COPD

3.1.1 Macrophages
Following infection of a host with Mycobacterium tuberculosis

(Mtb) via inhalation of viable bacilli in exhaled droplets, bacilli are

internalized by alveolar macrophages (AM) via phagocytosis

(Pieters, 2008). Based on in vitro studies with various macrophage

types, including AMs, viable bacilli have been shown to modify

phagosome activity, preventing its maturation and fusion with

lysosomes via mechanisms well-described elsewhere (Sturgill-

Koszycki et al., 1994; Ferrari et al., 1999; Gatfield and Pieters,

2000; Fratti et al., 2003; Rosenberger and Finlay, 2003; Walburger

et al., 2004; Nguyen and Pieters, 2005; Vergne et al., 2005; Rohde

et al., 2007; Warner and Mizrahi, 2007; Pieters, 2008; Vandal et al.,

2008; Sun et al., 2010; Abramovitch et al., 2011; O’Leary et al., 2011;

Wong et al., 2011; Sullivan et al., 2012; Jamwal et al., 2016; Awuh

and Flo, 2017; Queval et al., 2017; Buter et al., 2019). Some

internalized bacilli perforate the phagosome membrane using the
Frontiers in Cellular and Infection Microbiology 04
ESX-1 type III secretion system, escaping into the cytosolic space

(Manzanillo et al., 2012; Augenstreich et al., 2017; Conrad et al.,

2017; Queval et al., 2017; Wong, 2017). Therefore, by engaging

several immune evasion strategies such as those described above

(Hmama et al., 2015),M.tb bacilli successfully establish infection in

the AMs dividing exponentially until the immune pressure contains

the pathogen (Russell et al., 2009). Consequently, either localized

sterilization of M.tb bacilli and mineralization of lesions into Ghon

foci or extensive caseation and tissue necrosis occurs with lung

damage and eventual release ofM.tb bacilli into the airways (Russell

et al., 2009). Although several authors have described macrophage

activation in the context of the M.tb control (Kornfeld et al., 1999;

Kaufmann, 2002; Nau et al., 2002; Flynn, 2004; Lin et al., 2007;

Blumenthal et al., 2009; Moreira-Teixeira et al., 2016; BoseDasgupta

and Pieters, 2018; Marakalala et al., 2018; Khan et al., 2019; Li et al.,

2021; Mata et al., 2021; Thakur and Muniyappa, 2023), in this

section, we elaborate on events surrounding macrophage activation

in early and late M.tb infection, which orchestrate lung damage as

observed in COPD.

In the early stages of M.tb infection, airways initially show

increased infiltration with innate immune cells beneath the lamina

propria, without any obvious pathological lesions (North and Jung,

2004; Russell et al., 2009). Until recently, the precise composition,

pattern, and mechanisms underlying this immune cell infiltration

within the airways in the early stages of M.tb infection have been

largely speculated. However, evidence from the murine model

shows that M.tb infection exclusively occurs in the AMs during

the first week of infection (Cohen et al., 2018). In this period, M.tb-

activated AMs infiltrate the lung interstitium in a MyD88/IL-1R-

dependent manner to establish a focus of infection in the

interstitium (Cohen et al., 2018; Lovey et al., 2022). This precedes

chemotaxis and infiltration of the lung interstitium and the airways

with neutrophils, monocyte, and lymphocytes. Cytokines produced

by AMs play a critical role in attracting other immune cells into the

primary area of insult to contain M.tb growth. For instance, TNF

has been reported as a critical cytokine in the initial stages of

granuloma formation and M.tb control (Kindler et al., 1989; Roach

et al., 2002; Algood et al., 2005). This cytokine maintains the

concentration gradient required for sustained cellular recruitment

and retention into the growing granuloma (Roach et al., 2002). In

the tnfr knock-out murine model, granuloma cellular organization

is severely disrupted, resulting in an amorphous and necrotic

structure that is poor at containing M.tb growth (Gil et al., 2006).

However, as the infection progresses, too much TNF drives airway

pathology, where the granulomatous response becomes too

aggressive and causes extensive tissue destruction (Casadevall and

Pirofski, 2003). Although the intention is usually to contain M.tb

growth, this excessive response orchestrates airway damage and

drives structural changes that severely impair lung function

(Casadevall and Pirofski, 2003; Russell et al., 2009). Besides TNF,

other pro-inflammatory cytokines such as IFN-g, IL-12, IL-1b, and
IL-18 not only drive M.tb killing but also sustain macrophage

activation (Flynn, 2004; Koo et al., 2008; Fan et al., 2013; Yang

et al., 2013; Moreira-Teixeira et al., 2016; Agarwal et al., 2021; Li

et al., 2021), which sustains airway damage. What is currently

unknown is the exact timing when such damage becomes
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irreversible to portray the pathology observed in COPD. However,

from the natural history of COPD, repetitive insults accumulate

over time and cause structural abnormalities with impaired lung

function (Tantucci and Modina, 2012; Vestbo and Lange, 2016;

Lange et al., 2021). In the setting of M.tb, airway insults most likely

occur during the acute phase of inflammation and become

sustained in the chronic phase. Unfortunately, multiple attempts

at healing result in extensive fibrosis and airway remodeling,

altering lung anatomy and distal airway mechanics (Dheda et al.,

2005). Performing serial lung function tests in a murine infection

model in a carefully designed experimental setting could assist in

determining the specific time when irreversible damage occurs.

