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Cryo-electron tomography (cryo-ET) plays a critical role in imaging

microorganisms in situ in terms of further analyzing the working mechanisms

of viruses and drug exploitation, among others. A data processing workflow for

cryo-ET has been developed to reconstruct three-dimensional density maps and

further build atomic models from a tilt series of two-dimensional projections.

Low signal-to-noise ratio (SNR) and missing wedge are two major factors that

make the reconstruction procedure challenging. Because only few near-atomic

resolution structures have been reconstructed in cryo-ET, there is still much

room to design new approaches to improve universal reconstruction resolutions.

This review summarizes classical mathematical models and deep learning

methods among general reconstruction steps. Moreover, we also discuss

current limitations and prospects. This review can provide software and

methods for each step of the entire procedure from tilt series by cryo-ET to

3D atomic structures. In addition, it can also help more experts in various fields

comprehend a recent research trend in cryo-ET. Furthermore, we hope that

more researchers can collaborate in developing computational methods and

mathematical models for high-resolution three-dimensional structures from

cryo-ET datasets.

KEYWORDS

cryo-electron tomography (cryo-ET), subtomogram averaging (STA), microorganism in
situ, 3D reconstruction, deep learning, mathematical models
1 Introduction

Cryo-electron tomography (cryo-ET) is an important imaging technique that provides

high-resolution three-dimensional (3D) structures for biological specimens in situ.

Observing the structure of biological specimens in situ can reflect the location of spatial

interaction, and further help to analyze the mechanism and function of macromolecules.

Single-particle analysis (SPA) in cryogenic electron microscopy (cryo-EM) is a mature

approach to obtaining high-resolution 3D reconstructed structures, even imaging nearly
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native biomolecules in cells or organelles in situ. Indeed, the in situ

single-particle analysis (isSPA) (Cheng et al., 2021) method is a

potential competitor of cryo-ET. However, a complex system of

biological macromolecules is still challenging to construct. Cryo-ET

can play a key bridging role in forming high-resolution cellular

landscapes in situ among multiple scales. Cryo-ET has been

increasingly favored by structural biologists in the past few years.

There are several advantages of cryo-ET. Firstly, some artificial

alterations or modifications are averted in sample preparation, like

particle isolation and purification. The native state can be cryo-

preserved by vitrification (Plitzko and Baumeister, 2019). Secondly,

cryo-ET allows the sample thickness of biological specimens below

500 nm (Khanna and Villa, 2022; Zuber and Lučić, 2022), such as

viruses and bacterial cells. However, a thinner sample means higher

resolution recorded in some sense. Thirdly, cryo-ET can analyze

heterogeneous (Xu et al., 2021) and pleomorphic (Borgnia et al.,

2008; Obr and Schur, 2019) structures like cells, viruses, and tissues

(Borgnia et al., 2008). Different from cryo-EM, cryo-ET does not

require many copies of the same specimen. Here, we focus on cryo-

ET in microorganisms.

The high-resolution structures of microorganisms in cryo-ET

can provide reliable 3D structures for drug development, target

discovery, vaccine research, and so on. They can promote the

development of science and technology. There are some actual

examples of microorganisms using cryo-ET, like Bdellovibrio

bacteriovorus (Borgnia et al., 2008), Mycoplasma genitalium

(Seybert et al., 2018), Candida glabrata (Jiménez-Ortigosa et al.,

2021), Mycoplasma pneumoniae (Xue et al., 2022), and Escherichia

coli (Chen et al., 2022). Recently, cryo-ET has resolved a giant virus

(Fang et al., 2019) at the near-atomic level, namely, a 3.5-Å

paramecium bursaria chlorella virus 1 (PBCV-1). The

reorganization and host–pathogen interaction (Nans et al., 2014;

López-Jiménez and Mostowy, 2021) are also resolved in cryo-ET.

The structures further help to analyze the action mechanism of

infected cells, which helps researchers to discover anti-infective

strategies. Some viruses are also resolved in cryo-ET like severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Klein

et al., 2020), human immunodeficiency virus (HIV) (Mendonҫa
et al., 2021), and a bullet-shaped vesicular stomatitis virus

(Jenni et al., 2022). As coronavirus disease 2019 (COVID-19) has

caused great damage and loss to humans, the analysis of SARS-

CoV-2 has become an important application of cryo-ET. The 3D

structures of SARS-CoV-2 (Turoňová et al., 2020; Calder et al.,

2022) by cryo-ET have helped researchers to explore the functional

mechanism and promote the development of vaccines and drugs.

Critical SARS-CoV-2 structures are resolved in Zhang et al. (2021),

such as the virus egress pathway and native virus spike structures.

The spike protein plays an important role in virus–host interaction,

membrane fusion, and so on. The spike protein is a main target for

vaccine development and antigenic analysis (Li, 2022). The

structural analysis for alphacoronavirus spike protein in situ

revealed the motion of D0 domain (Huang et al., 2022). However,

there are still a large number of structures that have not been

resolved. It is significant and urgent to develop methods for each

step of reconstruction processing from tilt series in cryo-ET to

restore high-resolution structures.
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There are two main limiting factors for 3D structure

reconstruction steps. On the one hand, a signal-to-noise ratio

(SNR) (Bepler et al., 2020) is the ratio of signal power to noise

power, which is often expressed in decibels (dB). Higher SNR

means that the signal is stronger and the noise is weaker; that is,

the quality of the image is better. On the other hand, the tilt angles

are generally from −70° to 70° in cryo-ET. Thus, the missing angles

lead to a lack of information in two continuous, symmetrical wedge-

shaped areas in Fourier space (Liu et al., 2022b), which is referred to

the missing wedge of data. For convenience, we use “missing wedge”

to mean “missing wedge of data” in the rest of the paper. Low SNR

and missing wedge are two factors that make the reconstruction

procedure difficult. In addition, inter-structure heterogeneity can

also negatively affect the reconstruction procedure. Structural

heterogeneity refers to the fact that macromolecules have many

different discrete or continuous conformations. Heterogeneity can

affect the steps of 3D particle picking, classification of 3D particles,

and so on.

Data websites and software for cryo-ET have been developed in

the past few years. The Electron Microscopy Data Bank (EMDB)

(Lawson et al., 2016) and Electron Microscopy Public Image

Archive (EMPIAR) (Iudin et al., 2016) are two popular databases.

The EMPIAR provides tilt series projections, and EMDB provides

3D density maps. Subtomogram averaging (STA) is a technique of

averaging 3D biological samples within tomograms (Bharat and

Scheres, 2016b). The STA is a popular image restoration technique

in cryo-ET to obtain the 3D structure of biological samples in their

native environments (Scaramuzza and Castaño-Dıéz, 2021). The

STA technique is increasingly important in structural biology. The

concepts of each reconstruction steps will be described in specific

sections. To demonstrate the current ability of cryo-ET to resolve

structures, we show the resolution distribution and software rank by

the STA from the EMDB before 28 December 2022, as Figure 1

shows. The resolution of most biological samples analyzed by cryo-

ET is low, and only a tiny part can reach more than 10 Å resolution,

which is far from enough for the study of the internal mechanism of

organisms. The top 11 software/methods are IMOD (Mastronarde

and Held, 2017), Relion (Zivanov et al., 2022), Particle Estimation

for Electron Tomography (PEET) (Nicastro et al., 2006), Dynamo

(Scaramuzza and Castaño-Dı ́ez, 2021), Ctffind (Rohou and

Grigorieff, 2015), Novactf (Turonova et al., 2017), PyTom (Hrabe

et al., 2012), Warp (Tegunov and Cramer, 2019), Av3 (Förster et al.,

2005), EMAN2 (Murray et al., 2014), and GCTF (Zhang, 2016). The

ScipionTomo (Morena et al., 2022) provides a platform containing

most software for users applying different software to solve the same

task. Recently, with the rapid popularity of artificial intelligence

algorithms, many new computational methods have emerged to

improve the reconstruction resolution in cryo-ET. This review

summarizes some new computational methods and classical

mathematical models for 3D structure reconstruction from cryo-

ET data. We hope that this review can attract more researchers to

collaborate in developing reconstruction methods in cryo-ET and

provide guidelines for other researchers.

Further improvement in cryo-ET data processing is still

significant and urgent for more precise analysis and higher

throughput. Here are some examples of the current problems.
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The limitation of the number of fiducial markers may lead to over-

fitting in motion correction and tilt series alignment (Fernandez

and Li, 2021). The reason for over-fitting is that the data from

marked regions would be less than the imaging model’s parameters

in proportion. Segmentation and particle picking also rely, to some

extent, on manual labeling based on prior knowledge (Pyle and

Zanetti, 2021). Image denoising can help particle picking and be the

initial steps of an STA analysis. In later steps, since the coordinates

are known, particles are extracted and used from noisy data.

Furthermore, denoised data can be used to produce an initial

model. Full-resolution data can be used for structural analysis to

reach the highest resolution as possible (Taylor et al., 2006). While

the experimental data in cryo-ET are progressively enriched,

computational methods ought to leverage such abundant

information for higher-resolution restoration and more

accurate analysis.

This review summarizes current methods of artificial intelligence

and mathematics for reconstructing 3D density maps and atomic

models from two-dimensional (2D) tilt-series projections in cryo-

ET. Here, we draw a general flowchart to show about 10 steps of 3D

reconstruction in cryo-ET in Figure 2. It is worth noting that the

process is subjected to appropriate adjustments and changes owing

to differences in biological samples. The three steps in the dashed

box in Figure 2, namely, motion correction, contrast transfer

function (CTF) correction, and tilt-series alignment, are

sometimes chosen to group into a program (Fernandez and Li,

2021). A denoiser is used to remove noise. While removing noise, it

also removes the high-resolution signal. Thus, a denoiser is just used

for some initial steps. The 2D denoiser is just an option to remove

noise in 2D tilt-series projections, and 3D denoisers can remove

noise in 3D subtomograms. The 3D denoiser can help improve the

accuracy of 3D particle picking and classification. For the same

classification, the subtomogram alignment and averaging (STAA)

restores the 3D volumes by averaging to remove noise. Post-

processing, also called refinement, corrects the 3D density map.

