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The bulk of bacteria transiently evading appropriate antibiotic regimes and

recovered from non-resolutive infections are commonly refer to as persisters.

In this mini-review, we discuss how antibiotic persisters stem from the interplay

between the pathogen and the cellular defenses mechanisms and its

underlying heterogeneity.
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Introduction

In clinics, many pathogens are hard to eradicate even in the absence of genetically

detectable anti-microbial resistance (AMR) mechanisms, and despite proven antibiotic

susceptibilities in antimicrobial sensitivity testing (AST) (2019). The bulk of bacteria

transiently evading appropriate antibiotic regimes and recovered from non-resolutive

diseases are commonly refer to as persisters (Box 1). The formation of persisters has been

experimentally documented for major bacterial pathogens including Staphylococcus aureus

(Huemer et al., 2021), Mycobacterium tuberculosis (Manina et al., 2015), Escherichia coli

(Kerkez et al., 2021), Salmonella enterica (Helaine et al., 2014), Pseudomonas spp (Mulcahy

et al., 2010)., Listeria monocytogenes (Kortebi et al., 2017), Legionella pneumophila

(Personnic et al., 2019), Burkholderia pseudomallei (Ross et al., 2019), and Yersinia

pseudo-tuberculosis (Raneses et al., 2020).

During an infection, the inherent heterogeneity in the biological processes and

treatment efficacy contributes decisively to the formation of antibiotic persisters. It

encompasses (i) the divergent antibiotic penetration and activation at the tissue, cellular

and subcellular level (Bakkeren et al., 2019; Santucci et al., 2021; Sharma et al., 2021); (ii)

the disparate host-pathogen interactions within structured tissue and/or lesions that

undermine the bactericidal activities of the antibiotics and the host defenses (Bumann,

2015; Bumann and Cunrath, 2017; Claudi et al., 2014; Li et al., 2021; Sharma et al., 2021);

and (iii) the transient and reversible adoption by some individual bacteria of physiological

traits rendering them recalcitrant to the antibiotics (Beam et al., 2021; Claudi et al., 2014;
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Demarre et al., 2019; Helaine et al., 2014; Huemer et al., 2021;

Kerkez et al., 2021; Kortebi et al., 2017; Leimer et al., 2016; Manina

et al., 2015; Mishra et al., 2019; Personnic et al., 2019; Raneses et al.,

2020; Rowe et al., 2020; Vulin et al., 2018).

Recent works indicate that, at the core of this phenomenon, is

the interaction between the pathogen and a cellular host. Actually,

for various bacterial species, persisters frequently emerge intra-

cellularly notably in macrophages that normally contribute to the

first line of defense to control the pathogen burden. Intracellular

persisters have been also documented in protozoa indicating that

the ability to produce antibiotic persisters also applies to

evolutionarily distant host cells and predates the emergence of

metazoans (Personnic et al., 2019).

In this mini-review, we discuss how the bacteria-cell interplay

drives both the formation and the survival of the antibiotic

persisters, and to which extent it is governed by the heterogeneity

in the biological systems.
Persisters formation: A response to
the cellular defenses

Phagocytosis is an evolutionarily ancient and conserved

component of defense against pathogen invasion. Within the

phagocytic vacuole, a mosaic of bacterial adaptative responses to

the host cell-derived stress can take the form of a specialized

subpopulation of survivors that are highly tolerant to one or

various antibiotics (Figure 1A). Such intracellular persisters are

traceable using fluorescence-based high-throughput single-cell

technologies (Box 2).

