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Commensal colonization
reduces Pseudomonas
aeruginosa burden and
subsequent airway damage

Sara N. Stoner, Joshua J. Baty, Lea Novak
and Jessica A. Scoffield*

Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
Pseudomonas aeruginosa dominates the complex polymicrobial cystic fibrosis

(CF) airway and is a leading cause of death in persons with CF. Interestingly, oral

streptococcal colonization has been associated with stable CF lung function. The

most abundant streptococcal species found in stable patients, Streptococcus

salivarius, has been shown to downregulate pro-inflammatory cytokines in

multiple colonization models. However, no studies have demonstrated how S.

salivarius potentially improves lung function. Our lab previously demonstrated

that the P. aeruginosa exopolysaccharide Psl promotes S. salivarius biofilm

formation in vitro, suggesting a possible mechanism by which S. salivarius is

incorporated into the CF airway microbial community. In this study, we

demonstrate that co-infection of rats leads to enhanced S. salivarius

colonization and reduced P. aeruginosa colonization. Histological scores for

tissue inflammation and damage are lower in dual-infected rats compared to P.

aeruginosa infected rats. Additionally, pro-inflammatory cytokines IL-1b, IL-6,
CXCL2, and TNF-a are downregulated during co-infection compared to P.

aeruginosa single-infection. Lastly, RNA sequencing of cultures grown in

synthetic CF sputum revealed that P. aeruginosa glucose metabolism genes

are downregulated in the presence of S. salivarius, suggesting a potential

alteration in P. aeruginosa fitness during co-culture. Overall, our data support

a model in which S. salivarius colonization is promoted during co-infection with

P. aeruginosa, whereas P. aeruginosa airway bacterial burden is reduced, leading

to an attenuated host inflammatory response.
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Introduction

Pseudomonas aeruginosa causes multi-drug resistant infections

in persons with cystic fibrosis (CF), which lead to chronic

inflammation and a subsequent decline in lung function

(Bhagirath et al., 2016; Martinez-Garcı ́a et al., 2021). P.

aeruginosa infection causes significant neutrophil influx and pro-

inflammatory cytokine release, which is ineffective at clearing P.

aeruginosa from the CF lung (Hayes et al., 2011). Additionally,

CFTR dysfunction has been shown to induce elevated inflammatory

cytokines and neutrophilic response in the absence of bacterial

infection (Roesch et al., 2018). This combination of dysregulated

inflammatory responses in the absence of functioning CFTR and

further inflammatory induction by P. aeruginosa infection can lead

to lung tissue damage and decline in lung function (Roesch

et al., 2018).

Multiple studies have suggested that Streptococcus species are

associated with stable CF lung function (Filkins et al., 2012; Coburn

et al., 2015). The most prevalent Streptococcus species found in

stable persons with CF was Streptococcus salivarius, a commensal

commonly found in the oral cavity (Filkins et al., 2012). S. salivarius

has been shown to downregulate inflammatory cytokines in

multiple cell models of colonization (Cosseau et al., 2008;

Guglielmetti et al., 2010; Kaci et al., 2011; Kaci et al., 2014).

Additionally, S. salivarius can inhibit inflammatory cytokine

release that is stimulated by bacterial pathogens including P.

aeruginosa in cell models (Cosseau et al., 2008; MacDonald et al.,

2021). Further, the oral commensal Streptococcus mitis was shown

to reduce P. aeruginosa-induced inflammation in a murine

infection model (Tony-Odigie et al., 2022).

Oral commensals including S. salivarius have not only been

shown to downregulate host inflammatory pathways, but also

inhibit pathogen growth and colonization. For example, S.

salivarius has also been shown to inhibit colonization of

Streptococcus pneumoniae on epithelial cells (Manning et al.,

2016). Additionally, S. salivarius inhibits growth of the

oropharyngeal pathogen Streptococcus pyogenes via bacteriocin

production (Upton et al., 2001). Although S. salivarius has been

shown to downregulate host pro-inflammatory pathways and

inhibit growth of specific respiratory pathogens, no studies have

examined how S. salivarius impacts P. aeruginosa pathogenesis

during airway infection.

We previously demonstrated that S. salivarius biofilm

formation and colonization of Drosophila melanogaster is

promoted by the P. aeruginosa exopolysaccharide Psl, serving as a

possible mechanism by which S. salivarius incorporates into the CF

airway microbial community (Stoner et al., 2022). In an effort to

understand how these interspecies interactions affect lung function

during P. aeruginosa infection, we utilized a rat co-infection model.

