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Obesity, a chronic metabolic disorder caused by an energy imbalance, has been

increasingly prevalent and poses a global health concern. The multifactorial

etiology of obesity includes genetics factors, high-fat diet, gut microbiota, and

other factors. Among these factors, the implication of gut microbiota in the

pathogenesis of obesity has been prominently acknowledged. This study

endeavors to investigate the potential contribution of gut microbiota to the

development of high-fat diet induced obesity, as well as the current state of

probiotic intervention therapy research, in order to provide novel insights for the

prevention and management of obesity.
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1 Introduction

Obesity is a chronic and recurring condition that results from excessive or

inappropriate fat accumulation (Obesity: preventing and managing the global epidemic.

Report of a WHO consultation, 2000; Bray et al., 2017). The global incidence of obesity

among adults has increased by 1.5-fold since 2000, with over 1.9 billion overweight adults

in 2016. Children and adolescents have also experienced a rise in the prevalence of obesity,

with an increase from 2.9% to 6.8% in the population aged 5 to 19 years (Abarca-Gómez

et al., 2017). Obesity has serious implications for health, including an elevated risk of

mortality, type 2 diabetes, and cardiovascular disease. The etiology of obesity is

multifactorial, with contributing factors including genetics, a high-fat diet (HFD), and

gut microbiota. The gut microbiota, which is composed mainly of anaerobic bacteria,

facultative anaerobic bacteria, and aerobic bacteria, is a dynamic ecosystem that coevolves

with its host (Wu et al., 2022). The gut microbiota plays a crucial role in maintaining the

health of the host through vitamin production, nutrient absorption, and the secretion of

small molecules involved in immune regulation, angiogenesis, and nerve function

(Dominguez-Bello et al., 2019; Robertson et al., 2019). The human gut contains

approximately 1014 microorganisms (Gill et al., 2006), predominantly composed of

Firmicutes and Bacteroidetes species (Bolam and van den Berg, 2018). Different bacterial

species occupy distinct sections of the intestine; for instance, Firmicutes often predominate
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at the top of the gut crypto-villous unit while Proteus predominates

at the bottom (Sommer and Backhed, 2016). The functional

consistency of each bacterial genus is quite high (Costea et al.,

2018) and is not affected by the host’s age, sex, BMI, or nationality

(Sebastian Domingo and Sanchez Sanchez, 2018).
2 Gut microbiota and obesity

2.1 Animal studies demonstrate a link
between gut microbiota and obesity

The present study shows that the manifestation of obesity and

its metabolic dysfunctions were absent in germ-free mice. Notably,

the transplantation of cecal or fecal samples from obese mice into

germ-free mice resulted in the development of similar symptoms,

indicating that the gut microbiota plays a critical role in the

pathogenesis of obesity (Ridaura et al., 2013). Furthermore, it was

observed that the transfer of gut microbiota could also transmit the

obesity phenotype (Kapoor et al., 2021; Romani-Perez et al., 2021).

In mice fed the same HFD, some developed obesity and some were

resistant to it, and differences in gut microbiota composition may be

the most important factor in both outcomes. In addition, intestinal

barrier function, intestinal inflammation and neurotrophic factors

also play an important role in diet-induced obesity (Zhang et al.,

2019b). A growing body of evidence from animal studies suggests a

link between diet, gut microbiota and obesity, as well as in humans.

But studies have not reached a consistent conclusion on exactly

what microbial composition is at work. Moreover, an interesting

study found that transfer of the whole microbiota may not reduce

diabetes incidence despite a major change in gut microbiota of the

non-obese diabetes (NOD) mice model. NODmouse models can be

divided into two colonies (high or low diabetes incidence),

transplanting intestinal flora from low-incidence NOD mice to

high-incidence NODmice did not change the incidence of diabetes,

but transplantation of A. muciniphila to high-incidence NOD mice

can promote mucogenesis, increase the expression of antimicrobial

peptide Reg3g, inhibit the growth of rumen contortus, reduce the

level of serum endotoxin, reduce the expression of TLR in

pancreatic islets, promote regulatory immunity, and delay the

development of diabetes (Hanninen et al., 2018). It shows that

some single species of bacteria, rather than the entire intestinal

flora, may play a major role in inducing or resisting metabolic

diseases under certain conditions.
2.2 Research on demographics has
discovered variations in the distribution of
gut microbiota in obese people