Recent omics profiling (that we termed persistome) unveiled

the depth of the differentiation process that render intravacuolar

individuals less susceptible to antibiotics (Claudi et al., 2014;

Helaine et al., 2014; Mishra et al., 2019; Personnic et al., 2019;

Peyrusson et al., 2020; Saliba et al., 2016). In the case of L.

pneumophila, one can infer from the persister molecular
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reprogramming that they face and respond to a broad spectrum

of stress. it includes: nutritional challenges (e.g. upregulation of the

bacterial stringent response; growth arrest; redirected metabolism),

host-derived antimicrobials (e.g. upregulation of efflux pumps),

oxidative stress (e.g. upregulation of detoxification/repair

enzymes). Such features likely contribute to the documented

ability of L. pneumophila persisters to survive the bactericidal

activities of various antibiotics with distinct mode of action, i.e.,

b-lactams, fluoroquinolones, aminoglycosides and macrolides

(Personnic et al., 2019). The transcriptional landscape of M.

tuberculosis persisters suggests that they experience phagosomal

acidification, metal toxicity and reactive oxygen species (ROS). The

persister specific physiological realignment involves genes that are

known to promote drug refractoriness (e.g., drug efflux pumps such

as mmr, Rv1258c, and Rv1250) (Mishra et al., 2019). The S. aureus

persistome also strongly intertwines antibiotic recalcitrance and

activation of multiple protective mechanisms triggered within the

phagosome (Peyrusson et al., 2020). In addition to the stringent

response, the activation of the cell wall stress stimulon (CWSS), a

protective response to cell wall defects likely mediate the tolerance

to b-lactams. Induction of DNA damage repair system probably

contribute to the tolerance to fluoroquinolones while the

upregulation of the heat shock stimulon, dealing with damaged

proteins, may participate to a higher tolerance of the persisters to

both b-lactams and aminoglycosides and possibly influences the

action of macrolides. Of note, this persistome was generated under

the pressure of the antibiotic oxacillin that could contribute to non-

host-derived stress response (Peyrusson et al., 2020).

In addition to those “persister molecular atlas”, the link between

host-derived stress and antibiotic persister formation has been

deciphered in greater detailed for the acid and oxidative stress.

The phagosomal acidification both efficiently compromises the

survival of many microorganisms and contributes to the formation

of persisters. In macrophages infected by S. enterica Typhimurium,

shortly after uptake, drop of the phagosomal pH heterogeneously

triggers the bacterial stringent response and the activation of 14
Box 1
Antibiotic persister: Two visions regularly collide with each other to define the persister and can explain many puzzling contradictions that have appeared in the literatures.
On the one hand, the persisters correspond to a fraction of the antibiotic susceptible bacteria that colonize alternative tissues, cellular or intra-cellular compartments
(biogeography hypothesis). This results in local alteration of the antibiotic pharmaco-dynamics that “accidentally” reduces the efficiency of the antimicrobial
chemotherapy (Bakkeren et al., 2019; Santucci et al., 2021; Sharma et al., 2021; Van Bambeke et al., 2006). Alternatively, bacteria may encounter microenvironments
with restrictive conditions (nutritional deprivation, physical and chemical stress, etc.) that favor the development of phenotypic traits that increase the bacterial
recalcitrance to the antibiotic (e.g., slow to no growth, reduced metabolism, increased stress responses, etc.) (Claudi et al., 2014; Demarre et al., 2019; Helaine et al., 2014;
Huemer et al., 2021; Kortebi et al., 2017; Manina et al., 2015; Peyrusson et al., 2020; Raneses et al., 2020; Rowe et al., 2020; Vulin et al., 2018). On the other hand, bacterial
persisters would be the expression of a genetically encoded strategy through which some isogenic individuals, among an otherwise clonal and antibiotic susceptible
pathogen population, nested in the very same niche, transiently adopt a physiology recalcitrant to the antibiotic treatment (phenotypic heterogeneity hypothesis) (Balaban
et al., 2004; Conlon et al., 2016; Manuse et al., 2021; Mishra et al., 2019; Personnic et al., 2019; Personnic et al., 2021; Wakamoto et al., 2013). Obviously, the underlying
molecular mechanisms are highly diverse and the single-cell level of analysis is essential to unveil and to untangle them.