We found that co-inoculation with S. salivarius decreased P.

aeruginosa colonization. Pro-inflammatory cytokines IL-1a, IL-
1b, IL6, TNF-a, and CXCL-2 were downregulated in co-infected

groups compared to animals infected with P. aeruginosa alone.

Additionally, histological scores were lower on average in dual-

infected animals compared to P. aeruginosa-infected animals.

Finally, P. aeruginosa glucose metabolism genes were
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downregulated in the presence of S. salivarius in synthetic CF

sputum, suggesting a potential alteration in P. aeruginosa fitness

during dual infection in the airway. Overall, our study supports a

mechanism by which S. salivarius decreases P. aeruginosa bacterial

burden in the rat lung, which leads to a decrease in airway

inflammation and tissue damage.
Results

S. salivarius colonization is promoted and
P. aeruginosa colonization is inhibited in
co-infected rats

We previously reported that the non-mucoid P. aeruginosa

strain PAO1 promotes both S. salivarius biofilm formation in vitro

as well as colonization in a Drosophila oral infection model (Stoner

et al., 2022). To determine whether P. aeruginosa promotes S.

salivarius colonization in the context of the CF lung, we infected

wildtype bronchial epithelial cells (16HBE) and CFTR KO bronchial

epithelial cells (CFBE) with PAO1 and S. salivarius strain K12 and

quantified adherent CFUs after 6 hours (Figure 1A). S. salivarius

colonization increased significantly in the presence of P. aeruginosa,

while no change in P. aeruginosa colonization was observed. Next, to

determine whether S. salivarius is promoted and impacts P.

aeruginosa pathogenesis in a mammalian model, we co-infected

Sprague Dawley rats simultaneously with P. aeruginosa (~108 CFU)

and S. salivarius (~107 CFU). Consistent with our previous findings,

S. salivarius colonization significantly increased in the presence of P.

aeruginosa (Figure 1B). However, contrary to our previous data

showing no effect on P. aeruginosa growth by S. salivarius in vitro, we

observed that P. aeruginosa colonization of the rat airway is inhibited

in the presence of S. salivarius. These data indicate that this oral

commensal may provide protection in the CF airway by restricting P.

aeruginosa colonization.
Lung tissue inflammation is attenuated in
dual-infected rats

Since P. aeruginosa colonization was inhibited in the presence

of S. salivarius, we examined whether tissue damage was also

reduced in the presence of S. salivarius during P. aeruginosa

infection (Figure 2A). Upper and lower regions of the left lung

were scored in a blind fashion for severity of inflammation. On

average, S. salivarius and P. aeruginosa single and dual infections

induced more inflammation in the lower airway compared to the

upper airway (Figure 2B). S. salivarius alone induced mild

neutrophil influx to the lungs with an average histopathological

score of 0.037 for the upper region and 0.55 for the lower region.

Overall, P. aeruginosa single infection induced more airway

inflammation than dual infection with S. salivarius and P.

aeruginosa. In the upper region of the airway, P. aeruginosa

single-infected lungs had an average histological score (H-score)

of 1.25, while dual infected lungs had an H-score of 0.76. In the

lower regions of the airway, P. aeruginosa-infected lungs received
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an average H-score of 1.66, while dual-infected lungs received an

average H-score of 1.16 (Figure 2B). All uninfected control rats and

half of S. salivarius-infected rats had a maximum histology grade of

0. Over half of P. aeruginosa-infected rats had areas of inflammation

with a maximum grade of 3, which is marked by significant

neutrophilic influx and irreversible damage to alveolar walls.
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Notably, over 80 percent of dual-infected rats had areas of

inflammation with a maximum grade of 2, indicating significant

neutrophil influx and preservation of alveolar wall structure

(Figure 2C). Taken together, these data suggest that dual-infected

rats are better protected from permanent alveolar wall damage

during P. aeruginosa infection.
B C

A

FIGURE 2

Lung inflammation is attenuated in dual-infected rats. Sprague Dawley rats were intranasally inoculated with PAO1 (~108 CFU) and/or Ss (107 CFU)
and euthanized 16 hours post-infection. (A) Hematoxylin and eosin staining of upper and lower lung sections (100x magnification). (B). Severity of
inflammation was graded in a blinded fashion by a board-certified pathologist (L.N.). (C) Parts of a whole graph showing the highest maximum
grades of individual rats in each infection group. Error bars indicate standard error of the mean, n = 7-8, X = female, O = male. Kruskal Wallis with
Dunn’s multiple comparisons test. *P<0.05, **P<0.01, ***P<0.001.
BA