Finally, the last step is building an atomic model from a 3D density

map. In addition, denoising can be used for particle picking, initial

averaging, and alignments, and classification. For higher-resolution

information, the full-resolution volumes should be used for STA,
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alignments, and 3D density map refinement. Moreover, for real high

resolution in STA analysis, sub-tilt optimization will take place. The

methods for each step are shown in detail in the following sections,

arranged as follows.
1.1 Organization of this paper

The 3D reconstruction in cryo-ET roughly contains 10 steps.

Sections 2 to Section 11 show motion correction, correction of CTF,

tilt series alignment, 2D and 3D denoisers, 3D reconstruction, 3D

particle picking, classification, subtomograms alignment and

averaging, post-processing for 3D density map, and atomic

structure building in turn, respectively. We discuss the difficulties

of each small task, the methods, and the prospects for the future.

Section 12 discusses cryo-ET reconstruction research’s current

status, difficulties, and future research prospects.
2 Motion correction

Motion happens because the samples are exposed to the

electron beam, which will cause unsatisfactory blurs and high-

resolution informational losses. This motion is called beam-induced

motion. The electronic beam is produced through the acceleration

of electrons at high voltage (approximately 300 kV). In cryo-

electron tomography, the beam-induced motion is usually

attributed to multiple factors, including electron beam interaction

with the specimen, stage vibration, sample deformation, intense

ionization in materials, and measurement error (Naydenova et al.,

2020; Thorne, 2020). The local sample motion induced by the

electron beam can be observed as a “doming” motion (Ganguly

et al., 2022), where the sample suffers an upward deformation

perpendicular to the sample plane. The intermolecular correlation

shifts and the measurement error of the projections should be

considered. Therefore, these motions must be corrected to reduce

their impacts on low SNR and artifacts.

In cryo-electron tomography, a frame is a single image recorded

by the direct-electron detectors. A movie is a sequence of frames
FIGURE 1

Left: the numbers of 3D density maps as a function of resolutions by the subtomogram averaging (STA) in cryo-ET. Here, we only capture numbers
of the resolution from 1 to 51 Å. Right: the numbers of times the software is used by the STA. Specific data are before 28 December 2022 from the
EMDB website: https://www.ebi.ac.uk/emdb/.
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during the electron beam exposure of the biological specimens (Li

et al., 2013). Simulating the beam-induced movement and

correcting the movie/frame data are an inverse problems in a

mathematical sense. As the complex electron–sample interactions

presented above, some mathematical models are developed based

on the anisotropies. The two-dimensional or polynomial spline

interpolation and stochastic processes are capable of fitting. In

TomoAlign (Fernandez et al., 2018; Fernandez et al., 2019), the

algebraic equation includes the 3D deformation of the sample as the

motion correction through the different tilts as homogeneous

polynomial vectors in the 3D-axis of a microscope, Di(rj)  =

 (Di
x(rj),  Di

y(rj),  Di
z(rj)), where rj= (xj,yj,zj) are the jth fiducial

marker’s coordinates in the axis of the sample stage, and i is the

index of the image of the tilt series. In RELION 4.0 (Zivanov et al.,

2022), the stochastic process estimation of the electron

beam-induced motions is derived within Gaussian processes,

which is an analogous method in RELION 3.0. Specifically, the

motion of the interest particle is modeled on the path through the

tilt series in 3-dimensional space. The optimization of parameters

comprises the maximum likelihood of the posterior estimation

determining the motion pattern and the irradiate damage

accumulation. With the assumption that the sparse fiducial

movements locally estimate the whole motion of the sample, it

follows the limitation of the dependence of fiducial markers. The

number of markers may contribute to an over-fitted approximation

of the parameters introduced by polynomials.
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For the particles of growing interest in marker-free alignments,

such as cryo-lamella, Aretomo (Zheng et al., 2022) provides an

integrated marker-free solution in a fully acquired tilt series for

correcting the beam-induced motion. Aretomo regards the drift

paths of feature in patches as the beam-induced local deformation

throughout the whole tilt series. The rotation of the sample stage in

cryo-electron microscopy can essentially be described by 3D rigid-

body motion. By matching of this motion with the features,

residuals of the original and matched samples represent the local

deformation. Informed about the measured inter-subframe shifts,

MotionCor2 (Zheng et al., 2017) describes these non-coherent and

idiosyncratic shifts in the projection plane as smooth two-

dimensional polynomials, gives least-squared estimates of

correlated shifts between adjacent subframes, and maps backward

to the damage-weighted image. The patches are artificially divided

acquired images and the features are respectively extracted from

them. MotionCor2 v1.5.0 is used to match the centers of these

patches in the tilt series and detect features for local motion

correction. Warp (Tegunov and Cramer, 2019) takes a similar

process strategy as MotionCor2 but with no assumption on the

2D polynomials, where two grids decompose the global and local

motion sources and perform motion correction separately. The

dose-fraction frames are aligned and corrected in Fourier space.

Instead of manually or semi-manually labeling marker locations,

SparseAlign (Ganguly et al., 2022) is a mathematical method for

marker localization and deformation estimation simultaneously.
FIGURE 2

The general flowchart of the 3D reconstruction from tilt-series projections by cryo-ET. From top to bottom, the first frame shows the imaging
process by cryo-ET. Then, the tilt series are the inputs of the second frame to reconstruct a 3D structure. The three parts in the dashed box are
sometimes handled together. The last frame displays some applications to the microorganism.
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The SparseAlign solves a few deformation parameters based on an

image-based loss between the forward projection of markers and

the observed projections. Software such as TomoAlign (Fernandez

and Li, 2021), Aretomo (Zheng et al., 2022), MotionCor2 (Zheng

et al., 2017), Ximpp (Strelak et al., 2021), Warp (Tegunov and

Cramer, 2019), RELION (Zivanov et al., 2022), and Unblur (Grant

and Grigorieff, 2015) all provide solutions for motion correction.

Motion correction is indeed a vital step in ensuring the

successful analysis of cryo-ET data. Most methods of motion

correction in cryo-ET are based on those in cryo-EM.

Consequently, many of these methods may not be specifically

optimized for cryo-ET. In contrast, the different sample

preparation, electron dose, and relative issues are supposed to be

in consideration of image processing. It is a valuable recognition

that algorithms correct beam-induced motion in the electron

microscope or specimen stage rather than in the projection plane.

More accurate tilt series alignments, tomography reconstruction,

and subtomogram analysis will be carried out with considerable

motion correction. However, the calculating limitations should be

taken into account for the experimental approaches of raw image

acquisition, such as the number of fiducial markers or intrinsic

features and more accurate but omitted factors of beam-induced

deformation beyond doming motion. Sometimes, the performance

of motion correction is also limited by the low SNR and the high-

tilt angles.
3 Determination, correction, and
refinement of CTF

During the imaging process in cryo-ET, the low electron dose,

the thickness of the specimen, and the tilt angles result in intricately

noisy and blurred projections. The aberration of the lens and the

defocusing give rise to the CTF, which restricts the recording of the

high-resolution information (Marabini et al., 2015). The CTF

causes periodic signal inversion over a range of frequencies and

completely loses information on signals at zero-crossings

(Turonova et al., 2017). Furthermore, the tilted images in cryo-ET

have defocus gradients perpendicular to the tilt axis, resulting in

different defocus values for different angles of projections.

Therefore, CTF determination and correction are very significant

steps before further reconstruction processing.

The CTF is an oscillatory function, which is more severe at high

frequencies and defoci. These oscillations cause changes in contrast

and spectrum amplitudes for projections in Fourier space, which

weakens high-resolution information. The CTF is affected by the

defocus, spherical aberration, the wavelength of electrons, etc.

(Voortman, 2014). From a physical point of view, the CTF

(Zhang, 2016; Kunz and Frangakis, 2017) is defined as

CTF(t)  =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1  − A2

p
sin (g (t))  − A cos (g (t)), (1)

where g(t) = plt2(Dz − 0.5l2t2Ct), t is the modulus of the spatial

frequency t, l is the electron wavelength, Ct is the spherical

aberration constant, Dz is the defocus, and A is the amplitude

contrast coefficient. The Fourier transform of the projected
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tomography is multiplied by the CTF to obtain the Fourier

transform of the observed image, i.e.,

F (f )  = CTF(t)  ·  F (I), (2)

where f, I are the observed image and the underlying projection, and

F is the Fourier transform. The effect of the CTF on the images’

magnitude spectrum is shown in Figure 3. The Fourier inverse

transformation of the CTF is called the point spread function (PSF),

denoted as A, i.e., F−1(CTF(t)) = A(x) (Croxford et al., 2021). The

PSF in real space blurs projection images as Figure 3 shows.

Most existing literature mainly focuses on the methods of CTF

determination and correction in Fourier space, which contains 2D-

CTF and 3D-CTF determination and correction. Furthermore,

these CTF correction methods usually combine with other steps

like tilt series alignment and 3D refinement (Fernandez and Li,

2021). The 2D CTF correction approaches include e2ctf in EMAN2

(Tang et al., 2007), CTER (Penczek et al., 2014), CTFFIND4 (Rohou

and Grigorieff, 2015), Gctf (Zhang, 2016), and goCTF (Su, 2019).