Many mechanisms leading to the formation of persisters has been deciphered essentially using culture in broth (Balaban et al., 2004; Wakamoto et al., 2013; Conlon
et al., 2016; Manuse et al., 2021 Molina-Quiroz et al., 2018; Moyed and Bertrand, 1983; Personnic et al., 2021; Ross et al., 2018). To which extent the mechanisms inferred
can apply “in cellulo” or “in vivo” remains largely unexplored. The persisters comprise both metabolically active individuals, and/or individuals with dormant-like features
(i.e., growth arrest, low to no metabolism). Recent work proposes that the level of dormancy of the persisters is function of the level of stress undergone, the most extreme
expression being the viable but non-cultivable bacteria [VBNC (Peyrusson et al., 2022), reviewed in (Ayrapetyan et al., 2018)].

This mini-review is centered on the works performed in condition of infections. We decided to term persister, any intracellular bacterial individual evading the
combined action of the host and the antibiotic treatment and that results from the heterogeneity in the biological processes and treatment efficacy. To get more insight on
the definitions, and controversies, about the phenomenon of antibiotic recalcitrance in broth or during the infection (i.e., antibiotic persistence, antibiotic hetero-tolerance
and antibiotic tolerance), we invite the reader to consult the many excellent review on the topic (Ayrapetyan et al., 2018; Balaban et al., 2013; Balaban et al., 2019; Brauner
et al., 2016; Grant and Hung, 2013; Gollan et al., 2019; Harms et al., 2016; Lewis, 2010; Levin et al., 2014; Nathan, 2012; Ronneau et al., 2021):
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tox in-ant i tox in modules . Among them, TacT, i s an

acetyltransferase that blocks the primary amine group of amino

acids on charged tRNA molecules, thereby inhibiting translation

and blocking the bacterial division. Growth arrest leads to the

inactivation of antibiotic targets and to the observed tolerance to the

b-lactam antibiotic cefotaxime (Cheverton et al., 2016; Helaine
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et al., 2014). In macrophages infected by M. tuberculosis, vacuolar

acidification alters the redox potential of the major mycobacterial

antioxidant mycothiol (MSH), a functional analog to glutathione.