As per conventional understanding, the establishment of gut

microbiota occurs after birth, while the mother’s uterus remains

free of microorganisms. Various factors, such as delivery mode,

feeding type, and medication administration (including antibiotics),

impact the diversity of gut microbiota, as stated in the literature

(Theis et al., 2019; Akagawa et al., 2021). By age 3, the gut
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microbiota progresses towards a complex and stable state similar

to that of adults (Derrien et al., 2019), which then remains mostly

consistent throughout adulthood. According to a population-based

study, the obese population demonstrates significant differences in

gut microbiota composition compared to the general population

(Cuevas-Sierra et al., 2019). A few studies propose that the

“enterotype of the fertility microbiota” is characterized by a

higher abundance of Firmicutes/Bacteroidetes (Kim et al., 2021).

Nevertheless, the distribution of this distinct microbiota is still

subject to debate due to variation in sample size, individual clinical

and anthropometric traits (age, sex, microbiota distribution, and

degree of obesity), and microbiota analysis techniques (qPCR, 16S

rRNA gene sequencing, and Fluorescence in situ hybridization)

(Zeng et al., 2019; Assmann et al., 2020).
3 A high-fat diet alters gut
permeability and gut microbiota in
ways associated to obesity

The human gut microbiota is highly responsive to changes in

food intake and the physiological state of the digestive system

(Turnbaugh et al., 2009; Qin et al., 2020), with alterations

observed within a period as short as 24 hours (David et al., 2014).

A HFD has been found to significantly reduce the diversity of gut

microbiota (Wan et al., 2019), resulting in a decrease in the number

of bacteria that are responsible for maintaining the integrity of the

gut mucosal barrier and an increase in the number of bacteria that

breach it (Monk et al., 2019; Zhang et al., 2019a). This alteration in

gut microbiota is characterized by a reduction in the relative

abundance of Bacteroides and an increase in the relative

abundance of Firmicutes (An et al., 2022). Moreover, the

concentration of lipopolysaccharide (LPS) has been found to

increase with the number of Actinomycetes while the number of

Bifidobacteria declines as Vibrio desulfonate increased. Excess

sulfate is converted to hydrogen sulfide, which further

compromises the gut barrier and promotes inflammation (Chen

et al., 2019). Additionally, the gut barrier is disrupted by

Akkermansia muciniphila (A. muciniphila), a member of phylum

Verrucomicrobia that degrades mucins and has anti-inflammatory

and protective effects on the intestinal mucosal barrier (Hanninen

et al., 2018).
3.1 Gut permeability is increased by HFD

Previous research has provided evidence that a HFD can lead to

obesity, inflammation, and enhance gut epithelial cell permeability

(Lemons and Liu, 2022). The mechanism through which HFD

induces increased gut permeabi l i ty involves severa l

processes (Figure 1).

In the HFD, intestinal epithelial cells in the lower intestine

actively ingest a significant amount of fat, which leads to the

simultaneous generation of reactive oxygen species (ROS), iron,

copper, aldehydes, lipid peroxidation, as well as ATP by the
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mitochondrial respiratory chain (Spinelli and Haigis, 2018). The

ROS generated under the influence of the HFD cause increased gut

epithelial cell permeability (Ballard and Towarnicki, 2020),

ultimately leading to the destruction of the gut barrier function

and the proliferation of harmful bacteria like Salmonella and

Escherichia coli in the gut cavity. Furthermore, the hydrogen

sulfide generated by the HFD inhibits the mitochondrial

respiratory chain, which makes it easier for pathogenic bacteria to

infect more cells (Mottawea et al., 2016). The production of iron,

copper, aldehydes, and lipid peroxidation during the digestion and

absorption of high dietary fats leads to an increase in oxidative

stress in gut tissues, destroying the microbiota’s living environment,

resulting in an imbalance of gut microbiota.