The CTER method (Penczek et al., 2014) can estimate the

parameters of CTF rapidly and accurately. These advantages

imply that the CTER can spend less time analyzing high-

throughput data and obtain more accurate results than other

methods. The CTER can also provide an error assessment which

is a cross-resolution correlation 1D function, which evaluates the

similarity of the 3D structures with CTF correction or not. In 2015,

the effects of 2D CTF parameters and correction methods were

tested (Marabini et al., 2015) among ctfind, xmipp, appion, e2ctf,

spider, and eman, but not for goCTF and Gctf. It shows that most

CTF correction methods have minor differences even though each

approach has its unique advantage. In Marabini et al. (2015),

relatively speaking, the CTFFIND4 (Rohou and Grigorieff, 2015)

has more stable and better results. CTFFIND4 (Rohou and

Grigorieff, 2015) defined a specific formula for the spatial

frequency to estimate CTF. Gctf (Zhang, 2016) is a GPU-

accelerated global and local CTF estimation program based on

astigmatism rotational averaging and self-consistency verification.

In Gctf, Dz = z(q) = zucos
2(q −qast)+zvsin2(q −qast), where zu, zv are

maximum and minimum defocus, and qast is the angle between zu
axis and x-axis. The goal in Gctf is

bz u, bzv , bq ast

� �
= arg max

(zu ,zv ,qast )

CC(ln( F(t)j j  −  Bg(ln  F(t)j j),   CTFsim(t)j j · e−B
4jtj2 )

n o
,

(3)

where F(t) is the amplitude spectrum, Bg is the calculated

background, CTFsim(t) is the simulated CTF, B is the B-factor,

and CC is the cross-correlation. Another method, GoCTF (Su,

2019), is a geometrically optimized approach for estimating the

global focus gradient and local focus refinement per particle. The

typical cryo-EM SPA approaches for the CTF correction do not take

the defocus gradient into consideration.

There are some 2D correction CTF methods designed for cryo-

electron tomography. The method in Fernández et al. (2006) is a

classical method for CTF correction. Only a part of this method is

implemented in the software CTFFIND3. To be specific, the defocus

D(x) at any images of tilt series can be determined by the simple
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formula, i.e., D(x) = D0 + d(x)tan(q), where D0 is the defocus at the

untitled plane, d(x) is the distance to the tilt axis and q is the tilt

angle. Then, the CTF is estimated by the defocus, and its inverse

Fourier transform is used to correct the particular tilted projection.

An extended image acquisition method (Eibauer et al., 2012) is

proposed to determine CTF by recording two high-dose images

along the tilt axis for each tilt angle. Galaz-Montoya et al. (2016)

proposed a per-particle CTF correction method for a single particle

in cryo-ET, which automatically computes CTF for each particle

and tilt-series images. This method proposes a linear regression

strategy to fit the defocus gradient and further perform CTF

correction. The Bsoft (Heymann, 2018) software is a tool

including 2D-CTF correction for reconstructing macromolecular

structures. The other software and methods for 2D CTF correction

are shown in Table 1.

3D CTF correction methods for cryo-ET also exist, like

NovaCTF (Turonova et al., 2017), TomoAlign (Fernandez and Li,

2021), 3D CTF (Kunz and Frangakis, 2017), and Entropy-

regularized deconvolution (ERDC) (Croxford et al., 2021). The

NovaCTF (Turonova et al., 2017) is a popular procedure for CTF

correction in cryo-ET, which realizes CTF correction in each image

with different defocus many times and improves reconstruction

resolution. TomoAlign (Fernandez and Li, 2021) is also famous.

The TomoAlign procedure realizes CTF correction and tilt-series

alignment simultaneously, where the results of 2D CTF correction

and tilt-series alignment in IMOD can be the initial inputs. To be

specific, the defocus of the ith image in tilt series is Di(p) = pxsin(qi)
+ pzcos(qi) + Di(o), where p = (px, py, pz) is the particle coordinates

with the center o of the tomogram, Di(p) and Di(o) are the averaged
defocus and the defocus of the ith image, and qi is the tilt angle. The
estimated CTF is determined by the defocus. Three-dimensional

CTF (Kunz and Frangakis, 2017) is performed on each slice of the

reconstruction instead of the micrographs, which is based on the
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Jensen-Kornberg scheme. The ERDC approach by Croxford et al.

(2021) is a deconvolution process based on entropy regularization

in real space, where the regularization plays a role of robustness

for noise.

Both 2D and 3D CTF correction approaches, the accurate

estimation of parameters in CTF is crucial and challenging. With

the increase in cryo-ET data and the development of artificial

intelligence algorithms, it may be possible to estimate the

parameters of physical formulas for CTF by network methods in

the future. At present, there are still many gaps before the network

approach is applied to CTF. For instance, there is no benchmark

dataset and no ground truth to verify the accuracy of CTF

correction methods.
4 Tilt series alignment

The probability of misalignment of the projection is induced by

the distortions during tilt series acquisition, including shifts,

rotations, translations, and magnifications. The misalignment of

the projections would hamper the SNR enhancement and 3D

restoration in the following workflow. Tilt series alignment is an

essential component of procedures modifying the impacts of several

kinds of distortions by modeling the projections onto 2D images. In

addition, full tracking in every tilt angle allows more complete data

collection at high magnification, which can be applied to various tilt

strategies, including the dose symmetric scheme. Specifically, the

dose-symmetric tilt series scheme (Hagen et al., 2017) starts at zero

degrees’ tilt and moves up to the highest tilt in both tilt directions

simultaneously. This method concentrates high-resolution

information in the lower tilts where the sample is thinner, thus

providing maximum information transfer. With the assistance of

full tracking, the dose-symmetric tilt series scheme avoids
FIGURE 3

An illustration of the effects of the CTF and PSF on the 2D projected images. First row: blurred images; second row: the magnitude spectrum. From
left to right, the first ones are original, and the others are increasingly blurry images and their corresponding magnitude spectrum.
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resolution limitations, improves information transfer, and

minimizes the effect of sample distortions.

After motion correction, CTF correction and coarse tilt series

alignment, a more precise projection model is needed for fiducial-

based alignment and feature-based alignment. For fiducial
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alignment and calibration, “gold beads” in sample preparation are

tiny gold nanoparticles used as fiducial markers. Geometrically,

once the gold beads are placed as common fiducial markers in

sample preparation for precise alignment, it follows the coordinate

systems of the specimen, microscope, and each projection image,
TABLE 1 A summary of methods and software for each reconstruction step in cryo-ET.

Reconstruction Steps Software Methods

Motion Correction Relion (Zivanov et al., 2022)
Ximpp (Strelak et al., 2021)
TomoAlign (Fernandez and Li, 2021)
Warp (Tegunov and Cramer, 2019)

Aretomo (Zheng et al., 2022)
MotionCor2 (Zheng et al., 2017)
Zorro (McLeod et al., 2017)
Alignparts lmbfgs (Rubinstein and Brubaker, 2015)
Unblur (Grant and Grigorieff, 2015)

Determination, Correction
and Refinement of CTF

2-dimensional CTF:
IMOD (Zivanov et al., 2019)
emClarity (Fernandez et al., 2019)
Relion (Jensen and Kornberg, 2000)
EMAN2 (Tang et al., 2007)
Bsoft (Heymann, 2018)
Ximpp (Strelak et al., 2021)
3-dimensional CTF:
TomoAlign (Fernandez and Li, 2021)

2-dimensional CTF:
goCTF (Su, 2019)
Gctf (Zhang, 2016)
CTF determination (Eibauer et al., 2012)
CTFIND (Rohou and Grigorieff, 2015)
e2ctf (Tang et al., 2007)
Per-particle-based CTF-correction
(Galaz-Montoya et al., 2016)
3-dimensional CTF:
3D CTF (Kunz and Frangakis, 2017)
NovaCTF (Turonova et al., 2017)
ERDC (Croxford et al., 2021)]

Tilt Series Alignment IMOD (Mastronarde and Held, 2017)
PEET (Nicastro et al., 2006)
Dynamo
(Scaramuzza and Castaño-Dıéz, 2021)
TomoAlign (Fernandez and Li, 2021)
EMAN2 (Murray et al., 2014)
AuTom-dualx (Han et al., 2019b)

Aretomo (Zheng et al., 2022)
ClusterAlign (Seifer and Elbaum, 2022)
Joint-mark-free-alignment
(Han et al., 2019a)
AuTom (Mastronarde and Held, 2017)
RAPTOR (Ding et al., 2015)
MarkerAuto (Han et al., 2015)
UCSF tomo (Castaño-Dıéz et al., 2012)
Protomo (Zheng et al., 2007)

3D Reconstruction IMOD (Mastronarde and Held, 2017)
EMAN2 (Murray et al., 2014)
ICON (Deng et al., 2016)
emClarity (Ni et al., 2022)
AuTom-dualx (Han et al., 2019b)

IsoNet (Liu et al., 2022b)
New iteration method (Zhai et al., 2021)
Monte-Carlo-based method
(Moebel and Kervrann, 2020)
JDLMID (Ding et al., 2019)
Image inpainting (Trampert et al., 2018)
Regularization-based (Albarqouni et al., 2015)
NUFFT (Chen and Förster, 2014)
sMAP-EM (Paavolainen et al., 2014)
FBP (Zeng, 2012)
CRM (Han et al., 2021)
LoTToR (Zhai et al., 2021)
MBIR (Deng et al., 2016)
DIRECTT (Kupsch et al., 2015)
PSRT (Turoňová et al., 2015)
WSIRT (Wolf et al., 2014)
ASART (Wan et al., 2011)
WBP (Carazo et al., 2006)
MSIRT (Wan et al., 2009)
SIRT (Trampert and Leveque, 1990)