FIGURE 1

S. salivarius colonization is promoted while P. aeruginosa colonization is inhibited in a dual-infection rat model. (A) 16HBE and CFBEs were infected
with Ss and/or PAO1 for 6 hours (n=3 biological, 2 technical replicates). (B) Rats were intranasally inoculated with overnight cultures of Ss (~107 CFU)
and/or PAO1 (~108 CFU), or PBS. After 16 hours, CFUs from lung homogenates were quantified. Mann-Whitney test. Error bars indicate standard
error of the mean, n = 8. **P<0.01, ***P<0.001.
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Pro-inflammatory cytokines are
downregulated in dual-infected rats

To further characterize the inflammatory response to P.

aeruginosa in the presence of S. salivarius, inflammatory

cytokines and chemokines that play a role in innate immunity

were measured, including IL-1a, IL-1b, IL-6, CXCL2, and TNF-a
(Figure 3). P. aeruginosa single-infection elicited a robust response

in all cytokines and chemokines, while S. salivarius single-infection

did not elicit a significant response compared to un-infected

controls. While not statistically significant, all cytokine levels were

substantially lower in dual-infected rats compared to P. aeruginosa-

infected rats. Notably, IL-6 and CXCL2 levels were not significantly

different in dual-infected rats compared to uninfected controls

(Figures 3C, D). No significant changes in IL-10 levels were

observed between all four infection groups (Figure S1A). IFN-g
was induced in both P. aeruginosa-infected and dual-infected rats

(Figure S1B).
Neutrophil recruitment and activity are
not affected by S. salivarius during
P. aeruginosa infection

We investigated whether neutrophil recruitment or activity was

altered by the presence of S. salivarius during P. aeruginosa

infection (Figure 4A). When measuring absolute counts of
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neutrophils, S. salivarius alone did not stimulate significant

neutrophil recruitment compared to uninfected animals. Both P.

aeruginosa infection and dual infection elicited neutrophil

recruitment to the lungs, however, there was no significant

difference between the two groups. Myeloperoxidase levels were

then measured as a function of neutrophil activation (Figure 4B). S.

salivarius alone did not induce significant neutrophil activation

compared to uninfected controls. Both P. aeruginosa infection and

dual infection induced myeloperoxidase release, but the presence of

S. salivarius during P. aeruginosa infection did not affect

myeloperoxidase levels.
P. aeruginosa sugar metabolism genes
are downregulated in the presence
of S. salivarius

To understand how S. salivarius may inhibit P. aeruginosa

growth in the airways, we measured the transcriptomic response of

P. aeruginosa genes in the presence and absence of S. salivarius

(Figure 5A). S. salivarius and P. aeruginosa biofilm samples were

cultured in vitro in either tryptic soy broth medium (TSBYE) or a

synthetic cystic fibrosis sputum medium (SCFM2), which

accurately mimics the nutritional environment of the CF airway

(Turner et al., 2015). Additionally, the fitness of P. aeruginosa in

SCFM2 is comparable to that of P. aeruginosa in CF sputum

samples recovered from the lung (Turner et al., 2015). RNA
B C

D E

A

FIGURE 3

Inflammatory cytokines are downregulated in dual-infected rats. (A–E) Cytokine analysis was performed on BAL supernatant of rats infected with Ss
and/or PAO1, or PBS for 16 hours. Error bars indicate standard error of the mean, n = 7-8, X = female, O = male. One-way ANOVA with Šίdák’s multiple
comparisons test for parametric data, or Kruskal-Wallis with Dunn’s multiple comparisons test for nonparametric data. *P<0.05, **P<0.01, ***P<0.001.
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sequencing revealed the downregulation of ten genes involved in P.

aeruginosa glucose metabolism in the presence of S. salivarius.