The HFD contains a large amount of polyunsaturated fatty

acids that are prone to oxidation of their double bonds

(Mariamenatu and Abdu, 2021). The free fatty acids generated

under the influence of the HFD impact the gut immune system

directly (Tanaka et al., 2020) raising the levels of barrier-damaging

cytokines such as TNF-a, IL-1b, IL-6, IFN-g, while decreasing

barrier-protective cytokines such as IL-10, IL-17, IL-22, ultimately

leading to an increase in gut permeability (Bartoszek et al., 2020;

Stoeva et al., 2021). The resulting pathological changes, including

low-grade inflammation, decreased expression of antimicrobial

peptides, mucus secretion, and expression of tight junction

protein, impact multiple system functions and lead to obesity and

its metabolic complications (insulin resistance, hyperglycemia,

systemic inflammation, and dyslipidemia) (Araújo et al., 2017;

Jiang et al., 2020; Kumar et al., 2021).

The gut barrier system comprises mucus layers, gut epithelial

cells (IECs), tight junctions (TJS), immune cells, and gut microbiota

(Rohr et al., 2020). The apical junctional complex (AJC) is

composed of the membrane proteins TJS and adhere junctions

(AJS) (Capaldo et al., 2017). The AJC’s integrity is critical for the

selective passage of nutrients while obstructing the entry of toxins
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and antigens, leading to high permeability of the gut. Dietary fat has

the potential to directly impact the integrity of the AJC (Netto

Candido et al., 2018; Tsukita et al., 2019; Otani and Furuse, 2020).

In long-term HFD, gut occlusion zone-1 (ZO-1) and occludin gene

expression are decreased, which leads to an increase in gut

permeability (Oliveira et al., 2019; Nascimento et al., 2021). The

HFD’s abundance of docosahexaenoic acid and g-linolenic acid

triggers protein kinase activation, actin and TJ protein

redistribution, and increased gut permeability (Usami et al.,

2003). Additionally, part of the eicosapentaenoic acids in HFD

can be converted into bioactive metabolites to increase gut

permeability (Usami et al., 2001).

Dietary fat consumption and bile acid secretion exhibit a

positive correlation (Ocvirk and O'Keefe, 2021), and IECs possess

the ability to resist bile acid degradation under normal physiological

conditions. However, HFD induces long-term and high-level

secretion of bile acids, resulting in the release of numerous

hydrophobic bile acids, such as cholic acid and deoxycholic acid

(Iwamoto et al., 2021). These bile acids promote occludin protein

dephosphorylation, leading to the dissociation of the adhesive

junction complex and ultimately causing an increase in gut

permeability. In addition, they can cause harm to the gut mucosal

barrier and induce oxidative stress and cell apoptosis in IECs

(Raimondi et al., 2008; Di Ciaula et al., 2017; Sarathy et al., 2017;

Gupta et al., 2020).

Furthermore, HFD inhibits the peroxisome proliferator-

activated receptor-g (PPAR-g) pathway in mice, disrupting the

gut mucus layer, decreasing electrolyte secretion, and impairing

mucosal immune defense. However, a week of treatment with a

specific PPAR-g agonist, rosiglitazone, or a return to a normal diet

can reverse the increased gut epithelial permeability caused by HFD

(Lee et al., 2020), resulting in the disruption of the gut mucus layer,

reduced electrolyte secretion, and decreased mucosal immune

defense. Following a week of therapy with rosiglitazone, a
FIGURE 1

Gut permeability is increased by HFD.
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particular PPAR-agonist, or returning to the usual diet, this increase

in gut epithelial permeability was reversed.
3.2 Obesity and other related metabolic
diseases are mediated by increased gut
permeability, which also encourages
gut dysbacteriosis

The consumption of a HFD has been observed to enhance the

permeability of gut epithelial cells and disrupt the interplay between

the local intestine mucosal immune system and the gut microbiota,

leading to an imbalance in the microbiota composition. This

imbalance is characterized by a rise in the number of gram-

negative bacteria, and the resultant LPS produced by these

bacteria interact with the CD14/Toll-like receptor 4 (TLR4)

complexes of gut epithelial cells, leading to the activation of the

innate immune system. This activation causes local and systemic

persistent low-level inflammation, which leads to further

destruction of the mucous layer and increased permeability of

IEC. The heightened permeability of IECs facilitates the entry of

gut microbiota metabolites into the bloodstream, resulting in a

vicious cycle of inflammation and dysbacteriosis. The ongoing

activation of the LPS/TLR4 signal pathway is believed to be a

major contributor to the development of obesity and related

metabolic disorders (Kasselman et al., 2018; Giordano et al., 2020;