Detection,
Segmentation,
3D Particle picking

emClarity (Ni et al., 2022)
Dynamo (Scaramuzza and Castaño-Dıéz, 2021)
IMOD (Mastronarde and Held, 2017)
Xmipp (Strelak et al., 2021)
EMAN2 (Murray et al., 2014)
Chimera (Henderson, 2013)
SPHIRE-crYOLO (Sanchez-Garcia et al., 2018)
pyTOM (Hrabe et al., 2012)

COS-Net (Zhou et al., 2021)
Yolov3 (Wu et al., 2022)
U-net-based (Zhou et al., 2023)
TomoTwin (Rice et al., 2023)
VP-Detector (Hao et al., 2022)
(Hajarolasvadi et al., 2022)
MemBrain (Lamm et al., 2022)
Active learning method (Mo et al., 2021)
Deepfinder (Moebel et al., 2021)
A 2D-to-3D framework (Zeng et al., 2022)

(Continued)
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S = {Os,s1,s2,s3}, M = {Om, m1, m2, m3}, Bi= {Oi, ui, vi}. In Figure 4,

the geometric projection formula of a position in the sample onto

the ith image (Hanssen, 2018) can be represented as:

pi,j = R(gi)PR(bi)R(ai)Di(mi, si, di)rj + di,

i =  1,…,N        , j =  1,…,Nm,
(4)

where N is the number of images of tilt series, Nm is the number of

fiducial markers, pi,j= (ui,j, vi,j) is the coordinate of the projection

of the jth fiducial marker in the ith view, rj is the coordinate in M

of the jth fiducial marker, di= (Dui,j,Dvi,j)T is the shift relative to

Om, P denotes the matrix for projection onto (u, v) plane, Di

denotes the matrix representing specimen changes with respect to

the scaling factor mi, the additive scaling factor si, the skew

rotation di and multiplicative factor ti, and R(gi),R(bi),R(ai) are

rotation matrices around the z-, y-, and the x-axis of M. By
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minimizing the total error relative to measured projection p
0
i,j and

estimated projection pi,j(Hanssen, 2018),

argmin
ai ,bi ,gi ,mi ,si ,di ,rj ,di

o
N

i=j
o
Nm

j=1
wi,j · r(p

0
i,j − pi,j) : (5)

The over-fitting problem is common in fiducial-based alignments

because the number of parameters is relatively large for the numbers

of fiducial markers as well as the limited number of tilt series, albeit

there are techniques for reducing parameters and making the model

more robust. In TomoAlign (Fernandez and Li, 2021), the projection

matrix is reduced and the motion-aware polynomials are induced as a

term on the right side of Eq. (4), pi,j=Mirj+ Si,j+ di, whereMi=miPRi,

Ri including the rotation matrix around three axes in M, Si,j =

 (Sui,j, S
v
i,j) denoting the beam-induced motion undergone by the

sample in the ith image, which corresponds to a number of
TABLE 1 Continued

Reconstruction Steps Software Methods

Classification PEET (Heumann et al., 2011)
Dynamo (Scaramuzza and Castaño-Dıéz, 2021)
RELION (Bharat and Scheres, 2016b)
EMAN2 (Murray et al., 2014)
emClarity (Ni et al., 2022)

SHERC 2021 (Gubins et al., 2021)
SHERC 2020 (Zhao et al., 2018)
Respond-CAM (Zhao et al., 2018)
A multi-path CNN (Luo et al., 2019)
DSRF3D-v2, CB3D (Che et al., 2018)
MRA (Chen et al., 2014)

2D and 3D Denoisers 2D Denoisers:
2D-Topaz (Bepler et al., 2020)

3D Denoisers:
3D-Topaz (Bepler et al., 2020)

2D Denoisers:
ACE (Shi and Singer, 2022)
b−GAN (Gu et al., 2022)
NT2C (Li et al., 2022a)
TV-based variants (Pang et al., 2020)
Noise2void (Krull et al., 2019)
Noise2Noise (Bepler et al., 2020)
CWF (Bhamre et al., 2016)
BM3D (Maggioni et al., 2013)
3D Denoisers:
SC-Net (Yang et al., 2021)
3D Noise2void (Krull et al., 2019)
BM4D (Maggioni et al., 2013)
A Monte Carlo Framework (Moebel and Kervrann, 2018)

Subtomograms Alignment and Averaging PEET (Nicastro et al., 2006)
emclarity (Ni et al., 2022)
Dynamo
(Scaramuzza and Castaño-Dıéz, 2021)
pyTOM (Hrabe et al., 2012)
EMAN2 (Murray et al., 2014)
Relion (Bharat and Scheres, 2016a)

AItom (Zeng and Xu, 2020)
AV3 (Bharat et al., 2015)
Jim-Net (Zeng et al., 2021)
Gum-Net (Zeng and Xu, 2020)
STOPGAP (Wan et al., 2020)
TomoMiner and TomoMinerCloud
(Frazier et al., 2017)
Reference-free alignment (Chen et al., 2013)
High-through STA (Xu et al., 2012)
MCCF (Leigh et al., 2019)
MLE (Stölken et al., 2011)

Post-Processing for 3D density map Relion (Zivanov et al., 2019)
emClarity (Ni et al., 2022)
EMAN2 (Murray et al., 2014)
M (Tegunov et al., 2021)
Servalcat (Yamashita et al., 2021)
Phenix (Terwilliger et al., 2019; Terwilliger et al., 2020)

IsoNet (Liu et al., 2022b)
DeepEMhancer (Sanchez-Garcia et al., 2021)
LocSpiral (Kaur et al., 2021)
LocalDeblur (Ramıŕez-Aportela et al., 2019)
LocalScale (Jakobi et al., 2017)

Atomic Structure
Building

HADDOCK2.4 (Neijenhuis et al., 2022)
Phenix (Afonine et al., 2018)

Auto-DRRAFTER (Ma et al., 2022)
CR-I-TASSER (Zhang et al., 2022)
DEMO-EM (Zhou et al., 2020)
A2-net (Xu et al., 2019)
CERES (Liebschner et al., 2021)
CDMD(Igaev et al., 2019)
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parameters by giving a different type of the doming deformation

polynomials or splines. Specifically, the doming motion causes an

upward rise at the center of the carbon hole in the electronmicroscope

grid while the periphery remains relatively unchanged.

Feature-based alignment is a classical marker-free alignment

approach suitable for lamellae, which is recognized for practicality

due to the fewer requirements for sample preparation and the

broader scenarios, such as the prohibition of the fiducials. The

difficulties in feature localization, extraction, and matching exceed

similar procedures in fiducial-based alignments like ClusterAlign

(Seifer and Elbaum, 2022). In contrast, the substantial number of

virtual markers contributes a statistically robust and accurate

alignment with relatively expensive computation. Satisfactorily,

several automatic platforms and programs show their

performance on feature-based alignments and joint alignments

like AuTom (Mastronarde and Held, 2017), AuTom-dualx (Han

et al., 2019b), and a joint method (Han et al., 2019a). The AuTom

package contains marker-free (Han et al., 2014)and marker-based

(Han et al., 2015) alignment. The marker-free method (Han et al.,

2014) is based on Scale-Invariant Feature Transfrom (SIFT), which

realizes more accurate feature extraction, more stable feature

description, and more robust feature matching and tracking. The

marker-based method is a fully automatic alignment of data with

fiducial markers (Han et al., 2015). AuTom-dualx (Han et al.,

2019b) is a tool for marker-based alignment of cryo-ET dual-axis

tilt series. At first, the two tilt series are dealt independently with

detecting and tracking of fiducial marks, and bundle adjustment for

single-axis data. Then, the two tilt-series results are combined by

transforming their axes to obtain global projection parameters and

tracks by solving a non-linear least square problem. Finally, the last

stage is global parameter optimization of tilt series based on a

simultaneous reconstruction. The standard method in Han et al.

(2019a) is an iterative approach for marker-free alignment, which

combines track-based and intensity-based alignment. Some

software also provide automated tilt-served alignment like IMOD

(Mastronarde and Held, 2017), EMAN2 (Murray et al., 2014), and

Dynamo (Scaramuzza and Castaño-Dıéz, 2021).

The traditional approaches in marker-free alignments are

dedicated to calculating the shift for the highest cross-correlation

in the Fourier space, determining the common line of each 2D

projection based on the Fourier slice theorem and the projection

matching by constructing a 3D model as an intermediate reference.

Sometimes, the traditional approaches serve as coarse alignment

and preprocessing schemes. Aretomo (Zheng et al., 2022) utilizes

the traditional marker-free methods with stages of tilt-angle offset

determining planarity and recursion, in-plane rotational

alignments, translational alignments, and local alignments with

patches, which reduces the impacts of the distortions above

progressively at sufficient accuracy.
5 2D and 3D denoisers

The electron dose is strictly limited due to radiation damage to

the biological samples (Han et al., 2022), which is an essential factor

for noise. Electron beam intensity and exposure time are factors to
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control the final exposure dose on the sample. During the imaging

process, tilt angles usually vary from −70◦ to 70◦, which causes a

missing wedge (Moebel and Kervrann, 2018). In other words, the

parts of projections will be missing since the specimen cannot be

rotated to plus/minus 90◦. As the tilt angle increases, so does the ice

thickness that the electrons have to penetrate. Low electron dose

and thick ice are two significant factors to lower the SNR. Figure 5

shows the effect of noise on an image.

Noise in cryo-ET is a critical factor in limiting the resolution of

three-dimensional reconstructed structures (Frangakis, 2021). In

the reconstruction processing, Aligning and averaging of the same

particles is a well-known approach to remove noise and enhance the

signal. However, the STAA step is appropriate for a number of

homogeneous macromolecules, not for intrinsic molecular

flexibility and dynamics with a continuum or discrete changes of

conformation, such as proteins in folding, antibodies, and

lipoproteins (Han et al., 2022). The intrinsic molecular flexibility

and dynamics needs some denoisers for resolution enhancement.