This leads to the emergence of a subpopulation of bacteria with

reduced MSH. Various cysteine utilization pathways contribute to

the biosynthesis of mycothiol and its redox diversity. In the reduced
A

B

C

FIGURE 1

(A) Formation of an intravacuolar persister. Quickly after uptake, the phagocytic vacuole maturates along the endo-lysosomal pathway. Within the
phagosome various stressors contribute to the pathogen clearance. Both the alteration of the bacterial physiology (depicted in red) and the bacterial
adaptative responses, to counter the macrophage-derived stress (“defensive mode” depicted in blue), favor (large blue and red arrows) the formation
of a specialized subpopulation of survivors with high recalcitrance to antibiotics termed intracellular persisters (depicted in black). (B) The
intravacuolar persisters undermine the host defense. In addition to their defensive mode, intracellular Salmonella and Legionella persisters can
execute an offensive virulence program that translocated effectors via a type 3 or type 4 secretion system, respectively. Contrary to the Salmonella
virulence factor SteE produced both by the persisters and the coexisting antibiotic susceptible individuals, the Legionella intracellular persisters
specifically produced SidC and MavC. The figure depicts the mode of action those 3 effectors, the modes of action of which are detailed in the main
text. Pattern Recognition Receptors (PRR) recognize molecules frequently found in pathogen and trigger pro-inflammatory response enhancing the
bactericidal activities. Persisters may tackle immune recognition by modifying their peptidoglycan. PCV, persister containing vacuole; SCV,
Salmonella containing vacuole; Ub, ubiquitination; P, phosphorylation. (C) Persisters formation stems from heterogeneity in biological processes. The
underlying mechanisms remain largely unexplored. For L. pneumophila: alternative activation of the quorum sensing (blue and yellow bacteria) and
intravacuolar heterogenous differentiation of the proliferative subset (green and orange bacteria). For M. tuberculosis: phagosome to phagosome pH
variations depicted by different colors. For E. coli LF82: unknown. Persisters formation may result from heterogeneous stress exposure or response.
For S. enterica: Alternative macrophage polarization (proinflammatory in red, anti-inflammatory in blue) possibly associated to distinct phagosomal
features (pH and nutrients). For S. aureus: alternative oxidative stress pressure generating distinct persisters (i.e., with distinct dormancy’s depth
depicted by the bacterial shape). QS, quorum sensing; RB, respiratory burst; Nu, nutrient limitation; OS, oxidative stress (strength depicted with a
white triangle); MAP, metabolically active persisters; NMAP, non-metabolically active persisters; filled bacterium, antibiotic susceptible bacterium;
hatched bacterium, antibiotic persister; dashed bacteria, dead individual;?, unknown mechanism. 1, uptake; 2 persister formation or intracellular
proliferation of antibiotic susceptible bacteria; 3, antibiotic treatment; 4, Persister survival.
Box 2
Tracking the persisters: Recent advances in fluorescence-based single-cell technologies, specifically various fluorescent probes that confer the persisters with specific
spectral properties, rendered possible quantitative tracking and analyses the pre-existing pool of persisters, in situ, and without the need of an artificial clearance of the
other subpopulations by using antibiotics at high concentrations. Single-cell fluorescent growth rate reporters are recognized as a method of choice to track the persisters
on the bases of their lack of growth. Among them, the fluorescence dilution technique by Helaine and co-workers (Helaine et al., 2010) or the TIMERbac by Bumann and
colleagues (Claudi et al., 2014), both established in Salmonella enterica, display the great advantage of (i) being transposable to other pathogens as they rely on the
differential dilution of fluorescent proteins depending on the division rate (Kerkez et al., 2021; Patel et al., 2021; Personnic et al., 2019; Personnic et al., 2021; Peyrusson
et al., 2020) and (ii) being compatible with other fluorescent reporters for virulence (Personnic et al., 2019; Personnic et al., 2021), intracellular niches (Luk et al., 2021) or
cues (Cunrath and Bumann, 2019; Schulte et al., 2021). Based on the relationship between the growth rate and ribosome production, Manina et al., constructed a
fluorescent reporter strain of M. tuberculosis by inserting the gene encoding a destabilized green fluorescent protein at the ribosomal RNA locus. Thereby they identified
cryptic subpopulations of nongrowing but metabolically active individuals before and after isoniazid treatment (Manina et al., 2015). Other “persister” reporters include
the QUEEN, a single-wavelength sensor to cytosolic ATP (Manuse et al., 2021) or the tetracycline-responsive fluorescent reporter based on the tet operon that enables
detection of the diffusion of tetracycline derivatives (Raneses et al., 2020). Although robust, lack of growth is not an absolute persisters’ hallmark. Ratiometric fluorescence
biosensor of the redox potential of the major mycobacterial antioxidant mycothiol (EMHS) revealed that within-hostMycobacterium persisters encompass a fraction of the
actively replicating bacterial subpopulation featured with distinct redox physiology (Bhaskar et al., 2014; Mishra et al., 2019).
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individuals, remodelling of the sulfur metabolism leads to the

biogenesis of known protective agents such as H2S, low

molecular–weight thiols, and iron-sulfur (Fe-S) clusters. In

addition, these individuals upregulate various drug efflux pumps.

Hence, reprogramming of the redox metabolism in response to host

environment increases tolerance to the first line antibiotic isoniazid

(Mishra et al., 2019).

The oxidative burst efficiently controls the infection and is

mediated by a myriad of reactive oxygen and nitrogen species

(ROS/RNS) such as the superoxide anions and nitric oxide that are

synthesized by the cellular NADPH oxidase complex and inducible

nitric oxide synthase, respectively. Superoxide anions and nitric

oxide react to form the potent reactive species peroxynitrite. Once

produced, the peroxynitrite can oxidize and nitrate various

biological components, including nucleic acids, proteins, and

lipids. In macrophages infected by Staphylococcus aureus, the

peroxynitrite generated during the oxidative burst inactivates the

aconitase, an iron-sulfur (Fe-S) cluster-containing enzyme of the

tricarboxylic acid (TCA) cycle known to be extremely sensitive to

oxidative stress. Collapse of the bacterial TCA cycle reduces the

production of ATP, and ultimately, the bacterial entrance into a

viable but low metabolic state incompatible with the killing activity

of the antibiotic rifampicin (Beam et al., 2021; Rowe et al., 2020).