Furthermore, conducting in-depth omics analyses of such changes

would provide critical information about TB-associated

COPD immunopathology.

Upon activation, AMs demonstrate plasticity, differentiating

into either classical (M1) phenotype in the presence of specific

cytokines such as IFN-g or alternative (M2) phenotype in the

presence of specific cytokines such as TGF-b and IL-10 (Khan

et al., 2019; Locati et al., 2020; Ge et al., 2021; Ahmad et al., 2022;

Arish and Naz, 2022). M1 phenotype is pro-inflammatory,

expresses the iNOS gene, induces reactive oxygen (ROS)/nitrogen

(Ernst, 2012) species (Ernst, 2012), and is highly specialized in

phagolysosomal killing and containment ofM.tb bacilli, while M2 is

anti-inflammatory and aids in the clearance of debris at the down or

resolution of inflammation (Kasmi and Stenmark, 2015; Marino

et al., 2015; Arora et al., 2018; Shapouri-Moghaddam et al., 2018).

M2 also drives tissue repair and regeneration (Kasmi and Stenmark,

2015; Marino et al., 2015; Arora et al., 2018; Shapouri-Moghaddam

et al., 2018). Since macrophage polarization states affect the growth

of M.tb bacilli in either a restrictive or permissive manner, a fine

balance between M1 and M2 phenotypes ensures containment of

theM.tb bacilli with minimal tissue damage (Refai et al., 2018; Chen

et al., 2022). In chronic inflammation, excessive M1 activity

orchestrates tissue damage. Macrophages unleash ROS and RNS

species, mount oxidative stress, and cause bystander damage to

surrounding tissue (Bogdan, 2001; Guirado et al., 2013). Other

molecules, such as cathelicidins (Herr et al., 2007; Tecle et al., 2010),

defensins (Ganz, 2003; Doss et al., 2010), cathepsins (Zavasňik-

Bergant and Turk, 2006; Lecaille et al., 2008; Patel et al., 2018),

matrix metalloproteases (Page-McCaw et al., 2007; Salgame, 2011;

Houghton, 2015; Grzela et al., 2016), and S100 proteins (Donato

et al., 2013; Kessel et al., 2013; Pouwels et al., 2014; Singh and Ali,

2022), drive connective tissue damage, fibrosis, and angiogenesis, as

described elsewhere (Barnes et al., 2003; Guirado et al., 2013;

Whitsett and Alenghat, 2015). Of particular importance are

collagenases (MMP1 and MMP13), elastases (MMP12), and

gelatinases (MMP2 and MMP9), which degrade underlying

connective lung tissue, promoting tissue necrosis (Guirado et al.,

2013). MMP-1 and MMP-8 levels correlate with airway tissue

damage in TB patients, whereas MMP-14 promotes collagen

degradation and regulates monocyte migration (Sathyamoorthy

et al., 2015). Overall, existing evidence supports the role of these

molecules in driving lung damage in TB. Following treatment with

anti-TB drugs for at least two months, findings show a significant

reduction in the serum levels of MMP-8 in TB patients with severe
Frontiers in Cellular and Infection Microbiology 05
lung tissue damage (de Melo et al., 2019). Similarly, serum MMP-1,

-2, -3, -9, and -12 levels are higher in TB patients with severe

structural lung damage. These molecules decrease following

successful treatment (Kumar et al., 2018). In emphysema and

chronic bronchitis (which are forms of COPD), similar molecules

mediate lung inflammation and promote the release of fibrogenic

growth factors (Churg et al., 2012), suggesting that these molecules,

in a way, contribute to TB-associated COPD. As previously noted,

we currently do not know the exact time in the course of the disease

when these molecules induce irreversible airway damage and tissue

remodeling, hence warrant further investigation.

Besides the collateral damage from activated macrophages, the

genesis and evolution of the TB granuloma (Russell, 2007; Russell

et al., 2009; Ramakrishnan, 2012; Nunes-Alves et al., 2014; Kiran

et al., 2016; Marakalala et al., 2016; Cadena et al., 2017; Cohen et al.,

2022; McCaffrey et al., 2022), from its nascent form through

caseous, fibrocaseous, and resolved forms as the infection

progresses, plays a direct role in distorting the lung anatomy, as

observed on chest X-ray films and CT scans of most post-TB

patients (Stek et al., 2018). Similarly, evidence of impaired

respiratory mechanics has been documented by spirometry

among post-TB individuals (Amaral et al., 2015; Meghji et al.,

2020; Mpagama et al., 2021; Ivanova et al., 2023). During the

process of granuloma formation, activated AMs, as previously

described, invade subtending epithelium and attract mononuclear

cells from neighboring blood vessels through chemotaxis and form

the cellular matrix of the early granuloma (Russell et al., 2009). As

M.tb infection progresses, the newly recruited monocyte-derived

macrophages engulf infected cell debris and contribute to primary

granuloma expansion (Pagán and Ramakrishnan, 2015). Some of

these newly infected macrophages exit the primary granuloma and

establish secondary granulomas in distal tissues, spreading the

infection further (Pagán and Ramakrishnan, 2015). Infected

macrophages in the primary granuloma undergo necrotic cell

death (Behar et al., 2011), majorly driven by pathogen-induced

subversion of eicosanoid synthesis from prostaglandin E2 to Lipoxin

A4 (LXA4) (Chen et al., 2006). This promotes lung inflammation,

tissue destruction, and remodeling, favoring chronic lung damage.