Denoisers usually remove noise and enhance the image contrast in

the low frequencies. High noise, complicated noise types, and no

ground truths are three factors that make the denoising task in cryo-

ET complex (Yang et al., 2021). These three factors make most

existing denoisers unsuitable for tomographic images. Next, we

introduce 2D and 3D image denoisers in detail.

2D denoisers are applied to tomographic projections, where we

focus on relevant mathematical methods and deep learning methods.

Natural images are taken by the camera according to the sensitive unit,

like images taken by mobile phones. Here, 2D projection images by

cryo-ET are unnatural images. The existing mathematical methods for

denoising natural images include total variation (TV)-based variants

(Pang et al., 2020), block matching and 3D collaborative filtering

(BM3D) (Maggioni et al., 2013), k-singular value decomposition (k-

SVD) (Aharon et al., 2005), and traditional Wiener filter (TWF).

However, the types and levels of noise in the tomography of cryo-ET

are different from those of natural images, which cannot obtain a

satisfying result on tomographic projections (Gu et al., 2022). The

imaging principle of cryo-EM and cryo-ET is the same. However,

compared with cryo-EM, cryo-ET needs to project specimens under

different view angles and assign electronic dose for limiting radiation

damage. Thus, 2D projection images in the tilt series by cryo-ET have

a lower SNR than 2D projections by cryo-EM. To date, there are few

2D denoisers specifically designed for cryo-ET, while many 2D

denoisers are designed for cryo-EM. Some researchers applied the

methods of denoising images for cryo-EM to 2D projection images in

cryo-ET as a preprocessing step. Mathematical models have been

developed for denoising images in cryo-EM in the past few years. The

noise of 2D projections is usually assumed to follow Gaussian

distribution, while the actual noise is complicated. Although these

assumptions for mathematical modeling are simplified relative to the

actual situation, the experimental results are acceptable. A

mathematical approach named Covariance Wiener Filtering (CWF)

(Bhamre et al., 2016) was proposed for denoising images and

correcting the CTF of 2D projection images simultaneously. In the

method, the imaging model in Fourier space is Yi= AiXi+ xi for i = 1,2,

…,n, where Yi,Ai,Xi,xi are the 2D observed image, spread point

function, 2D clean image, and noise. The CWF approach estimates
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the mean µ and covariance S of the underlying clean images, chooses

Fourier Bessel basis to represent the images, and then obtains restored

images by theWiener filter based on m̂ and Ŝ instead of estimating the

spectral SNR in TWF. The CWF method takes projection directions,

ice thickness, and structural variability into account in S. The
estimation m̂ can be calculated by

µ̂   =  arg min
m o

n

i=1
∥Yi − Aim ∥22 +l ∥m ∥22

( )
, (6)

where l > 0 is the regularization parameter. The estimation Ŝcan be

calculated by

Ŝ   =  arg min
S o

n

i=1
∥AiSA

T
i + s 2I − (Yi − Aim) + (Yi − Aim)

T ∥2F

( )
; (7)

where s2 is the variance of Gaussian noise. After obtaining m̂ and Ŝ ,
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the restored images can be solved by the Wiener filter as follows:

X̂ i =  (I −HiAi)µ̂ +HiYi, (8)

whereHi =  ŜAT
i (AiŜAT

i + s 2I)−1 is theWiener filter (Frappart et al.,

2016). In 2022, an improved version of the CWF method named Ab-

initio Contrast Estimation (ACE) is proposed (Shi and Singer, 2022),

which improves contrast estimation. The approach is derived under

the imaging model Yi= ciAiXi+ xi, where ci is the unknown contrast of

the clean image. In the ACE method, ci makes the estimation of Ŝ
more accurate and the resolution of the repaired images higher.

Although the CWF and ACE methods can realize an improved

result, this issue still has much room for improvement due to their

strict assumptions.

Next, we turn to deep learning methods for 2D denoising. Many

deep learning-based methods have a satisfying performance on

denoising in cryo-ET (Frangakis, 2021). The Generative Adversarial
A

B

FIGURE 4

The imaging of cryo-ET tilt series. (A) A sample diagram of obtaining tilt series by projecting specimens in cryo-ET, where the tilt angles range from
−70◦ to 70◦. (B) A three-coordinate system of obtaining tilt series in cryo-ET. The relative deviation between theoretical and measured coordinates
pi,jand p0

i,j. The different colors, namely, red, green, and yellow, represent different particles of interest. In the projection plane, there are theoretical

and measured coordinates of features/fiducials.
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Network (GAN) is a network for generating images. GAN consists

of a generator and a discriminator, which are neural networks. The

generator tries to generate fake data and cheat the discriminator.

The discriminator distinguishes the real and fake data. The

generator and discriminator are neural networks that run in

competition during training. In 2018, the b−GAN approach with

l1 and l2 loss (Gu et al., 2022) was proposed for denoising 2D cryo-

EM images. To overcome the lack of ground truths, Noise-

Transfer2Clean (NT2C) (Li et al., 2022a) applies the simulation

software InSilicoTEM (Vulović et al., 2013) to produce simulated

2D projection images in cryo-EM. There are three parts in NT2C:

noise extraction, noise modeling, and denoiser training. There is the

coarse convolutional neural network (CNN) denoiser and the

refined CNN denoiser, which are connected by fusing the noise in

real noisy images to the simulated clean images through the

contrast-guided noise and signal re-weighting step. NT2C can

realize many denoising results, but its operation is tedious, and its

results seriously depend on simulated clean images. Furthermore,

some deep learning-based methods do not rely on ground truths,

such as Noise2Noise (N2N) (Lehtinen et al., 2018) and Noise2void

(N2V) (Krull et al., 2019). The Topaz method (Bepler et al., 2020) is

a version of N2N, which is for 2D denoising. This method contains

four network structures, including affine, fully connected neural

network (FCNN), small U-net convolutional network, and U-net

convolutional network. The loss function is a measure of evaluating

the difference between the predicted results by the algorithm

and the real dataset. The loss function is usually reduced during

training the network. Its loss can be l0, l1, and l2 as follows:

argmin
Q

Exa ,xb∼X ∥ f (xa) − xb ∥i
� �

, (9)

where i = 0,1,2, and xa, xb are noisy neighboring odd and even

frames, f is the network, X represents the distribution of images,

and E represents mathematical expectation. At the overall results,

the U-net can realize a better result. However, the model’s training

data cannot cover all cases of noisy images in cryo-EM. From

another point of view, the losses of the Topaz model are simple, and

maybe one can replace the losses with an adaptive loss based on

real data.

3D denoisers can be applied to tomograms. The popular

methods include Block-Matching and 4D filtering (BM4D)
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(Maggioni et al., 2013), a Monte Carlo Framework (Moebel and

Kervrann, 2018), 3D Noise2Noise (3D-Topaz) (Bepler et al., 2020),

3D Noise2void (Krull et al., 2019), and the Sparsity Constrained

Network (SC-Net) (Yang et al., 2021). BM4D was designed for

denoising a single 3D natural image. One can apply BM4D directly

to a single noisy volume image of cryo-ET. The Monte Carlo

Framework is a general denoising framework to overcome noise

in cryo-ET. One can integrate any 3D Gaussian denoiser like BM4D

into the framework. The Topaz method proposes two network

frameworks, including U-net-3d-10a and U-net-3d-20a, where the

difference is the average pixel size of training data 10 Å and 20 Å,

respectively. The training data of the 3D Topaz method are based

on the even/odd frames of 32 aligned cryo-ET tilt series and the

training time is over 1 month. The 3D Topaz can usually realize a

good denoising performance and is regarded as a benchmark 3D

volume image denoiser in cryo-ET. The 3D Noise2void method is

trained in the CNN on noisy images, which does not need noisy

image pairs or ground truths. SC-Net is a self-supervised learning

network with a sparsity constraint. The SC-Net is based on the 2D

filter to produce the 2D reconstructed images and then apply the 3D

reconstruction method to obtain smoothed 3D volumes to guide the

network training. The inputs of SC-Net are a linear combination of

four parts, including raw noisy volumes and smoothed volumes.

The loss function of SC-Net contains volumetric reconstruction,

sparsity-guided smoothing, expectancy constraint, and

regularization. There are some comparisons among SC-Net,

BM4D, N2N, and N2V on simulated and real-world data (Yang

et al., 2021). SC-Net can realize competitive performances

with Topaz.

Although the existing methods can achieve acceptable

denoising results for some cases in cryo-ET, there are still room

to improve resolutions. For 2D denoisers, most denoising methods

are specially designed for cryo-EM, not cryo-ET. Because of the

different image acquisition strategy between cryo-EM and cryo-ET,

the noise in projections is different. On one hand, due to the

constraints of the total electron dose, noise is higher in the per-

tilt projection image recorded for cryo-ET. In comparison to cryo-

EM acquisitions, the full dose is used to record only one image in

zero tilt. On the other hand, as the tilt angle increases, so does the

thickness of the ice and sample the electrons need to penetrate,

prohibiting the recording of the high-resolution signal to these
FIGURE 5

An illustration of the effect of noise on an image. From left to right, the left one is an underlying image; the others are noisy images as the noise
becomes larger and larger.
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projection images. Hence, the 2D projections by cryo-ET is very

noisy. We should be careful to apply 2D denoisers in cryo-EM,

which are directly applied to denoise 2D projection images of tilt

series in cryo-ET. The factors such as lower electron dose and

changes in ice thickness should be considered. Designing more

accurate 2D tomography denoisers according to different imaging

conditions in cryo-ET is an urgent task in the future. For 3D

denoisers, there are several popular methods for denoising 3D

volume images in cryo-ET, including BM4D, Topaz, N2V, and

SC-Net. BM4D is for a single 3D volume image. Topaz, N2V, and

SC-Net are networks based on training data. The difficulties of

denoising 3D volume images are no ground truths, high noise

levels, and complex noise types. To address this, some imaging

simulation algorithms for cryo-ET can be designed to fill up the

shortage of no ground truths, or some novel 3D denoising network

structures that do not need ground truths can be constructed.