The role of the oxidative burst in the formation of persisters applies

to different pathogens. For instance, its induction, upon

macrophage stimulation by the pro-inflammatory cytokines IFN-

g, leads to a higher proportion of intracellular L. pneumophila

persisters (Personnic et al., 2019). The oxidative stress also supports

the formation of M. tuberculosis persisters (Manina et al., 2015;

Saito et al., 2021). Of note, some antibiotics such as clofazimine

induces redox-related physiological alterations, via an NADH-

dependent redox cycling pathway, that contribute to their

bactericidal activities, in broth (Dwyer et al., 2014; Grant et al.,

2012). Stimulating ROS production was then thought to provide a

potential strategy to managing persistent mycobacterial infections.

Yet, in the context of an infection, when persisters actually emerge

from and respond to oxidative stress, such strategy may reveal

counter-productive.
Persisters survival: undermining the
host defense mechanisms

Most pathogens have evolved various strategies to counter host

defenses to ensure successful infections and the persisters are no

exception. It spans strict stress responses (defensive response,

Figure 1A) as well as the fine-tuned hijacking of host cell

functions (offensive response, Figure 1B).

Evading the host bactericidal activities comes at high energy

cost. This challenges the established conception according to which

persisters are strictly dormant. In agreement, the persistomes

mentionned beforehand indicate that the persisters redirect their

metabolism, rather than switching it off. Thereby, the intravacuolar

persisters can both sustain functional bacterial maintenance and

tackle the nutriprive mechanisms at work in the phagosomes. For

example, the L. pneumophila persisters adopt a fatty acid-based
Frontiers in Cellular and Infection Microbiology 04
metabolism (Personnic et al., 2019), the S. aureus persisters

upregulate the galactose metabolism (Peyrusson et al., 2020) and

the S. enterica Thyphimurium persisters activate the purine and

histidine biosynthesis (Claudi et al., 2014).

The persisters defensive response to the host encompasses

various mechanisms. S. aureus persisters undergo a massive

induction of the heat shock stimulon, a central response in stress

tolerance crucial to the bacterial protein folding machinery and

participating in the degradation of defective proteins (Peyrusson

et al., 2020). S. enterica Thyphimurium persisters deals with

misfolded or damaged proteins in the periplasm by upregulating

HtrA, a multifunctional protein quality control factor (Schulte et al.,

2021). Intracellular persisters cope with the respiratory burst by

deploying anti-oxidant/detoxification responses. S. enterica

Thyphimurium upregulates the thioredoxin TrxA and the

methionine sulfoxide reductase MsrA (Schulte et al., 2021). L.

pneumophila also produces the thioredoxin TrxA, in addition to

the Alkyl hydroperoxide reductase AhpD, the catalase-peroxydase 1

KatG1 and the peroxynitrite reductase (Personnic et al., 2019).

Host-derived ROS and RNS induce double DNA breaks (DSBs). S.

enterica Thyphimurium, S. aureus, or E. coli persisters actively elicit

a program to preserve the genome integrity through the SOS

response that contribute to the resilience of persisters to

exogenous DNA damaging agents (Demarre et al., 2019; Hill

et al., 2021; Peyrusson et al., 2020; Peyrusson et al., 2022).

In addition to the defensive mode, the intracellular L.

pneumophila persisters execute a specific offensive virulence

program that involves a portfolio of only a few tens of effectors

(Personnic et al., 2019), out of 400 substrates (Burstein et al., 2016;

Finsel and Hilbi, 2015; Personnic et al., 2016), that are translocated

into the host cell cytosol via the Icm/Dot type 4 secretion system

(T4SS) in order to disable host functions. Notably, the persister

produce SidC that uses an N-terminal E3 Ub ligase domain to

mono-ubiquinate the cellular GTPase Rab1 and mono-ubiquinate

and poly-ubiquitinate the GTPase Rab10 (Lockwood et al., 2022).