Other immune cells, such as neutrophils and lymphocytes, infiltrate

TB granuloma and lung tissue (Cohen et al., 2018). Consequently,

by the 3rd week of infection, infected alveolar macrophage number

plateaus while infected neutrophils and monocyte-derived

macrophages increase drastically to become the most

predominant cells in the granuloma (Russell et al., 2009; Cohen

et al., 2018). In its nascent stage, the granuloma has a center of

infected macrophages. As it evolves into its caseous form, these cells

become enclosed by lipid-laden (foamy) macrophages, which drive

caseous necrosis (Russell et al., 2009; Agarwal et al., 2021). In the

fibrocaseous stage, the macrophages differentiate into

multinucleated giant epithelioid cells surrounded by lymphocytes.

A thick fibrous cuff forms outside the epithelioid cells at this stage,

excluding lymphocytes from the granuloma core (Russell et al.,

2009; Agarwal et al., 2021). In the resolved form, extensive fibrosis

occurs, walling off this area. The bacillary load remains relatively

constant in this period, establishing a state of latency in 90% of cases

(Russell et al., 2009). In some scenarios, calcification occurs, giving
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rise to Ghon foci, where TB re-activation into active disease never

occurs (Donald et al., 2021). However, in some situations, for

instance, conditions associated with immunosuppression such as

AIDS, M.tb re-activation occurs, driving active TB disease (Innes

et al., 2009). For granulomas that show increasing accumulation of

caseum in the core, extensive necrosis and breakdown occur,

releasing viable bacilli into the airways to propagate the M.tb

infection cycle (Russell et al., 2009). Despite a prolonged course

of anti-tuberculosis therapy, the damage caused by extensive

granulomatous disease and fibrosis in the airways is permanent

(Pasipanodya et al., 2007). It persists and increases with future TB

episodes (Plit et al., 1998; Hnizdo et al., 2000), resulting in an

irreversible decline in pulmonary lung function and structural

damage to the lung parenchyma observed among post-TB

individuals (Hnizdo et al., 2000). Several studies have described

this phenotype as pulmonary impairment after tuberculosis (PIAT)

(Pasipanodya et al., 2007; Pasipanodya et al., 2010; Gandhi et al.,

2016; Chushkin and Ots, 2017).

In a nutshell, airway macrophages play a critical role in

orchestrating lung damage as a bystander effect in M.tb infection.

Insults most likely occur during the acute phase of inflammation

and become sustained in the chronic phase, as evidenced by

increased uptake or intensity of fludeoxyglucose F18 on PET

scans taken among TB patients a year after completion of anti-TB

therapy compared to baseline (Malherbe et al., 2016). In such a

setting, dysregulated healing results in extensive fibrosis and

airway remodeling. Distorted lung anatomy and abnormal

airway mechanics consequently ensue. Given the heterogeneity

of immune cells infiltrating the airways during acute and

chronic inflammation in M.tb infection, immunopathology is

multifactorial. In the proceeding sections, we discuss how other

immune cells drive lung damage in TB, highlighting similarities to

COPD immunopathology.

3.1.2 Neutrophils
Although earlier studies report neutrophilic infiltration into the

sites of M.tb infection within hours of inoculation, the response

depends on the route of M.tb exposure (Lowe et al., 2012). Several

experimental infection animal models report neutrophilic

infiltration into multiple perivascular sites an hour post-infection

following intravenous M.tb inoculation (Long et al., 1931), while

cutaneous infiltration in rabbit infection model following BCG

inoculation occurs within 3 hours of infection, peaking at 12

hours (Shigenaga et al., 2001). In a murine model, neutrophils

arrive at the site of dermal BCG inoculation within 4 hours, peaking

at 24 hours post-intranasal or intrapleural BCG inoculation (Abadie

et al., 2005). A sharp contrast exists when the exposure is aerosol or

intratracheal. Following intratracheal BCG inoculation, a 1- to 2-

week’ airway neutrophilic infiltration has been reported (Fulton

et al., 2000). In a recently published murine infection model, airway

neutrophilic infiltration occurs within the 1st week and a few days

post-infection, following interstitial localization of alveolar

macrophages (Cohen et al., 2018), and as the infection progresses

through the 3rd week, neutrophils predominate the airways (Cohen

et al., 2018). Few studies have investigated the timing of

neutrophilic influx in early TB infection in humans. However, a
Frontiers in Cellular and Infection Microbiology 06
massive influx of neutrophils into the airways occurs in individuals

with established tuberculosis disease, associated with tissue necrosis

(Ehlers and Schaible, 2013). Evidence shows that neutrophils

accumulate in broncho-alveolar lavage fluid and sputum of

individuals with active tuberculosis (Eum et al., 2010).

Mechanistically, the inflammatory cytokine milieu in the airways

activates the endothelium, increasing the expression of adhesion

molecules, ICAM-1, E-selectin, and P-selectin, which results in a

neutrophilic influx (Lowe et al., 2012). This influx is driven by

several immune pathways. In the IL-23/Th17 axis, alveolar

macrophages, upon activation, produce IL-23, which activates

mucosal Th17 cells to produce IL-17, associated with neutrophil

recruitment into the airways (Sergejeva et al., 2005; Lockhart et al.,

2006; Guirado et al., 2013). In a second pathway, activation of

bronchial epithelial cells via TLR2 signaling promotes the secretion

of CXCL5, a known ligand for CXCR2 receptors expressed on

neutrophils. Consequently, neutrophils move into the airways

following the CXCL5 chemokine concentration gradient

(Nouailles et al., 2014). Early neutrophilic infiltration into the

airways depends exclusively on CXCR2 and primarily on CXCL5

as genetic ablation of CXCL5 results in impaired neutrophil

recruitment and reduced lung inflammation (Nouailles et al., 2014).