Genes PA3186 (oprB), PA3187 (gltK), PA3188 (gltG), PA3189

(gltF), and PA3190 are involved in glucose uptake. PA3181

(edaA), PA3182 (pgl), and PA3183 (zwf) are involved in the

catabolic conversion of glucose to pyruvate. PA3191 (gtrS) and

PA3192 (gltR) comprise a two-component system that regulates

expression of specific genes involved in glucose metabolism (Suzuki

andWood, 1980; Ma et al., 1998; Hager et al., 2000; Daddaoua et al.,

2014). To confirm our RNA sequencing results that suggested S.

salivarius reduces the ability of P. aeruginosa to uptake glucose, we

measured intracellular glucose levels in P. aeruginosa during co-

culture with S. salivarius. P. aeruginosa was cultured in SCFM2 in

the presence or absence of S. salivarius. S. salivarius was separated

from P. aeruginosa by a 0.4mM transwell insert to properly isolate P.

aeruginosa for glucose measurements after culturing. After 6 hours,
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P. aeruginosa intracellular glucose levels were significantly lower in

the presence of S. salivarius compared to P. aeruginosa single-

species cultures (Figure 5B). Overall, our data suggests that S.

salivarius may interfere with the ability of P. aeruginosa to

efficiently catabolize nutrients in the CF airway.
Discussion

P. aeruginosa causes airway infections in persons with CF that

lead to chronic inflammation and a decline in lung function. There

is a growing body of literature demonstrating the effects of

interspecies interactions on the behavior and virulence of P.

aeruginosa, which may have a significant impact on clinical

outcomes (Al-Wrafy et al., 2023). Remarkably, oral commensal

streptococci have been correlated with improved lung function in
BA

FIGURE 5

P. aeruginosa sugar metabolism genes are downregulated in the presence of S. salivarius. (A) Heat map demonstrating differential expression of ten
PAO1 sugar metabolism genes in the presence of S. salivarius- PA3181 (2-keto-3-deoxy-6-phosphogluconate aldolase EdaA), PA3182 (6-
phosphogluconolactonase Pgl), PA3183 (glucose-6-phosphate 1-dehydrogenase Zwf), PA3186 (glucose outer membrane porin OprB), PA3187 (ATP
binding component of ABC sugar transporter GltK), PA3188 (permease of ABC sugar transporter GltG), PA3189 (permease of ABC sugar transporter
GltF), PA3190 (binding protein component of ABC sugar transporter), PA3191 (glucose transport sensor GtrS), and PA3192 (two-component response
regulator GltR). (B) PAO1 intracellular glucose levels in the presence or absence of Ss. Mann-Whitney test. Error bars indicate standard error of the
mean (n=3 biological, 3 technical replicates). **P<0.01.
BA

FIGURE 4

Neutrophil recruitment and activity are not altered by S. salivarius presence during P. aeruginosa infection. (A) Quantification of absolute neutrophil
counts in BAL samples after intranasal inoculation with Ss and/or PAO1, or PBS. Kruskal Wallis with Dunn’s multiple comparisons test. (B) Quantification
of myeloperoxidase in BAL supernatant. One-way ANOVA with Šίdák’s multiple comparisons test. Error bars indicate standard error of the mean, n = 7-
8, X = female, O = male. **P<0.01, ***P<0.001.
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the CF airway (Filkins et al., 2012; Cuthbertson et al., 2020).

Additionally, a decrease in prevalence of streptococci has been

associated with a decline in lung function (Coburn et al., 2015).

Therefore, it is important to understand howmembers of the airway

microbial community may prevent airway inflammation and tissue

damage. In this study, we examined the role of S. salivarius, the

most prominent commensal linked to stable CF lung function, on P.

aeruginosa pathogenesis in a cell culture and rat airway model. Our

study reveals that P. aeruginosa promotes S. salivarius colonization

in both wildtype and CF bronchial epithelial cells, and in a rat

model of infection. Interestingly, S. salivarius reduced P. aeruginosa

burden in the rat model, in addition to key pro-inflammatory

markers and tissue damage. Moreover, transcriptomic analysis of

dual cultures grown in SCFM2 indicated that the oral commensal

downregulated genes that are important for P. aeruginosa to

metabolize glucose, which could potentially hinder P. aeruginosa’s

ability to compete for and metabolize nutrients in the polymicrobial

airway. In summary, our study reveals diverse mechanisms by

which S. salivarius may provide protection against P. aeruginosa

during CF airway infection. Oral commensals including S. salivarius

have previously been shown to downregulate inflammatory

responses in cell culture and murine infection models (Cosseau

et al., 2008; Guglielmetti et al., 2010; Kaci et al., 2011; Kaci et al.,

2014; Tony-Odigie et al., 2022). Because P. aeruginosa bacterial

burden is reduced during co-infection with S. salivarius, we cannot

definitively conclude that the decrease in tissue inflammation and

inflammatory cytokine release during co-infection is due to direct

downregulation by S. salivarius. Additionally, the anti-

inflammatory cytokine IL-10 was not significantly induced during

S. salivarius single-infection or during dual infection. IL-10 is

known to inhibit expression of inflammatory cytokines, including

IL-1, IL-6, and TNF (Mosser and Zhang, 2008). These findings

suggest that the observed decrease in some inflammatory cytokines

during dual infection is not caused by an anti-inflammatory

response induced by S. salivarius, but rather by a decrease in P.

aeruginosa bacterial burden.