Thereby, the persisters evade the bactericidal phago-lysosomal

pathway by redirecting the vacuolar maturation route toward the

safer secretory pathway (Figure 1B). In agreement, L. pneumophila

persisters containing vacuole (PCV) exhibits features of the

secretory compartments such as the enrichment in calnexin, an

endoplasmic reticulum protein, as well as in the phosphoinositide

phosphatidylinositol-4-phosphate that is prevalent in the

membrane of the Golgi apparatus. In this protective niche, the

persisters display higher survival rate and growth resumption

capacity (Personnic et al., 2019).

The inability of macrophages to clear the persisters also lies in

their discrete bacterial activities, even under antibiotic exposure,

that dampens the host response to the infection. The macrophages

hosting Salmonella persisters deploy an altered pro-inflammatory

immune program with profile between the pro-inflammatory M1

and anti-inflammatory M2 polarization states (Saliba et al., 2016;

Stapels et al., 2018). To undermine the host cell immune response,

the persisters adopt a stealth mode. They exploit the Salmonella

type 3 secretion system (T3SS) SPI-2 that translocates

approximately 30 effectors, some of which are known to

downregulate pro-inflammatory responses (Stapels et al., 2018).
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Notably, the T3SS effector SteE forces the sustained activation of

STAT3, a master transcriptional regulator that redirects the

macrophage polarization toward a more permissive, anti-

inflammatory (M2) phenotype (Gibbs et al., 2020; Panagi et al.,

2020; Stapels et al., 2018) (Figure 1B). Interestingly, MavC is a newly

described T4SS effectors (Gan et al., 2019) specifically produced by

the Legionella persisters (Personnic et al., 2019). MavC is a

transglutaminase that catalyzes the mono-ubiquitination of the E2

enzyme UBE2N. This abolishes UBE2N E2 activity in forming K63-

type polyubiquitin chains and dampens the activation of the

Nuclear factor-kB (NF-kB) (Gan et al., 2019; Gan et al., 2020;

Puvar et al., 2020) (Figure 1B), a key regulator of the macrophage

M1 polarization (Liu et al., 2017). Perhaps, Legionella persisters,

similarly to those produced by S. enterica Thyphimurium, can

control the polarization of the hosting macrophages in order to

alleviate the bactericidal pressure.

Surveillance of the cytosol by host pathogen recognition

receptors such as the nucleotide oligomerization domain (NOD)-

like receptors, is essential to activate the innate immune response

and pathogen clearance. Because it confers resistance to

intracellular pathogens, many bacterial species have evolved

evading strategies. Whether or how persisters deal with the

cytosolic sensors that recognize their molecular patterns remain

unclear. In non-permissive fibroblasts, the autophagy forces

Salmonella into growth-arrest, a hallmark of the persisters, in

which the peptidoglycan (PG) modifier EcgA is upregulated

(Hernandez et al., 2022). The PG of those non-proliferative

bacteria undergoes three levels of modifications including atypical

crosslinked muropeptides that may contribute to withstanding

envelope damage in the harsh phagosomal lumen and atypical

muropeptides containing alaninol, which could contribute directly

to attenuate immune recognition and the NF-kB pro-inflammatory

cascade (Hernandez et al., 2022) (Figure 1B). Importantly this PG

editing differs from structural alterations known to promote evasion

of innate defenses or antibiotic resistance in other pathogens. It is

thus tempting to speculate that persister-specific modification of the

envelope properties may represent another strategy to evade

host defenses.
Intracellular persisters: heterogeneity
on both sides

How individual intracellular bacteria supposedly subjected to

similar pressures, embark on different fates remains unclear but

likely proceed from the inherent heterogeneity in the biological

processes (Figure 1C).