Whereas early neutrophilic inflammation plays a critical role in

protecting against tuberculosis disease progression (Kisich et al.,

2002; Dallenga and Schaible, 2016; Kroon et al., 2018), sustained

neutrophilic inflammation harms the host. Following phagocytosis,

neutrophils fail to neutralize viable M.tb bacilli. Instead, the highly

oxidative state generated in the setting of M.tb infection drives

neutrophils into necrotic versus apoptotic cell death (Dallenga and

Schaible, 2016). Mechanistically, M.tb induces ESX-1-dependent

neutrophilic necrosis driven by reactive oxygen species (ROS).

Consequently, massive accumulation of infected and dying

neutrophils further unleashes highly lytic and oxidative molecules

which cause extensive tissue necrosis (Dallenga et al., 2017).

Unfortunately, impaired dead cell removal drives further

inflammation, even after M.tb sterilization. This greatly hinders

the resolution of inflammation (Malherbe et al., 2016).

Infected and dying neutrophils mediate tissue damage via a

number of pathways, as briefly explained in this section. The

production of reactive oxygen species (ROS) during the oxidative

burst exceeds cellular antioxidant capacity, damaging cellular

structures, including lipids, protein, and DNA (Thannickal and

Fanburg, 2000). This oxidative stress drives M.tb-induced tissue

necrosis, further promoting tissue inflammation and damage (Sun

et al., 2015; Dallenga et al., 2017). Secondly, NETosis, which

involves the expulsion of DNA complexed with antimicrobial

proteins into extracellular space to form neutrophil extracellular

traps (NETs), containsM.tb bacilli. However, high levels of NETosis

coupled with ineffective clearance of bacteria in tuberculosis pose

pathological consequences in the lungs. The antimicrobial histones

and peptides coating the NET-DNA are directly cytotoxic to lung

tissue, and inadequate support of NETs causes deleterious

inflammation of host tissue (Xu et al., 2009). NETs, particularly

extracellular histones, also cause epithelial and endothelial cell

death (Xu et al., 2011). Such NETosis-induced cell necrosis

orchestrates lung inflammation and damage (Ramos-Kichik et al.,
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2009). M.tb-induced NETosis has also been associated with

macrophage activation, which drives lung inflammation and

tissue damage in TB disease, as previously described (Braian

et al., 2013). Several human studies have validated the role of

NETosis in lung tissue damage. A study reported high

citrullinated H3, a standard NET marker in serum samples from

tuberculosis patients with extensive pulmonary damage (de Melo

et al., 2019), suggesting that NET formation is associated with

severe lung tissue damage in TB patients. Similarly, NETosis was

markedly increased in the airways of stable COPD patients in

another study (Pedersen et al., 2015; Pedersen et al., 2018; Uddin

et al., 2019). Extracellular DNA correlated with absolute neutrophil

numbers in sputum and airway obstruction (Pedersen et al., 2018;

Uddin et al., 2019). Other studies have reported similar correlations

between NETosis and COPD (Obermayer et al., 2014; Grabcanovic-

Musija et al., 2015; Uddin et al., 2019). NETosis and ROS in TB

disease could contribute to irreversible lung damage, as observed in

COPD, although mechanistic studies are needed to underpin the

role of NETosis in COPD pathogenesis. Thirdly, the production of

lytic molecules such as matrix metalloproteases (MMPs),

cathepsins, S100 proteins, cathelicidins, and beta-defensins, as is

the case for activated macrophages, also drive airway pathology

(Pugin et al., 1999; Ong et al., 2015; Muefong and Sutherland, 2020).

Finally, there is increasing evidence that activated neutrophils

mediate tissue damage via cytokine production (Mantovani et al.,

2011; Etna et al., 2014). High levels of IL-8, TNFa, and IL-1b
secreted from activated neutrophils in TB disease correlate with

enhanced neutrophil migratory capacity, airway recruitment, and

heightened pro-inflammatory response in the lung environment

(Muefong and Sutherland, 2020), which could contribute to the

observed tissue necrosis. Previous studies have supported IL-8 as a

well-known factor in the pathogenesis of COPD (Larsson, 2008;

Zhang et al., 2011). IL-8 has been reported to recruit neutrophils in

airways and induce increased MUC5AC and MUC5B mRNA

expression in bronchial epithelial cells (Bautista et al., 2009). In

addition, previous studies have demonstrated higher baseline levels

of IL-8 expression in airway epithelial cells from patients with

COPD compared to healthy controls (Schneider et al., 2010). TNFa
has also been reported to promote tissue necrosis, lung fibrosis, and

weight loss in COPD (De Godoy et al., 1996; Takabatake et al.,

2000). Similarly, IL-1b has been demonstrated to promote lung

inflammation, emphysema, and airway remodeling (Schneider

et al., 2010). As COPD progresses in severity, airway neutrophilia

increases and is associated with more significant airflow obstruction

and accelerated lung function decline (Stănescu et al., 1996;

O’Donnell et al., 2004).