We demonstrated that the presence of S. salivarius decreases P.

aeruginosa airway bacteria burden. We did not observe any increases

in immune cell recruitment or activity during co-infection that

would suggest that the immune system clears P. aeruginosa from

the airway more efficiently in the presence of S. salivarius. Studies

have shown that S. salivarius directly inhibits S. pneumoniae

adhesion to pharyngeal cells (Manning et al., 2016). Therefore, S.

salivarius may have the capacity to inhibit P. aeruginosa adherence

to airway cells. Alternatively, the observed decrease in P. aeruginosa

colonization may be due to changes in P. aeruginosa gene expression

profile and behavior in the presence of S. salivarius. Ten genes

involved in P. aeruginosa glucose uptake and metabolism were

downregulated in the presence of S. salivarius. Additionally, P.

aeruginosa intracellular glucose levels significantly decreased in the

presence of S. salivarius. Previous work demonstrates that elevated

glucose concentrations in the airway surface liquid (ASL) lead to

increased P. aeruginosa bacterial burden (Garnett et al., 2013).

Further, deletion of P. aeruginosa genes involved in glucose uptake

have been shown to attenuate virulence in a Galleria mellonella

model of infection (Raneri et al., 2018). Taken together, previous
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literature suggests that downregulation of P. aeruginosa glucose

metabolism genes in the presence of S. salivarius may lead to

reduced colonization efficiency and virulence. However, further

experiments will need to be performed to confirm that decreased

glucose uptake in the presence of S. salivarius leads to a decrease in P.

aeruginosa colonization and fitness. While glucose metabolism genes

were downregulated in the presence of S. salivarius in both TSBYE

and SCFM2, we observed a more drastic decrease in SCFM2. This

may be due to lower glucose availability in SCFM2 (13.8mM glucose)

compared to TSBYE (3mM glucose) (Turner et al., 2015).

Additionally, two downregulated genes identified via RNA

sequencing comprise a two-component system- gtrS, a glucose

transport sensor, and gltR, a two-component response regulator.

GtrS has been shown to modulate colonization and dissemination in

a murine infection model through modulation of the type III

secretion system (T3SS) (O'Callaghan et al., 2012). Further studies

are warranted to better understand how downregulation of gltR and

gtrS, and glucose metabolism genes in general, affect P. aeruginosa

fitness during infection, in addition to nutritional competition with

airway microbiota.

S. salivarius colonization was significantly increased in the presence

of P. aeruginosa in our bronchial epithelial cell and rat models of

infection. We previously demonstrated that the exopolysaccharide Psl

produced by P. aeruginosa strain PAO1 promoted S. salivarius biofilm

formation in vitro and colonization in a Drosophila melanogaster

model of infection (Stoner et al., 2022). This phenotype is not

exclusive to S. salivarius; our lab previously demonstrated that

biofilm formation of Streptococcus parasanguinis, another oral

commensal, is promoted by the exopolysaccharide alginate produced

by P. aeruginosa (Scoffield et al., 2017). Additionally, Psl is expressed by

P. aeruginosa in the CF airway and is important for aggregate

formation and persistence in the CF lung (Jennings et al., 2021;

Morris et al., 2022). Therefore, the promotion of S. salivarius

colonization that we observed on bronchial epithelial cells and in rat

airways may be due to interactions between S. salivarius and Psl

produced by P. aeruginosa. Additional research is needed to uncover

the role of Psl in enhanced S. salivarius airway colonization and

whether this increase in S. salivarius colonization plays a role in

inhibition of P. aeruginosa during dual infection.