Alternatively, some adaptive 3D denoising mathematical models

can be proposed in the future. Restoring 3D volume images in cryo-

ET is a tough but important task for improving resolution.
6 3D reconstruction and reduction of
missing wedge

The 3D reconstruction in cryo-ET aims to restore 3D volume

images from 2D aligned images (Frank, 2005). Owing to the

limitation of electron dose and constraint of tilt angles, low SNR

and artifacts caused by the missing wedge are two difficult points to

handle in cryo-ET (Ding et al., 2019); thus, many existing 3D

reconstruction methods are not suitable for cryo-ET. Figure 6 shows

a simple illustration of 3D reconstruction step from the tilt series in

cryo-ET, where the complete volume suffers from the missing data.

In electron tomography (ET), the most common strategy to acquire

data is the single-axis tomography (Han et al., 2017), although dual-

axis tomography (Tong et al., 2006) is also used. Single-axis imaging

rotates around the same axis during the imaging process, while

dual-axis imaging rotates around two axes that are perpendicular to

each other, which can obtain two different tilt-series images. The

latter is designed to reduce the missing information to a “missing

pyramid” experimentally. For the single-axis imaging process, the

missing wedge (MW) information makes the reconstruction

problem ill-posed. In some sense, MW can be restored by 3D

reconstruction methods (Zhai et al., 2021). Then, the restored 3D

volumes can be transported to 3D denoisers or 3D subtomogram

image alignment and averaging to obtain high-resolution results.

For the dual-axis imaging process (Han et al., 2019b), combining

information from two tilt-series images is a difficult task.

Over the past few decades, many approaches have risen to deal

with 3D reconstruction for the single-axis imaging process in cryo-

ET. We firstly summarize the existing literature on 3D

reconstructions proposed for the single-axis imaging process. The

mathematical models can be divided into two categories: real space

and Fourier space. The Fourier projection slice theorem (also

known as the central section theorem) (Frank, 2005) is the key

point of Fourier-space-based methods. The Fourier projection slice
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theorem tells us that the Fourier transform of 2D projection images

equals the slice operator acting on the Fourier transform of 3D

volume, whose mathematical expression is

F 2 ∘ P(V)  = S ∘  F 3(V), (10)

where V is a 3D volume, Fi is the i−D Fourier transformation for i =

2,3, P is the 2D projection operator that integrates along the z-axis,

and S is the slice operator that sets the component of the z-axis

equal to 0. The Fourier transformation does not lose any image

information. The Fourier-based approaches contain filtered back-

projection (FBP) (Zeng, 2012), non-uniform fast Fourier

transforms (NUFFT) (Chen and Förster, 2014), and the iterative

compressed-sensing optimized non-uniform fast Fourier transform

reconstruction (ICON) (Deng et al., 2016). The FBP method uses

the same filter function for all projections. The ICON is a popular

3D reconstruction software based on NUFFT with compressed

sensing and sparsity assumption in cryo-ET. In ICON, the

imaging process is expressed as f = Ax + N in Fourier space,

where f and x are the discrete Fourier transform of projections and

the density of specimen, respectively, A is a non-uniform Fourier

sampling matrix, and N is noise. Then, the mathematical model of

ICON (Deng et al., 2016) is

arg  min
x

∥ Px ∥L0 j AHWAx − AHWf ∥L2 < ϵ
� �

, (11)

where P is a sparse transform matrix, W is the weight of

nonuniform sampling, AH is the conjugate transpose of A, and ϵ

is a constant.

In addition, there are many mathematical models in real space

for 3D reconstruction in cryo-ET. Because of the missing wedge, the

mathematical problems for 3D reconstruction are ill-posed. The

most common methods include weighted back-projection (WBP)

(Carazo et al., 2006), a regularization-based method (Albarqouni

et al., 2015), the Monte Carlo approach (Moebel and Kervrann,

2020), sMAP-EM (Paavolainen et al., 2014), an iteration-based

method (Zhai et al., 2021), and an image-inpainting-based

method (Trampert et al., 2018). The WBP method applies

different filters for different projections according to their

geometric characters. For the iteration-based approaches, the

imaging formation process can be simplified as f = Ax + N.

Specifically, there are the algebraic reconstruction technique

(ART) (Gordon et al., 1970), an adaptive simultaneous algebraic

reconstruction technique (ASART) (Wan et al., 2011), the

simultaneous iterative reconstruction technique (SIRT) by

Trampert and Leveque (1990), the progressive stochastic

reconstruction technique (PSRT) by Turoňová et al. (2015), direct

iterative reconstruction of computed tomography trajectories

(DIRECTT) algorithm (Kupsch et al., 2015), model-based

iterative reconstruction (MBIR) (Deng et al., 2016), low-tilt

tomographic reconstruction (LoTToR) (Zhai et al., 2021), and the

constrained reconstruction model (CRM) (Han et al., 2021). The

ART method aims to solve a large and sparse linear equation

system, where one can obtain an approximate solution by

Kaczmarz’s iterative method. There are some variants of the SIRT

method that contain modified simultaneous iterative reconstruction

(MSIRT) (Wan et al., 2009) and weighted simultaneous iterative
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reconstruction (WSIRT) (Wolf et al., 2014). The WSIRT method is

a combination of the WBP and the SIRT methods. The CRM

introduces a constrained term based on SART and SIRT. The

minimization formulation of CRM (Han et al., 2021) is

min
bi,gi

∥Dibi + Bigi −  fi ∥
2
2  s: t: b1 = b2 = … = bN , (12)

where bi and gi are sample images and their relevant backgrounds,

Di and Bi are the image formation operators of bi and gi,

respectively, and fi is their measured projection. The sparsity

Kaczmarz’s algorithm solves the CRM problem. Another

alternative approach is to regard missing wedge as an image

inpainting problem (Trampert et al., 2018), which repairs the

missing part with some general information about the images.

There are several neural network methods (Ding et al., 2019; Liu

et al., 2022b) for 3D reconstruction and the reduction of missing

wedge in the single-axis imaging process of cryo-ET. IsoNet (Liu

et al., 2022b) is a neural network method for reconstructing the

missing wedge information and increasing SNR. The IsoNet

contains five steps: deconvolve CTF, generate mask, extract,

refine, and predict steps. The refine step plays a crucial role in

IsoNet. The refine step needs a pair of tomograms to train.

However, the extracted subtomograms have missing wedge. The

IsoNet adopts an iterative way to update the pairs with the predicted

subtomograms, which takes advantage of deep learning to fill up the

missing wedge by predicting information. The joint deep learning

model (JDLMID) (Ding et al., 2019) is for the inpainting of the
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missing wedge and de-artifact. JDLMID tries to fill up the missing

wedge by image inpainting. The JDLMID method contains two

parts: GAN frameworks with residual in a residual dense block for

inpainting and a U-net for eliminating artifacts. In the future, more

neural networks for 3D natural image reconstruction can be revised

to be suitable for 3D reconstruction in cryo-ET.

Besides the single-axis imaging process, the dual-axis imaging

process (Mastronarde, 1997; Tong et al., 2006; Han et al., 2019b) is

an acquisition strategy to collect more data and reduce the missing

information to a “missing pyramid” in the experiment (Guesdon

et al., 2013). However, the projections of the dual-axis tomograms

have a lower SNR than the single-axis type, and matching two

orthogonally oriented tilt series is a new and difficult task. For the

dual-axis imaging process in cryo-ET, the Etomo (Mastronarde and

Held, 2017) in the software IMOD and PEET can deal with the

dual-axis data. Moreover, Han et al. proposed a new toolkit called

AuTom-dualx (Han et al., 2019b) for the 3D reconstruction of dual-

axis tomograms. The combination of both two tilt series in AuTom-

dualx is based on fiducial markers. They designed a new algorithm

to match the two tilt-series coordinates and then embedded it into

the SART and SIRT methods for 3D reconstruction. The dual-axis

tomogram (Winter and Chlanda, 2021) has analyzed the

interactions of the Ebola virus and action-VP40.

In brief, there are two imaging processes: singe-axis and dual-

axis. As shown above, many mathematical models and neural

networks have been developed for 3D reconstruction in cryo-ET

for the singe-axis imaging process. They aim to reconstruct 3D
FIGURE 6

This is an illustration of the 3D reconstruction step from tilt series in cryo-ET, where the final volume suffers from the missing wedge.
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volumes from 2D projections and try to fill up the missing wedge by

prediction. Some restored methods depend on prior knowledge and

are not data-driven, like MTV (Albarqouni et al., 2015). Others rely

on the known information of observed projections to restore the

missing wedge (Liu et al., 2022b). Although the existing methods

have realized some acceptable 3D density maps of specimens in

some cases, there are some areas for improvement. The methods

based on prior constraints may generate elongation, streaking, and

ghost tail artifacts due to the lack of using the information of the

acquired projections. The existing methods depending on the

acquired projections may not obtain ideal reconstructed results

from incomplete projection orientations. In the future, we hope that

more well-performed restored-processing methods can be

developed for reconstructing 3D density maps in cryo-ET

image processing.
7 3D particle picking

Since a 3D reconstructed tomogram contains multiple copies of

specimens, the 3D particle picking task focuses on detecting and

picking the particles of interest to biologists. As Figure 7 shows,

there are many noisy particles of different orientations. The higher

the noise, the harder to detect the particles of interest. There are

four factors that make 3D particle detection difficult: the low SNR in

3D reconstructed tomograms, missing wedge, the small sizes of

particles, and the crowded environment (Castaño-Dıéz et al., 2017;

Mo et al., 2021). Figure 8 shows simulations of 2D projection

images by rotating the biological sample, where the particles are

located in an overcrowded environment. The overcrowded

environment and the difficulties of picking particles in situ are

shown in Figure 9, that is, for the case of particles inside the cells.