3.1.3 Innate lymphoid cells
Besides CXCL5 production by epithelial cells, alarmins (IL-25,

IL-33, TSLP) (Vannella et al., 2016; Gupta et al., 2017; Roan et al.,

2019) as well as cytokine production (IL-1b, IL-8, and G-CSF)

(Wickremasinghe et al., 1999; Roan et al., 2019) results in further

mobilization of innate lymphoid cells (ILCs). As elaborated in this

section, these cells promote the recruitment of other immune cells,

driving airway inflammation and tissue damage. Following
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infection, ILC2/3 cells rapidly accumulate in the airways,

promoting the recruitment of monocyte-derived macrophages

and neutrophils (Ardain et al., 2019). In a murine model, ILC3s

accumulate in the airways early in the infection, followed by ILC2

later. As the infection progresses, the ILC3 number increases

drastically, mirroring the expansion of alveolar macrophages.

These cells precede the accumulation of monocytes and

monocyte-derived macrophages in the airways. Interestingly, mice

that lacked ILC3s exhibited a significant reduction in early AMs

(Ardain et al., 2019). During M.tb infection, CXCR5 expression on

circulating ILC3s is upregulated, and parallel increases in plasma

levels of its ligand, CXCL13, have been observed in human studies.

This implies that ILC3s migrate in response to CXCL13

concentration gradient (Ardain et al., 2019). Moreover, IL-23-

dependent expansion of ILC3s in mice and the production of the

cytokines IL-17 and IL-22 are critical inducers of lung CXCL13,

promoting early mobilization of lung ILC3 and macrophages to

initiate inflammation in an attempt to control tuberculosis. This,

however, promotes tissue necrosis, consequently (Ardain et al.,

2019). Similarly, ILC3-driven immunopathology has been

reported in COPD. In a recent report, the frequency of natural

cytotoxicity receptor-expressing ILC3 cells was increased in COPD

lungs (Marashian et al., 2015). Other studies have shown that the

frequency of ILC1 cells in patients with COPD correlates with

disease severity and susceptibility to COPD exacerbations (Silver

et al., 2016). In contrast, the combination of micro-CT analysis,

histology, and gene expression profiling indicated that ILC1

signatures were enriched in centrilobular emphysema, suggesting

that the alveolar destruction observed in COPD may be driven by

ILC1s (Suzuki et al., 2017).

3.1.3 Dendritic cells
In the airways, conventional dendritic cells (cDCs) exist as

immature cells, residing beneath the mucosa for an extended period

of time (Banchereau and Steinman, 1998). These cells continuously

sample the mucosa via their dendrites’ extension in between the

epithelial cells’ tight junctions (Artis, 2008). Immature cDCs partially

mature to express CCR7, which allows them to home into draining

lymphoid tissues, in which they interact with naive T cells (Geissmann

et al., 2002). Upon contact withM.tb, immature DCs phagocytose the

bacilli, become activated, and undergo differentiation from highly

phagocytic into less phagocytic cells (Kapsenberg, 2003). At the onset

of the inflammatory response, immature cDCs are highly represented

at sites of M.tb infection and are specialized for antigen uptake (Sertl

et al., 1986; Mihret, 2012). During differentiation, however, cDCs

upregulate the expression of MHC class I and II molecules, CD40,

CD54, CD58, and CD80, resulting in a cellular phenotype consistent

with mature and activated DCs, excellent at antigen presentation

(Mihret et al., 2011). Upon phagocytosis, the fate of antigen

presentation to either CD4+ or CD8+ T cell depends on the

intracellular M.tb routing (Burgdorf et al., 2007; Chatterjee et al.,

2012; Cohn et al., 2013). Delivery of the pathogen cargo into the late

endolysosomes results in a much quicker degradation and MHC class

II antigenic loading, whereas delivery into early endosomes results in a

slower degradation with prolonged MHC class I antigenic loading.
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Upon migration into draining lymphoid tissue, mature cDCs with

class II antigen load prime naïve CD4+T cells, while those with class I

antigen load prime CD8+T cells (Burgdorf et al., 2007; Chatterjee

et al., 2012; Cohn et al., 2013). cDCs prime the adaptive immune

system and contribute significantly to early, intermediate, and late

cytokine production. During early M.tb-induced response, the release

of early mediators of inflammation such as TNF-a, IL-1a, IL-1b, IFN-
g and chemokines such as CXCL5 and CXCL8 promotes the influx of

additional monocytes, macrophages, and neutrophils into the airways

(Etna et al., 2014). As previously described, these cells orchestrate

inflammation, tissue necrosis, airway remodeling, and fibrosis. cDCs

also phagocytose apoptotic bodies from dying neutrophils, and

macrophages infected with M.tb bacilli, promoting cross-

presentation via class I molecules. Notably, the sustained release of

IL-12, IFN-g, and IFN-b cytokines from activated DCs, particularly in

the early stage ofM.tb infection, drive early granuloma formation and

containment of M.tb (Etna et al., 2014). However, excessive type I

interferon production contributes to tissue damage in the chronic

phase (LeibundGut-Landmann et al., 2007; Steinman and Banchereau,

2007). As elaborated in the next section, activated cDCs produce

several molecules with Th-polarizing abilities. For instance, IL-12, IL-

23, IL-27, and type I IFNs induce a Th1 phenotype, while MCP1 and

OX40 ligand induce a Th2 phenotype (Kapsenberg, 2003). During

chronic inflammation, DCs alternatively induce CD4+T cells to

become suppressive by making IL-10 or differentiating into FOXP3

+ CD4+T cells (Jonuleit et al., 2000; Luo et al., 2007). IL-10 counter-

regulates inflammation and induces tissue healing. However, in

chronic inflammation, it also drives fibrosis (Robb et al., 2016).