We observed that the highest inflammatory cytokine responses

from P. aeruginosa infection were in female rats. This is supportive

of clinical data that demonstrates females with CF have worse

pulmonary exacerbation outcomes during P. aeruginosa infection

than men (Montemayor et al., 2021). Additionally, adult women

have been shown to mount stronger innate and adaptive immune

responses than men (Klein and Flanagan, 2016). Research also

suggests that estrogen increases P. aeruginosa pyocyanin

production and swarming motility, which could lead to more

severe P. aeruginosa infections in women (Tyrrell and Harvey,

2020). Further research and a larger sample size is needed to

determine whether sex is related to altered clinical outcomes in a

rat P. aeruginosa infection model.

While our findings help us better understand the impact of

polymicrobial communities on P. aeruginosa airway infections,

there are limitations in this study that warrant further discussion.

The P. aeruginosa strain used in this co-infection model, PAO1, is a
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lab-adapted P. aeruginosa strain. Further studies with acute CF

isolates of P. aeruginosa that are phenotypically similar to PAO1 are

needed to confirm whether clinical isolates that more accurately

mimic early P. aeruginosa infection in the CF airway recapitulate

the same phenotype observed during dual infection with S.

salivarius. Another limitation is that gene expression profiling of

P. aeruginosa in the presence and absence of S. salivarius was

performed on in vitro cultures grown in SCFM2. The gene

expression profile of P. aeruginosa cultured in SCFM2 has been

previously shown to closely mimic the expression profile of P.

aeruginosa during infection of the CF airway (Turner et al., 2015).

However, transcriptomic profiling of P. aeruginosa taken from rat

lungs during single and dual infection may further inform about the

impact of S. salivarius on P. aeruginosa behavior in the airway.

In summary, co-infection with P. aeruginosa and the oral

commensal S. salivarius leads to reduced P. aeruginosa airway

bacterial burden and, subsequently, reduced inflammation and tissue

damage in the lungs. Additionally, the presence of S. salivarius may

alter P. aeruginosa fitness and the ability to colonize the host via

downregulation of P. aeruginosa glucose metabolism genes. This study

highlights the potential of commensal streptococci to modulate CF

airway disease caused by P. aeruginosa infection. Further studies will

uncover specific mechanisms by which oral commensals, including S.

salivarius, inhibit P. aeruginosa colonization and pathogenesis, which

may lead to improved therapeutic strategies.
Materials and methods

Bacterial strains, cell lines, and
growth conditions

Strains S. salivarius K12 and P. aeruginosa PAO1 were used in

this study. S. salivarius was grown on Todd-Hewitt Broth

(Cuthbertson et al., 2020) agar (Becton Dickinson) and cultured

statically at 37 °C in 5% CO2 in THB. P. aeruginosa was grown on

Pseudomonas Isolation Agar (PIA; Becton Dickinson) and cultured

in Luria broth (LB; Fisher) and incubated while shaking (250 rpm) at

37 °C. Biofilm assays were performed on the immortalized wildtype

human bronchial epithelial cell line 16HBE and the immortalized

DF508/DF508 CF bronchial epithelial cell line CFBE41o- (Cozens

et al., 1994). Cells were maintained with minimal essential medium

(MEM) supplemented with 10% fetal bovine serum. Cells were

polarized by seeding at a density of 5x105 on the apical surface of

transwell filters and growing at 37°C for 7 days before removing the

apical media and growing for 7 days at air-liquid interface.
Cell infection assays

P. aeruginosa and S. salivarius overnight cultures were

normalized to OD600 0.5 in minimal essential medium (MEM)

supplemented with 5% L-glutamine. Cells were infected with

normalized cultures that were diluted 1:25 in MEM and incubated

for 1 hour at 37°C with 5% CO2. After 1 hour, inoculumwas removed

from cells, centrifuged at 13,000 rpm for 2 minutes to remove
Frontiers in Cellular and Infection Microbiology 07
planktonic bacteria, and added back to cells. L-arginine was then

added to inoculum for final concentration of 0.4% to encourage

biofilm growth. Cells were then further incubated for 5 hours at 37°C.