At the bacterial level, it has been found that L. pneumophila has a

bistable activation of the quorum sensing (QS) among an overall

homogeneous population of infectious bacteria (Personnic et al.,

2021). As the QS fine-tunes the pathogen stress response, it is

reasonable to think that individuals may deploy alternative response

to host-derived stress and cues depending on their initial priming by

the QS. In this regard, inactivation of the LegionellaQS leads to a drop

in within-host persister formation (Personnic et al., 2019). For S.

aureus, the depth of dormancy seems directly directed by the level of
Frontiers in Cellular and Infection Microbiology 05
oxidative stress experienced by each individual (Peyrusson et al.,

2022). Persisters dormancy would therefore be a dynamic

continuum with two extremes that are both antibiotic tolerant:

“shallow” persisters that easily escape from dormancy and viable but

non-cultivable (VBNC, Box 1) cells that are too dormant to resume

growth in conventional media (Peyrusson et al., 2022). A similar

continuum may explain how seemingly homogeneous intracellular

non-replicating Salmonella, exhibit extensive bacterium-to-bacterium

variations regarding the degree of metabolic activity and regrowth

capability (Helaine et al., 2014). It could also determine observed

mycobacterial persisters with alternative degree of dormancy (Manina

et al., 2015; Saito et al., 2021).

At the subcellular level, following uptake by macrophages,

Mycobacteria reside in phagosomes with distinct features (e.g.

pH) and offering alternative microenvironments that generate as

many pathogen subpopulations with a gradient MSH redox

potentials (Bhaskar et al., 2014; Manina et al., 2015; Mishra et al.,

2019), that, together with alternative antibiotic penetration

(Santucci et al., 2021), contribute to the treatment failures.

Increased cell-to-cell variation in Salmonella purine auxotroph

mutant showing a higher proportion of nongrowing cells as

compared to the parental strain suggests the coexistence of

phagosome with alternative purine availability, resulting in either

replication or growth arrest and entry into persistence (Claudi et al.,

2014). Across most of the species, the persisters are formed within

minutes following phagocytic uptake and the activation of the

stringent response. Using the E. coli strain LF82 associated with

Crohn’s disease, Espeli and coworkers further showed de novo

persister formation during the intravacuolar exponential

expansion that is mediated by the SOS response (Demarre et al.,

2019). This suggests that intravacuolar bacterial communities (IBC)

would be differentially exposed or would displayed alternative

response to host-derived stressors. It is interesting to note that,

during the infection, L. pneumophila also robustly replicates to

eventually forms functionally and spatially structured IBC that

heterogeneously responds to ofloxacin exposure (Striednig et al.,

2021). One can speculate that, as for E. coli LF82, L. pneumophila

would produce persisters in successive waves through

heterogeneous exposure or response to different cues/stressors.

At the host cell level, heterogeneous expression of immune

genes leads to the co-existence of macrophages with distinct

functional program (M1 and M2 polarization state) (Pham et al.,

2020; Stapels et al., 2018). This provides seemingly identical niches

with high (M1 pro-inflammatory) or low (M2 anti-inflammatory)

bactericidal pressure that may lead to the emergence of Salmonella

subpopulations and among them the antibiotic persisters (Stapels

et al., 2018). In addition, macrophage with different polarization

states and bactericidal pressures could determine the observed

heterogeneity among persisters by controling the depth of their

dormancy, as discussed above.

All this hereabove mentioned heterogeneity is further enhanced

in healthy tissues as well as in pathological lesions that displays

structured micro-environments and alternative spatio-temporal

inflammation dynamics (Bumann and Cunrath, 2017; Burton

et al., 2014; Claudi et al., 2014; Davis et al., 2015; Huemer et al.,

2021; Manina et al., 2015; Pham et al., 2020).This favors disparate
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simultaneous encounters. This is especially well illustrated in the