Finally, activated cDCs also produce high levels of IL-4, IL-33, and

TGF-b, which drive airway fibrosis (Mihret, 2012). Whereas the direct

role of cDC in inducing airway damage in TB has not been described,

the accumulation of mucosal cDCs in the small airways of COPD

patients supports the role of such cells in the immunopathology of

COPD (Demedts et al., 2007).
3.2 M.tb elicited adaptive immunity
and COPD

Activating the adaptive immune response to M.tb restricts

bacterial growth but rarely eliminates the bacilli (Ernst, 2012).

Evidence suggests that adaptive immune responses contribute to

airway pathology (Ernst, 2012) in TB disease as observed in COPD.

This response depends predominantly on cell-mediated immunity

because M.tb lives within macrophages; thus, effector T-cell

responses are required to contain or kill the bacteria (Flynn and

Chan, 2001). The role of B cells in controlling M.tb infection was

still unknown until recently when it was demonstrated that antigen-

specific B cells nurture and direct follicular-like T cells into

lymphoid follicles to mediate M.tb control (Swanson et al., 2023).

3.2.1 T lymphocytes
Within a week of M.tb infection, activated CD4+ and CD8+T

cells migrate to the lung-draining lymph nodes (Feng et al., 1999;

Ernst, 2012). By the end of a month, both cellular phenotypes have

increased in the lung environment, demonstrating both effector and
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memory phenotypes (Feng et al., 1999). Half of these cells are CD69

+ (Kornfeld et al., 1999; Refai et al., 2018; Chen et al., 2022),

indicating that activated T cells migrate to the site of infection,

interact with M.tb-infected macrophages and DCs through CD40L

on CD4+ T cells and CD40 on macrophages or dendritic cells

(Kalams and Walker, 1998; Clarke, 2000). The outcome was

previously reported as enhanced antigen presentation and

costimulatory activity resulting in the generation of robust CD4+

and CD8+T cells (Kalams and Walker, 1998; Clarke, 2000).

However, recent studies show that IFNg production by M.tb-

specific CD4+T cells becomes locally restricted by the granuloma

microenvironment despite ongoing antigen recognition through

TGFb dependent immune mechanisms (Gern et al., 2021). TNFa
and type I IFNs orchestrate macrophage necrosis and release ofM.tb

into the extracellular space (Pagán and Ramakrishnan, 2015).

Subsequent induction of several tissue proteases causes granuloma

degeneration (caseation), orchestrating lung tissue inflammation,

necrosis, fibrosis, and remodeling, resulting in cavitation and release

ofM.tb into the airways. Consequently, these changes gradually and

irreversibly compromise lung function leading to obstructive airway

pathology observed in COPD. In the presence of the necessary

cytokine milieu (Cooper et al., 1995), various Th1 effector subtypes

are produced, ranging from early activated cells producing only IL-2

to cells producing IFNg and multifunctional cells expressing IL-2,

IFNg, and TNFa (Darrah et al., 2007; Cooper, 2009). The presence of

these multifunctional cells is associated with protection and lung

tissue inflammation and necrosis (Darrah et al., 2007; Cooper, 2009).

In addition, cytolytic CD4+T cells secreting perforins and granulysin

are produced, promoting necrosis of M.tb-infected macrophages.

Multifunctional CD4+T cells have been reported frequently among

tuberculosis patients (Winkler et al., 2005), individuals from

endemic tuberculosis areas, and vaccinated infants (Scriba et al.,

2008; Soares et al., 2008). The conditions optimal for multifunctional

and cytolytic antigen-specific lymphocytes have yet to be fully

defined in human studies; however, recent literature suggests the

role of IL-12p70 in IFN-producing cells in maintaining this cellular

profile (Cooper et al., 2007).

In addition to Th1 cells, tuberculosis-specific Th17 cells are

induced following aerosol tuberculosis infection in mouse models;

Th17 cellular immune response in the lung microenvironment

depends on the secretion of IL-23 from activated macrophages

(Khader et al., 2005). Also, gamma delta (gd) T cells have been

shown to produce IL-17 following a high-dose intranasal challenge

with BCG in mouse models. A large portion of the IL-17 response in

the mouse model is within the gd T cell population (Lockhart et al.,

2006). Interestingly, upon blockade of IL-17 secretion during a

high-dose challenge, neutrophil recruitment into the lung

microenvironment is significantly hindered, altering the

subsequent inflammation and lung pathology (Umemura et al.,

2007). The repeated challenge of tuberculosis-infected animals with

tuberculosis antigen results in increased lung neutrophil infiltration

and subsequent tissue necrosis (Taylor et al., 2003). Studies

investigating the role of IL-17 in this enhanced pathology have

found that increased tissue necrosis and neutrophilic infiltration is

dependent on IL-23 and could be ablated by the delivery of anti-IL-

17 antibody, suggesting that lung inflammation developing in
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response to chronic tuberculosis exposure depends on IL-23 and IL-

17 (Darrah et al., 2007; Cooper, 2009). In human studies, CD4+

M.tb-specific IL-17- and IL-22-producing cells have been detected

in individuals exposed to tuberculosis, although only IL-22 is seen

in the lung (Scriba et al., 2008). Similarly, CD1- and MHC class I–

restricted CD8+ T cells in the lungs, upon activation, produce

cytotoxic granules which, upon degranulation on infected

macrophages and dendritic cells, release perforins forming pores

in cells and granulysin, killing both bacteria and infected

macrophages (Ernst, 2012). In addition, CD8+T cells produce

IFNg, which potentiates macrophage function (Flynn and Chan,

2001). In summary, Th1 CD4+ and CD8+T cell activation in

tuberculosis amplify macrophage activation and necrosis, while

Th17 promotes neutrophil-mediated tissue necrosis, which drives

lung inflammation, tissue damage, and remodeling.