To quantify viable adherent bacteria, cells were washed with MEM,

then treated with 0.1% Triton X-100 for 15 minutes to remove cells

from transwells. Cells were then vortexed for 3 minutes, diluted, and

plated on THB agar plates for bacterial counts.
Rat model of respiratory infection

Sprague Dawley rats (8 weeks of age) were obtained from

Taconic Biosciences (Albany NY). For single infections, rats were

inoculated intranasally with 300ul P. aeruginosa (~108 CFU) or S.

salivarius (~107 CFU) resuspended in phosphate buffered saline

(PBS). For dual infections, rats were inoculated intranasally with

300ul PBS containing P. aeruginosa (~108 CFU) and S. salivarius

(~107 CFU). Lungs were flushed with 4ml sterile PBS. Samples were

stored on ice until processing, then centrifuged at 1500 rpm for 5

minutes. Supernatant was removed and stored at -80°C for future

cytokine analysis, and pelleted cells were used for differential cell

counting. The right lung of each rat was placed in 1ml sterile PBS,

homogenized, and plated on Todd Hewitt Broth agar plates for

viable bacterial cell quantification. The left lung of each rat was

inflated with 10% neutral-buffered formalin and stored at 4°C for

histological analysis. All rat infection protocols were approved by

the University of Alabama at Birmingham (UAB) Institutional

Animal Care and Use Committees (IACUC protocol 21546).
Cytokine analysis and differential
cell counting

BALF sample supernatants were used for cytokine

quantification. CXCL2, IL-6, MPO, and TNF-a were measured

using the CXCL2, IL-6, and TNF-a Quantikine ELISA kits,

respectively (R&D Systems). IL-1a was measured using the Rat

IL-1a ELISA kit (Novus Biologicals). IL-1b was measured using the

Rat IL-1b ELISA kit (Invitrogen). Myeloperoxidase was measured

using the Rat Myeloperoxidase ELISA kit (Abcam). For differential

cell counts, BALF cell pellets were resuspended in 500mL PBS and

collected via cytospin at 600 rpm for 10 minutes (Cytospin 4,

Thermo Scientific). Cells were stained using the Kwik Diff Stain Kit

(Thermo Scientific), and differential counting was performed on the

EVOS FL Cell Imaging System. Counts from three representative

areas were performed for each sample.
Histological analysis

Left lungs were stored in 10% NBF at 4°C until processing. For

each lung, three upper region sections and three lower regions were

sent to the UAB Pathology Core Research Laboratory for paraffin

tissue embedding, sectioning, and hematoxylin and eosin (H&E)

staining. Imaging was performed using a Cytation 5 microscope at

100x magnification (Agilent BioTek). Semiquantitative analysis of
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lung sections was performed by a board-certified surgical

pathologist (L.N.). Histological scoring was based primarily on

neutrophilic influx and alveolar wall preservation. Severity was

rated on a scale of 0 to 3, where 0 represents no inflammatory

cell influx, 1 represents rare inflammatory cell influx (mild damage),

2 represents dense inflammatory cells in alveoli with preserved

alveolar walls (moderate damage), and 3 represents dense

inflammatory cells with undefined alveolar walls (severe damage).
RNA sequencing

S. salivarius and P. aeruginosa were cultured individually and

dually in 6-well plates in either TSBYE supplemented with 1% sucrose

or in SCFM2 at 37 °C in 5% CO2 for 6 hours. Adherent biofilm cells

were washed twice with PBS then collected for RNA isolation. RNA

was isolated using the DirectZol RNAMini Prep Kit (Zymo Research).

mRNA sequencing was performed by the UAB Center for Clinical and

Translational Science using an Illumina NextSeq 500 as described by

the manufacturer (Illumina, Inc.). RNA Sequencing data have been

deposited in NCBI’s Sequence Read Archive and are accessible through

the BioProject accession number PRJNA771386.
Glucose assay

P. aeruginosa and S. salivarius were subcultured to OD600 0.5.

100mL of P. aeruginosa was inoculated into the bottom of a 6-well

transwell (0.4mM, Corning) containing SCFM2. For dual species

samples, 50mL of S. salivarius was inoculated into the top transwell

insert containing SCFM2. Cultures were incubated for 6 hours at

37 °C with 5% CO2. P. aeruginosa cells were then collected from the

bottom compartment of the transwell, pelleted, and lysed via glass

bead beating. Intracellular glucose levels were measured via glucose

assay (Abcam).
Statistical analysis

All graphs represent sample means ± SEM. The Shapiro-Wilk

normality test was used to determine distribution of datasets.

Statistical analysis of normally distributed data was performed

using either Student’s t test or one-way ANOVA with Šίdák’s

multiple comparisons test. For nonparametric data, Kruskal

Wallis with Dunn’s multiple comparisons test was used. Tests

were performed using GraphPad Prism version 9 for Windows,

La Jolla California USA, www.graphpad.com. Data were considered

statistically significant if p < 0.05.
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