Mohammad and Thiemermann, 2020) (Figure 2).
4 Obesity is a result of gut
microbiota’s involvement in the
regulation of the human metabolism

4.1 Gut microbiota is directly involved in
the expression and regulation of host
metabolism-related genes

The modulation of host gene promoters related to lipid

metabolism, obesity, and inflammatory responses by the

dominant Firmicutes within the gut microbiota has been reported

through recent investigations (Cuevas-Sierra et al., 2019; Amabebe

et al., 2020). However, the examination of gut microbiota-obesity

association at a population level presents a significant challenge,

given the inadequate sample sizes and inadequate representation of

individual subjects in existing gut microbiota studies (Stanislawski

et al., 2019). This shortcoming necessitates further research efforts

towards resolving these limitations.
4.2 Gut microbiota intervenes host
glycometabolism through metabolic
intermediates

The gut microbiota is responsible for the production of short-

chain fatty acids (SCFAs) which impact the host’s ability to absorb
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and store energy from the diet (Blaak et al., 2020). Production of

SCFAs, including acetate, butyrate, and propionate, occurs through

fermentation of soluble dietary fiber and resistant starch by gut

microbiota (den Besten et al., 2013). The SCFAs bind to the G-

protein-coupled receptors GPR41 and GPR43 (Kim et al., 2018;

Carretta et al., 2021; Moniri and Farah, 2021), and regulate

molecular signaling pathways that indirectly affect gene

expression, such as increasing the expression of glucagon-like

peptide 1 (GLP-1) and peptide YY (PYY) in the gut (Tanaka

et al., 2020). Both GLP-1 and PYY have been found to inhibit

appetite (Stubbs et al., 2018), reduce body weight, and improve

insulin resistance in obese mice (McNabney and Henagan, 2017;

Blanco, 2020). However, in the absence of GPR41 signaling, PYY

levels in plasma decrease, causing an increase in gut motility and a

decrease in the amount of energy gained from meals (Samuel et al.,

2008). Moreover, acetate has been found to positively influence

appetite, insulin and ghrelin release, and obesity and its associated

complications by influencing the parasympathetic neural system

(Hernandez et al., 2019). On the other hand, propionate has been

shown to produce insulin resistance and hyperinsulinemia,

increases glucagon and fatty acid-binding protein production,

activates the sympathetic nervous system, and promotes obesity

and metabolic abnormalities (Tirosh et al., 2019). Therefore, further

research is needed to explore the relationship between changes in

the types and quantity of SCFAs and obesity as it appears that

SCFAs act as mediators between diet, gut microbiota, and

body physiology.
4.3 Gut microbiota interferes with
the host lipid metabolism by altering
enzyme activity

Bäckhed et al. have proposed potential pathways that

contribute to the development of obesity (Backhed et al.,

2005). One such pathway involves the gut microbiota

promoting the absorption of monosaccharide in the gut,

thereby increasing triglyceride synthesis in the liver.

Furthermore, gut microbiota has been identified as the primary

regulator of lipid metabolism, with both promoting and

inhibitory effects. Fasting-induced adipocyte factor (FIAF, also

known as PPAR-Angiopoietin Related Protein, which is a cell

signal glycoprotein hormone) is known to increase adipocytes’

lipoprotein lipase (LPL) activity and fatty acid accumulation

(Backhed et al., 2005). Notably, FIAF is produced by various

tissues, including white adipose tissue (WAT), the colon, the

liver, the heart, and the skeletal muscle (Baek et al., 2021;

Montaigne et al . , 2021). Studies have shown that A.

muciniphila fermentation products, such as SCFAs, promote

FIAF expression in gut cells through PPAR-g (Carvalho and

Saad, 2013), inhibit LPL and stimulate WAT lipolysis

(Thyagarajan and Foster, 2017). In contrast, Bacteroides

thetaiotaomicron can stimulate lipogenesis by inhibiting FIAF

expression (Backhed et al., 2007). Therefore, FIAF may serve as a

gut microbiota modulator, influencing lipid metabolism and

contributing to obesity. Additionally, the endogenous
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cannabinoid system (EC) has been implicated in regulating

blood lipid and glucose metabolism, with over-activation

posing a significant risk for obesity. Specific gut microbiota,

such as A. muciniphila, can interfere with fat metabolism in vivo

by blocking EC-driven lipogenesis, promoting adipocyte

proliferation, and increasing fat accumulation in adipocytes

(Geurts et al., 2011; Forte et al., 2020; Jansma et al., 2021).
5 Probiotics are promising to be a
new strategy for treating hfd obesity