3.2.2 B lymphocytes
In addition to T cell-mediated immune responses toM.tb, naïve

B cells also develop into activated plasma cells that secrete M.tb-

specific antibodies and produce cytokines (Rao et al., 2015; Loxton,

2019). Antibodies regulate effector functions, including

opsonization, antibody-dependent cellular cytotoxicity (ADCC),

and antigen neutralization. Furthermore, activated B cells are

effective antigen-presenting cells that respond to whole or partial

pathogens, presenting processed antigen peptides through their

MHC-II to CD4+T cells (Abbas et al., 2019). As a result, B-cells

contribute to the induction of CD4+ T-cells responses to

tuberculosis, providing early protection against infection and

driving antibody-mediated phagocytosis in which they modify

macrophage behavior (Phuah et al., 2012). B-cells also respond in

a non-humoral manner when stimulated by M.tb to produce pro-

and anti-inflammatory cytokines, including TNFa, IL-10, IL-1b, IL-
17, and IL-21 (Du Plessis et al., 2016b; Du Plessis et al., 2016a).

Plasma (memory B) cells predominantly drive IL-10, IL-21, and

TNFa production (Du Plessis et al., 2016b; Du Plessis et al., 2016a).

Through the production of IL-12, IFNg, and TNFa, effector B cells

drive Th1 responses potentiating classical macrophage activation

and, consequently, lung inflammation, tissue damage, and fibrosis

(Chan et al., 2014). Production of IL-4, IL-33, and TGF-b by effector
B cells disrupts Th1 response and favors alternative macrophage

activation, promoting fibroblast activation, tissue remodeling, and

fibrosis (Zhang et al., 2012). Preliminary COPD studies have

suggested B cells’ role in COPD pathogenesis. Lymphoid follicles

consisting of B-cells and follicular dendritic cells (DCs) with

adjacent T-cells have been reported in both parenchyma and

bronchial walls of patients with smoke-induced emphysema (van

der Strate et al., 2006). Similarly, reported oligoclonal antigen-

specific B-cell reactions among current smokers have been

published (Brandsma et al., 2009). Plasma cells derived from B-

cell maturation occur in more significant numbers in sub-epithelial

and submucosal glands in patients with COPD. Most of these B cells

express IL-4 and IL-5 (Zhu et al., 2007), which promote mucous

hypersecretion and stimulation of fibroblasts to produce TGFb,
promoting tissue remodeling. More research is needed to

characterize M.tb-specific B cell responses in the context of

COPD pathogenesis.
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4 Other important mediators of
tuberculosis-associated COPD

4.1 Bacterial genetics

Until recently, the role of bacterial genetics in M.tb clinical

outcome was only associated with the host and environmental

factors (Warner et al., 2015). With the advent of whole genome

sequencing (WGS), seven human-adapted lineages were reported and

associated with distinct virulence and transmissibility (Coscolla and

Gagneux, 2014). The modernM.tb lineages (Lineages 2, 3, and 4) have

been reported to be more virulent and transmissible than the ancient

lineages (Lineages 1, 5, 6, and 7) (Wang et al., 2010; Sarkar et al., 2012).

This heterogeneity in virulence and transmissibility has implications

for the clinical outcome of the disease. For example, in a preclinical

M.tb infection model, virulent Beijing strains cause higher bacillary

loads, more lung damage, and earlier mortality compared to strains

from other lineages (Ordway et al., 2007). Follow-up mechanistic

studies have suggested that Beijing strains have enhanced capacity to

inhibit protective immunity in the lungs through induction of higher

levels of type-I interferons, lower levels of IL-12 and TNF-a, and
reduced CD4/CD8+T-cell activation (Manca et al., 2001; Reed et al.,

2004; Manca et al., 2005). However, other studies have indicated that

the Beijing strains induce a more robust regulatory T-cell response

than different strains, thereby down-regulating protective immunity

(Ordway et al., 2007; Shang et al., 2011). Furthermore, a mouse

infection model demonstrated that different M.tb transmission

phenotypes are associated with distinct pulmonary pathologies

(Verma et al., 2019; Lovey et al., 2022). High transmission M.tb

strains (M.tb-HT) were related to necrotic caseating lung granulomas

with great potential to cavitate, while low transmission strains (M.tb-

LT) were associated with diffuse lung inflammation. Therefore, the

distinct pulmonary pathologies related to the differentM.tb genotypes

could have implications for COPD. Literature examining the

relationship between M.tb strains and COPD pathology is very

limited. With recent evidence for pulmonary impairment after

tuberculosis (PAIT) in the context of high versus low M.tb

transmission strains, investigators are now examining the

relationship between high vs. low transmission M.tb strains and

COPD outcome phenotype. Follow-up human studies involving

spirometry and radiological imaging in individuals diagnosed with

high transmission versus low transmission strains will illuminate this

relationship further.
5 The implication of immune
pathways in guiding host-directed
therapeutics for COPD