mouse model for the typhoid fever. During systemic infection,

Salmonella targets in priority the spleen but it colonizes this highly

structured organ unevenly. The red pulp hosts the majority of the

invading Salmonella while the near-by spleen white pulp is poorly

colonized. In the red pulp, the pathogen is efficiently killed by

infiltrating neutrophils and monocytes but survive in resident

macrophages. In these host cells, as mentioned before, the

pathogen produces antibiotic persisters that survive exposure to

the fluoroquinolone enrofloxacin better (Claudi et al., 2014; Li et al.,

2021). In the white pulp, treatment with enrofloxacin also fails to

clear Salmonella. Yet, in this compartment, the treatment outcome

is not fully explained by the common “persisters features”, e.g.,

alternative antibiotic penetration, host stress-induced drug

tolerance or pathogen immunomodulatory capabilities. Actually,

inflammatory mediators are heterogeneously distributed across

splenic compartments, according to the bacterial load, and

cooperate with the antibiotic to clear the infection. In the white

pulp, the initially low and quickly declining number of neutrophils

and monocytes hardly support the bacterial clearance. As

Salmonel la number reaches immune detection limits ,

inflammatory cells are no-longer recruited and the bacteria

largely evade the synergistic killing mediated by both the

antibiotic and the immune system (Li et al., 2021).
Conclusion

Recent research has uncovered various aspects of the peculiar

persister biology. The interplay between the pathogen and the host

as well as the inherent heterogeneity of the biological processes

govern the formation intracellular persisters that divert and get

away with both the host-derived and antibiotic-mediated

bactericidal activities. Studying the intimate relationships between

the persister and the host should provide better understanding of

the infection process and innovative strategies to tackle the ongoing

antibiotic resistance crisis.
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Glossary

AST: Antimicrobial Susceptibility Testing. A procedure carried out
routinely in diagnostic labs on cultivated patient isolates to
profile the susceptibility or resistance of a pathogen to a
spectrum of anitbiotics (2019).

Efflux
pumps:

Proteins that are localized in the bacterial envelop and whose
function is (i) to recognize noxious agents that have penetrated
the organism (or produced by the organism itself) and (ii) to
extrude them before they intoxicate the cell (Du et al., 2018).

Macrophage
polarization:

Process whereby macrophages phenotypically mount a specific
phenotype and functional response to different
pathophysiological conditions and surrounding
microenvironments (Lawrence and Natoli, 2011).

NF-kB: Nuclear factor-kB (NF-kB) represents a family of inducible
transcription factors, which regulates a large array of genes
involved in different processes of the immune and
inflammatory responses. Following activation, NF-kB is rapidly
and transiently translocated to the nucleus, mediating induction
of various pro-inflammatory genes in innate immune cells (Liu
et al., 2017).

Oxydative
burst:

Also termed respiratory burst is the rapid release of oxidative
species, produced by multicomponent enzyme complex in the
plasma membrane and phagosomal membrane, to degrade
internalized pathogens (Slauch, 2011).

Pathogen
recognition
receptors:

Also termed Pattern Recognition Receptors (PRRs) are proteins
capable of recognizing molecules frequently found in pathogens
(the so-called Pathogen-Associated Molecular Patterns—
PAMPs), or molecules released by damaged cells (the Damage-
Associated Molecular Patterns—DAMPs). They are part of
innate immune system (Li and Wu, 2021).

Persistome: Persister specific global molecular reprogramming that relies on
sustained biosynthetic activities and specific regulatory circuits
(Claudi et al., 2014; Helaine et al., 2014; Huemer et al., 2021;
Mishra et al., 2019; Personnic et al., 2019; Peyrusson et al.,
2020; Saliba et al., 2016).

Quorum
sensing:

Inter-bacterial communication system based on cell density
(Mukherjee and Bassler, 2019).

SOS
response:

Global response to DNA damage in which the cell cycle is
arrested and DNA repair and mutagenesis are induced. The
SOS response is under the control of the LexA transcriptional
repressor. The LexA regulon includes recombination and repair
genes such as recA (Maslowska et al., 2019).

Stringent
response:

The stringent response is a stress signaling system mediated by
the alarmone guanosine pentaphosphate [(pp)pGpp] in
response to various stress. Broader range of cellular target
pathways are controlled by (pp)pGpp, including DNA
replication, transcription, nucleotide synthesis, ribosome
biogenesis and function, and lipid metabolism (Irving et al.,
2021).

TA modules: TA modules are composed of two elements: a stable toxin that
poisons the cell by interfering with an essential process such as
translation, for example, and an unstable antitoxin that
neutralizes its cognate toxin (Singh et al., 2021).

VBNC: Viable but non-cultivable bacteria have been defined as cells
which, induced by some stress, become nonculturable on media
that would normally support their growth (Ayrapetyan et al.,
2018).
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