Currently, clinical approaches to treating obesity involve

reducing caloric intake, increasing exercise consumption, using

appetite suppressants, and gastrectomy (Blundell et al., 2017; El

Moussaoui et al., 2021; Fanti et al., 2021). Nevertheless, these

methods exhibit certain limitations such as limited therapeutic

efficacy, drug abuse, and a high incidence of complications
Frontiers in Cellular and Infection Microbiology 05
(Sarwer et al., 2019; Paccosi et al., 2020; Bray and Ryan, 2021). As

a result, innovative treatments are necessary.

Probiotics are living strains that are considered beneficial to the

host’s health when consumed in adequate amounts. These

microorganisms aid in nutrient digestion and absorption,

maintain the digestive system, and improve key metabolic disease

risk variables such body mass index, fasting blood glucose, alanine

and aspartate transaminase (Jager et al., 2018; Kijmanawat et al.,

2019). Utilizing probiotics to regulate gut microbiota has emerged

as a promising approach for treating obesity, particularly in cases of

HFD obesity (Bianchi et al., 2018; Kong et al., 2019). Numerous

animal studies and clinical trials have confirmed the efficacy of

probiotics, particularly those from the Bifidobacterium and Lacto

bacillusstrains, as well as some members of Bacillus and Propioni

bacteriumin treating obesity and overweight by controlling gut

microbiota function, bile acid metabolism, and gene expression

associated with calorie homeostasis and fat formation (summarized

in Supplementary Tables 1, 2). Obese animals treated with multiple
FIGURE 2

Gut permeability is increased by HFD.
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Lactobacillus strains alone (Figure 3) or in combination with Bifido

bacteriums trains (Figure 4) exhibited lower body weight and fat

mass, improved dyslipidemia and insulin resistance, and lessened

liver damage and chronic low-grade inflammation. Clinical trials

using probiotics to treat obesity and overweight have also

successfully observed weight loss and improved metabolic

markers in subjects, probiotics’s increased presence has negative

associations with obesity and diabetes while positively impacting

gut health (Figure 5). Although data from current human testing

studies are limited and urgently need further research and detailed

documentation, intestinal bacterial transplantation has emerged in

the treatment of HFD obesity and related metabolic issues following

successful applications in diseases such as Clostridium difficile
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infection, providing a new option for the prevention and

treatment of human HFD obesity.

The gut microbiota of healthy adults and children typically

contains 1%-4% of the probiotic A. muciniphila (Derrien et al.,

2008). A. muciniphila has special survival advantages due to its

ability to utilize mucin, the primary growth and metabolic substrate

produced by goblet cells in the host gastrogut tissue. Its unique

structure enables A. muciniphila to modulate gut barrier integrity,

enhance gut permeability, and thicken the mucus layer in HFD mice

(Chelakkot et al., 2018; Liu et al., 2019). Furthermore, the Type IV pili

of A. muciniphilaare able to directly signal to host immune receptors,

regulate the expression of genes involved in fat synthesis and

inflammation in the liver, and maintain gut immune system
FIGURE 3

Treatment of HFD obese mice with Lactobacillus strains alone.
FIGURE 4

Treatment of HFD obese mice with Lactobacillus strains in combination with Bifidobacterium strains.
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homeostasis (Zhou and Zhang, 2019; Kim et al., 2020; Yang et al., 2020;

Xiang et al., 2021). A. muciniphila is also capable of secreting

oligosaccharides and SCFA, which act as growth substrates for other

beneficial bacteria and promote the abundance of microbiota

associated with a reduced risk of obesity (Belzer and de Vos, 2012;