The 3D particle picking task contains two tasks: detection and

segmentation. The low SNR makes it impossible to detect particles

by eyes and requires computational methods. The existing methods

of particle picking usually focus on coordinate identification and

extraction of 3D targeted particles in volumes. There are

segmentation-based methods like instance segmentation (Liu

et al., 2022a), CASSPER (George et al., 2021), and detection-based

methods like one-stage detection (Liu et al., 2022a). These methods

for picking 3D particles in cryo-ET are done in a manual or semi-

automated pattern. Manual marking particles are empirical and

time-consuming. In recent years, many methods based on artificial

intelligence have been developed.

Recently, many new neural network methods have been

developed, like those based on 3D-CNN, manifold, U-net, active

learning, and so forth. It can be divided into template-based and

template-free methods. For the former, the Dynamo provides a

basic geometrical library, and users can select a specific one to do

3D particle picking. Here, we only focus on the latter. We collect

some methods for detecting and segmenting particles. The

MemBrain (Lamm et al., 2022) and 3D-UCaps (Hajarolasvadi

et al., 2022) are designed for detecting membrane–protein

complexes. The MemBrain is a deep learning frame combined

with using CNN for scoring and means shift clustering. The 3D-

UCaps combines 3D Capsule Network (CapsNet) and CNN to
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decrease the computing cost and improve accuracy. A learning

method by integrating dense CNN and autoencoder into U-net

(Zhou et al., 2023) is for the cell membrane segmentation. In

addition, Pyle et al. (2022) propose several strategies for picking

and cleaning membrane–protein complexes. The Deepfinder

(Moebel et al., 2021) and TomoTwin (Rice et al., 2023) are

designed for detecting macromolecules. The Deepfinder can

identify multiple macromolecular complexes simultaneously by

combining U-net, a 3D CNN-based model, and a clustering

algorithm. TomoTwin maps particles into a high-dimensional

space that is called the embedding space. It measures particles by

embedding their representations. To save computing time, the

YOLOv3 (Wu et al., 2022) regards particle picking as an object

detection task using one-stage detection. To combine 2D detection

and segmentation methods into 3D cases, a novel 2D-to-3D

framework (Zeng et al., 2022) for detection is used by detecting

objects firstly in 2D projections and then localizing objects in 3D

structures. Active learning (Mo et al., 2021) is an active-learning-

based approach designed with region proposal and Resnet3d under

a new class label. There are some learning-based approaches, like

the cryo-ET one-shot network (COS-Net) (Zhou et al., 2021). In

addition, there is a new method to simulate crowded cells in cryo-

ET (Pei et al., 2016) to check the effects of 3D particle picking

methods in a crowded particle environment. Some software

contains 3D particle picking like Dynamo (Castaño-Dıéz et al.,

2017), EMAN2 (Murray et al., 2014), Bsoft (Heymann, 2018),

TomoTwin (Rice et al., 2023), Deepfinder (Moebel et al., 2021),

and VP-Detector (Hao et al., 2022).

In fact, 3D particle picking is a time-consuming and

computing-consuming task. Because the sizes and shapes of

particles vary, the existing methods have their cases for the

application. How to select an appropriate method is a question

that is worth exploring. In the future, embedding biological samples

in manifolds can be further developed. However, finding a suitable

embedding space and representation needs to be explored and

experimented. Some novel neural networks can also be extended to

3D particle detection or segmentation in cryo-ET.
8 Classification

Biomolecules constantly change their structures and

conformations to function in the cellular environment. Cryo-ET

enables the discovery of these diverse conformations in situ (Zhang,

2019). Yet, classifying these conformations accurately is challenging

due to low SNR, uncertain classification numbers, and imbalanced

class proportions (Taylor et al., 2006). Additionally, the missing

wedge introduces variations in the structural information,

depending on the orientations of the biomolecules (Heumann

et al., 2011).

Classification of the subtomogram is used to extract consistent

structural features from heterogeneous conformations (Wan and

Briggs, 2016). Specifically, the fundamental purpose of classification

is to find multiple conformations and compositions of known

complexes, and discover unknown complexes. Similar to tilt-

series alignment and subtomogram alignment, classification also
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relies on cross-correlation optimization in the tomograms

(Frangakis et al., 2002; Heumann et al., 2011; Hrabe et al., 2012).

In addition, pattern recognition schemes, based on a priori

knowledge, are commonly used in research to classify the

particles of interest. These schemes based on a priori knowledge

require high-resolution experimental structures to generate clusters

that are subjected to imaging experimental parameters. At the same

time, low SNR and missing wedge also limit the feature

representation of clusters.

The current approaches to perform classification are

simultaneous within subtomogram alignment or are based on a
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priori knowledge. On the one hand, when the classification is

decoupled from the subtomogram alignment, the constrained

principal component analysis (PCA) method based on K-means

or hierarchical clustering is often used, which brings higher

computational consumption as its voxel-by-voxel comparison.

For the interested complex and its specific functional regions, the

PCA method has limitations when dealing with data distributions

that exhibit higher levels of heterogeneity. Generally, the binning

method is used to reduce the dimensions of data. On the other

hand, the comparison method with multiple references is often used

in simultaneous alignment and classification. The multiple
FIGURE 7

An illustration of the 3D particle packing task. For the first row, from left to right, the first one are the underlying particles. The second and the third
rows are noisy tomograms as the noise becomes larger, so does the left one in the second row. The last one detects and marks particles in 3D
particle picking.
FIGURE 8

An illustration of simulation of 2D projection images in different tilt angles by rotating the biological sample. The top picture shows the particles
located in an overcrowded environment. The other pictures are 2D projection images as the tilt angle increases from left to right and from top to
bottom. The cubes stand for particles.
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references approach (MRA) relies on a priori knowledge of existing

high-resolution structures. Thus, it can achieve higher cross-

correlation coefficients by minimizing the probability of

maximum likelihood estimation. The noise outside regions of

structural change can reduce classification accuracy. To address

this limitation, MRA was developed for inter-reference structural

differences (Chen et al., 2014). Although the MRA is theoretically

computationally simpler, it requires iterative operations to achieve

classification convergence, which requires more demanding multi-

reference sampling. Software packages for classification are

available in Dynamo (Scaramuzza and Castaño-Dıéz, 2021),

RELION (Bharat and Scheres, 2016b), emClarity (Ni et al., 2022),

and EMAN2 (Murray et al., 2014; Chen et al., 2019).

In recent years, bioinformatic deep learning methods have

significantly improved the classification of heterogeneous

subtomogram of interest particles. The tomoDRGN (Powell and

Davis, 2023) can reconstruct a heterogeneous ensemble of

structures by learning a new neural network including a

variational autoencoder (VAE) and decoder. This network can

learn a continuous low-dimensional representation of structural

heterogeneity in cryo-ET data (Powell and Davis, 2023). A learning-

based approach for sub-break classification is proposed in Xu et al.

(2017), addressing the challenges of complex data distributions and

scalability. This approach combines deep learning for supervised

feature extraction with unsupervised clustering and template-free

classification, offering a complementary solution to traditional

methods. Thus, it improves the performance of classification

based on deep learning of three designed CNN models for large-

scale systematic macromolecular structures. The Respond-weighted

Class Activation Mapping (Respond-CAM) algorithm presents a

method for extracting and interpreting significant structural

features by CNNs (Zhao et al., 2018). An adversarial domain

adaptation method is developed to enhance the discovery of new

structures and facilitate data recovery in the context of imbalanced
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classification data (Luo et al., 2019). A combined data processing

strategy addresses the challenges of imbalanced classification data

and the composition of real molecules, which demonstrates

significant improvements in classification and segmentation

performance (Che et al., 2018). SHREC is an online 3D Shape

Retrieval Challenge that has seen the development of novel deep

learning-based methods for classifying cryo-electron tomograms.

SHERC 2020 (Zhao et al., 2018) and 2021 (Gubins et al., 2021)

evaluated classification results from six and seven groups,

respectively. In SHERC 2021, methods like URFinder,

DeepFinder, U-CLSTM, MC DS DS Net, YOPO, CFN, and TM-

T/TM-F were proposed, with MC DS Net showing superior

performance overall.

Classification is an essential step in the whole procedure, which

provides input for subtomograms alignment and averaging.

Although there are satisfying results for classification, better

methods are still needed for higher accuracy and precision. In

addition, ContinuousFlex (Harastani et al., 2022) is specifically

designed to analyze continuous conformational variability.

However, the continuous conformational variability of

macromolecules still poses a challenge in this field.
9 Subtomogram alignment
and averaging

After the classification of 3D particles (subtomograms), the next

step is usually aligning and averaging 3D particles of the same class

to denoise (Castaño-Dıéz and Zanetti, 2019; Zhang, 2019). It is

worth noting that STAA is suitable for static conformational

variability of macromolecules not for heterogeneous structures.

The heterogeneous structures mean that there exists discrete or

continuous conformational variability of macromolecules. The

heterogeneous macromolecules can be denoised by the denoising
FIGURE 9

This is the biological environment in situ for picking macromolecular complexes (represented by green balls) inside a cell.
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algorithms in Section 5. Random orientation and low SNR are two

factors that make the STAA task difficult in cryo-ET. There are two

keys in subtomograms aligning which are 3D translations and

rotations (Leigh et al., 2019). Because of the large shapes of 3D

tomograms, computing cost and time should be considered. In this

section, we summarize the existing approaches to the

STAA problem.