Immune pathways orchestrating lung tissue damage and fibrosis

in tuberculosis or post-tuberculosis disease warrant a careful search

into possibilities of using a select group of immune-based therapies

optimal for patients diagnosed with tuberculosis-associated COPD

(Barnes and Stockley, 2005). This section discusses a select list of

immune-based therapies for tuberculosis, traditionally referred to as
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host-directed therapies (HDTs). Host-directed immune therapies have

been extensively reviewed as potential adjuvants to the standard M.tb

treatment and have demonstrated the potential to shorten TB

treatment duration, curb emerging antimicrobial drug resistance,

and reduce airway injury and fibrosis in post-TB patients (Wallis

and Hafner, 2015; O’Connor et al., 2016; Wallis et al., 2016; Kolloli

and Subbian, 2017; Yang, 2017; Du Plessis et al., 2018; Kaufmann

et al., 2018). Figure 2 summarizes the potential targets of host-directed

therapy that could be used to treat TB-associated COPD. Below, we

discuss a few host-directed therapies (HDTs) that have shown promise

in clinical trials. Phosphodiesterase 4 (PDE4) inhibitor has shown

promise in clinical investigations. In a 6-week trial, a PDE4 inhibitor

improved lung function among individuals with moderate-to-severe

COPD (Vestbo et al., 2009). In patients with advanced TB disease,

PDE4 inhibitors improved FEV1 at six months post-treatment (Wallis

et al., 2021). mTOR inhibitors have also been investigated as host-

directed therapies in TB patients. In a similar study as described above,

Everolimus, an mTOR inhibitor, enhanced the recovery of FEV1 at

month 6 post-TB treatment (Wallis et al., 2021). Auranofin (oral gold

salt), and ergocalciferol (vitamin D), tested in the same study, were

reported ineffective (Wallis et al., 2021). Leukotriene BLT1-receptor

antagonists had been developed to treat neutrophilic inflammation

among COPD patients (Silbaugh et al., 2000; Beeh et al., 2003). The

same antagonists also inhibit the neutrophil chemotactic activity of

sputum obtained from COPD patients, indicating their potential

clinical value (Silbaugh et al., 2000; Beeh et al., 2003). A human

monoclonal anti-IL-8 neutralizing antibody has been tested in

tuberculosis associated-COPD. Whereas it minimally reduced

dyspnea scores, there was no statistically significant clinical

improvement field (Mahler et al., 2004). CXCR2 inhibitors have

proven particularly beneficial in COPD and are being tested in

clinical trials (Widdowson et al., 2004). Also, CXCR3 antagonists,

which inhibit the recruitment of CD8+ T-cells into airways, might be

helpful (Saetta et al., 2002). Antioxidants such as N-acetyl cysteine,

stable glutathione compounds, analogs of superoxide dismutase, and

selenium-based drugs have also been developed for clinical use and

selective inhibitors of iNOS (MacNee, 2000; Kharitonov and Barnes,

2003). Using non-selective signal transduction pathways inhibitors

such as NF-kB and p38 MAPK inhibitors may result in immune

suppression and impair host defense, worsening tuberculosis disease

(Underwood et al., 2000; Castro et al., 2003). However, more selective

PI3Kg inhibitors may have relevant anti-inflammatory activity in

COPD, and small molecule inhibitors of PI-3Kg have been

developed (Sasaki et al., 2000). In addition, Metformin and statins

have been implicated as potential therapeutic agents for lung fibrosis

(Wallis and Hafner, 2015; Sato et al., 2016; Tahir et al., 2020).

Mechanistically, metformin enhances autophagy and improves

mitochondrial bioenergetics (Bharath et al., 2020), whereas statins

block 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA)

reductase, the rate-limiting enzyme in the cholesterol biosynthesis

pathway (Stancu and Sima, 2001).

In summary, whereas host-directed therapies have been

extensively investigated as potential adjuvants to the standard

M.tb treatment and have demonstrated the potential to shorten

TB treatment duration, such evidence is lacking for COPD after

tuberculosis. More importantly, the exact time when HDTs should
Frontiers in Cellular and Infection Microbiology 10
be started in TB patients is unknown. Therefore, more studies are

warranted testing the timing of administration and effectiveness of

these molecules in the context of TB-associated COPD.
6 Conclusion

In summary, in this review article, we have described immune

pathways that may drive the immunopathogenesis of tuberculosis-

associated COPD and their implications in the management of

tuberculosis associated-COPD. The immune responses are

predominantly characterized by activation and migration of

alveolar macrophages from alveolar spaces into the lung

parenchyma, coupled with recruitment of neutrophils; monocytes

derived macrophages, B-cells, innate lymphoid cells, Th1, Th17,

and cytotoxic CD8+T-cells into lung microenvironment. Their

interaction with airway epithelial cells, fibroblasts, and the

extracellular matrix culminates in sustained lung inflammation,

tissue necrosis, and airway remodeling. Therefore, these changes

gradually compromise lung function. Using this knowledge, we can

harness the latest developments in COPD immune therapies and

utilize them to make host-directed therapeutic choices optimal for

tuberculosis-associated COPD or prevent lung injury.
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