Clarke et al., 2014; Keshavarz Azizi Raftar et al., 2021). Long-term

supplementation with A. muciniphila can increase the thickness of the

mucus layer of the gut barrier and attenuate the expression of genes

and pathways associated with inflammation (Dao et al., 2016; van der

Lugt et al., 2019), thus making it a promising candidate for the

treatment of HFD obesity and a potential new generation of probiotics.
6 Summary and prospect

Recent studies have shown that there is a distinct distribution of

gut bacteria in obese individuals compared to those with a normal

weight. This suggests that gut microbiota may play a significant role in

the development of obesity and related metabolic disorders, as it is

involved in energy metabolism through processes such as acquiring

energy from the diet, controlling fat storage, controlling fat creation,

and controlling fatty acid oxidation. In light of these findings, new

therapeutic approaches such as improving high-fat diet obesity,

reducing systemic inflammation, and participating in weight control

through targeting gut bacteria have been explored with some success.

However, human gut microbiota is a complex research area with

various influencing factors, including nutrition, exercise, medications,

country, and gender. Some of these variables are beyond our control.

Understanding the intricate interaction between billions of distinct

bacterial populations, thousands of host cell types, and chemical

mediators requires developing well-designed and suitable

experimental models. Probiotics have emerged as a safe and effective

option for treating HFD-induced obesity in animals, with few adverse
Frontiers in Cellular and Infection Microbiology 07
effects and good tolerance, making them ideal for long-term

administration (Liu et al., 2017), and the combination of

Lactobacillus and Bifidobacterium has been shown to significantly

alter gut microbiota composition and improve insulin sensitivity in

HFD mice. In clinical trials, the use of synbiotic bacteria

(Bifidobacterium and Lactobacillus) supplements increased the

number of potential probiotics[148], however, it was discovered that

the species and quantity of lactic acid bacteria were much higher in

obese individuals than in the control group (Armougom et al., 2009),

leading to the hypothesis that obese patients may exhibit “resistance” to

lactic acid bacteria, which may due to the widespread usage of

Lactobacillus as a growth stimulant in agriculture. In 2011, MetaHIT

team proposed the concept of enterotypes, which divided gut

microbiota into three categories: B, P and F. This has potential

research and clinical value, but it is controversial. According to

different tests, algorithms and analysis methods, different people

think that the gut microbiota should be divided into 2, 4 enterotypes

or even continuous undivided types. In order to unify the

understanding and guide the practice, 29 mainstream microflora

scientists in the world jointly proposed a new intestinal type classifier

and open comparison database. The new scheme makes full use of and

verifies the database such as HMP, comprehensively considers the

function, ecology and clinical needs of the flora, and can better indicate

the flora types of disease and health status, however, the consensus is

significant but still limited, the treatment of obesity still cannot “model”

the use of probiotics according to the existing enterotypes classification,

and use of personalized probiotics based on precise analysis of each

patient’s gut bacteria composition is not yet feasible.

Probiotics therapy may be a novel option for treating HDF-

induced obesity, and recent research has shown that using synbiotic

supplements and isolating new probiotic strains could increase the

potential benefits of probiotic therapy. Nevertheless, it is important to

note that a brief course of probiotics may not undo the long-term
FIGURE 5

Clinical trials using probiotics to treat obesity and overweight.
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effects of a physiological disorder, andmore research is required to fully

understand the role of probiotics in appetite control (Liang et al., 2021).

Although intestinal bacteria transplantation has shown potential for

disease prevention and treatment in both animal and human experiments,

there are still great controversies over enterotypes, the selection of specific

transplant strains and the combination of prebiotics. Since its

establishment, microbiology has been limited by axenic culture, but the

emergence of mixed culture mode opens up another way for

understanding microorganisms and application development, and also

has a profound impact on microbial ecology, symbiosis, pathology and

other fields. The transition from pure culture to hybrid culture depends on

three advances: microfluidic technology, next-generation 3D bioprinting,

and single-cell metabolomics. The progress of these technologies is

expected to lead to systematic large-scale symbiotic culture studies

involving three or more microorganisms in the future. On the basis of

in-depth understanding of the correlation between specific enterotypes and

metabolic diseases, mixed culture will greatly accelerate the clinical

transformation of intestinal bacteria transplantation research. As

microbiota science and analytical technology continue to advance,

targeted gut microbiota intervention presents potential therapeutic

options towards promoting host health in the future.
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