The existing methods for STAA can be divided into three

classes: maximum likelihood estimation (MLE) (Stölken et al.,

2011) in real space, maximum cross-correlation function (MCCF)

(Leigh et al., 2019), and neural networks (Zeng and Xu, 2020).

Because the MLE method needs to go through all pixels of 3D

subtomograms, the computational cost and time of the MLE

method are relatively high. For speeding up the calculation of the

MCCF-based methods in real space, there are some fast aligning

approaches based on common gradient (Xu and Alber, 2012) and

stochastic average gradient (SAG) (Lü et al., 2019) by parallel

optimization. The multi-reference alignment (Zhao et al., 2022) is

a simple mathematical model for particles alignment and averaging.

Furthermore, some fast rotational correction-based aligning

methods have been developed by the translation-variant

rotational matching in Fourier space under some constraints (Xu

et al., 2012). A dissimilarity function of 3D volumes (Förster et al.,

2008) has been defined to obtain the 3D translations and rotations

iteratively. A constrained cross-correction (CCC) was proposed to

reduce the missing information to a “missing pyramid”. The

spherical cross-correlation function of Chen et al. (2013) can be

regarded as an extension of the MCCF method. There is a Fourier

space-constrained fast volumetric matching based on Fourier space

equivalence of constrained correlation measure (Xu et al., 2012).

There is an improved STA method based on biophysical analysis

and supramolecular context (Metskas et al., 2022). Some software

can realize the task of STAA, such as Relion (Bharat and Scheres,

2016a), Dynamo (Scaramuzza and Castaño-Dıéz, 2021), Emclarity

(Ni et al., 2022), STOPGAP (Wan et al., 2020), AItom (Zeng and

Xu, 2020), and TomoMiner and TomoMinerCloud (Frazier

et al., 2017).

In recent years, some methods based on neural networks have

arisen for the task of STAA, like Gum-Net (Zeng and Xu, 2020) and

Jim-Net (Zeng et al., 2021). The Gum-Net is a geometric

unsupervised matching network only for 3D subtomogram

alignment. The Gum-Net is based on 3D discrete cosine

transform (DCT) for feature extraction, spatial transformer

network for alignment, and Pearson’s correlation as the loss to

train (Zeng and Xu, 2020). The Jim-Net is an end-to-end

unsupervised CNN for the two tasks of cluster and alignment

simultaneously (Zeng et al., 2021). There are two parts of the

Jim-Net, namely, an aligning process based on constrained cross-

correlation loss and a clustering process based on the Gaussian

mixture model (GMM). The neural network methods can be better

realized when the training sets are large.

In the STAA task, 3D subtomogram aligning is challenging and

highly time-consuming. The existing methods have applied parallel

optimization in real space and variant translation in Fourier space

to speed up the computing process. The neural networks can realize
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a good result for the STAA that is based on the train data. Some

methods for 2D particle alignment and averaging in cryo-EM can

be generalized to the 3D STAA in cryo-ET, such as invariant-

rotation features: first-, second-, and third-order autocorrelation

(Singer, 2019; Marshall et al., 2020). Some manifold learning

methods by Kileel et al. (2021) for dimensionality reduction may

be considered to solve the STAA task.
10 Post-processing for 3D
density map

Owing to the imaging noise, radiation damage, the motion of

the samples, and biases in the above reconstruction steps, it is

necessary to correct the details in the reconstructed 3D density

maps (Rosenthal and Henderson, 2003). The post-processing

procedure is used to modify the loss of contrast and fill in the

details in the restored 3D density maps to visualize high-resolution

features as the final reconstructed step. IsoNet (Liu et al., 2022b) is a

deep learning method containing the refinement part for 3D

reconstructed density maps, which has already been introduced in

Section 5. The post-processing step is used to restore details of 3D

density maps, in both cryo-EM and cryo-ET. Here, we summarize

post-processing methods into three kinds, namely, map sharpening

(Rosenthal and Henderson, 2003), density modification (Terwilliger

et al., 2019), and refinement (Urzhumtsev et al., 2022).

Firstly, map sharpening can be roughly divided into global and

local approaches. The global sharpening methods for the full

volumes are almost based on B-factor correction (Rosenthal and

Henderson, 2003). There is also an adjusted surface area measure

(Terwilliger et al., 2018) for global sharpening by combining details

and connectivity of the maps. The resolutions of the whole

reconstructed volumes are usually not the same, which means

some parts of 3D volumes are restored well while others are

flawed. The local sharpening approaches for raw subtomograms

are designed for local restoration, including LocalDeblur (Ramıŕez-

Aportela et al., 2019), LocalScale (Jakobi et al., 2017), LocSpiral

(Kaur et al., 2021), an adjustment of density maps in Phenix

(Terwilliger et al., 2018), and DeepEMhancer (Sanchez-Garcia

et al., 2021). The LocalDeblur is a Wiener filter for image

deblurring based on local resolutions of the original maps. The

LocSpiral provides a method to compute the local B-factor by the

spiral phase transform. The LocalScale and Phenix need atomic

maps as references, which can help to obtain good results. However,

the requirement of atomic maps is a limitation to use these two

approaches. The training data of the DeepEMhancer are pairs of

experimental maps and post-processed maps by the LocScale. The

well-trained DeepEMhancer is applied to reconstructed maps and

realizes better results than the global sharpening methods. Secondly,

the density modification (Terwilliger, 2000; Terwilliger, 2001)

utilizes the maximum likelihood estimation based on prior

knowledge and other known macromolecular structures. The

improved procedure by Terwilliger et al. (2019); Terwilliger et al.

(2020) needs two independent half-maps and some prior

information of the reconstructed maps as inputs which available
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in the Phenix software. This method is suitable for those maps with

preliminary knowledge or similar known macromolecular

structures. Thirdly, there are some refinement methods for post-

processing, like Servalcat (Yamashita et al., 2021), Relion (Zivanov

et al., 2022), and M (Tegunov et al., 2021). The Servalcat computes a

weighted Fo− Fc difference map, which is a part of REFMAC5 in the

Collaborative Computational Project for electron cryo-microscopy

(CCP-EM), where Fo, Fc is the Fourier transform of the observed

map and calculated map from atoms. The weighted Fo−Fc difference

map can help to enhance weak features like hydrogens. The

refinement in Relion (Zivanov et al., 2022) contains CTF

refinement and tilt-series refinement, which correspond to optical

aberration and geometrical refinement separately. The M (Tegunov

et al., 2021) software realizes refinement by a CNN denoiser for 2D

images before 3D construction to improve local resolution.

Furthermore, there is a framework by Burt et al. (2021) for three-

dimensional reconstruction to multi-particle refinement in M,

where it provides a link between the Dynamo and the Warp-

Relion-M.

In short, the existing post-processing methods further optimize

3D volumes by calculating the whole or local B-factor, deep learning-

based density modification, de-blurring, and denoising. In future,

some representation methods and measures can be designed to

describe the difference between density maps and atomic maps. In

addition, as the 3D atomic structures increase, more new neural

network methods can be applied to post-processing.
11 Atomic structure building

Biologists can analyze biological functions and conduct medical

research through three-dimensional atomic structures (Xu et al.,

2019). Atomic structure reconstruction (ASR) from density maps is

significant. With the increase of atomic structure data and the

improvement of computing equipment, artificial intelligence

methods (Giri et al., 2022) have been applied to build atomic

models automatically instead of by hand. Some deep learning

methods have been summarized in Giri et al. (2022) for building

atomic structures from density maps. To avoid repetition, we briefly

introduce novel methods from two aspects of building and refining

atomic models.

Some deep learning methods build atomic models using the

training data of 3D density maps and the corresponding atomic

structures. Amino Acid Network (A2-net) (Xu et al., 2019) built an

Amino Acid dataset of density maps. The A2-Net contains two

stages for detecting 3D amino acids and searching the leading

chains of amino acids. It can determine a molecular structure

rapidly and accurately. Recently, as the predicting structure

methods with sequences develop, there appears some novel ASR

methods that apply structure prediction as one of their parts. The

inputs are usually 3D density maps and sequences. The Auto-

DRRAFTER method by Ma et al. (2022) is designed to build an

RNA model automatically based on the structure prediction

method Rosetta. Based on the protein structure prediction

I-TASSER method, the CR-I-TASSER (Zhang et al., 2022)
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identifies the templates from the Protein Data Bank (PDB) to

promote atomic assembly. The CR-I-TASSER combines the I-

TASSER folding simulations and the Ca atom model by deep

residual convolutional neural networks and molecular dynamics

(MD) simulation to build the atomic structures. There are some

similar methods, like domain-enhanced modeling using cryo-

electron microscopy (DEMO-EM) (Zhou et al., 2020). The

constructed atomic models can be refined further by fitting them

to density maps such as an accurate real-space refinement

(Urzhumtsev et al., 2022) and refinement in Phenix (Afonine

et al., 2018). For the atomic structures, one can also perform

interface refinement by HADDOCK2.4 (Neijenhuis et al., 2022)

and refine further by correlation-driven molecular dynamics

(CDMD) (Igaev et al., 2019). In turn, the CERES method

(Liebschner et al., 2021) can refine 3D density maps by the

constructed atomic models.

Above all, the existing methods can build or refine atomic

models automatically. Although the existing methods can realize

good results, there are some limitations like insufficient training

data and the low resolution of density maps. Furthermore, as the

structure prediction field develops rapidly, novel methods for the

ASR can combine them into building atomic model procedures in

the future.
12 Discussion

Structural biologists increasingly favor cryo-ET because of its

ability to image large biological specimens in situ. The atomic

structure of microorganisms is important to make drug

discoveries, host–pathogen interactions, and so on. Publicly

available databases like EMDB (Lawson et al., 2016) and EMPIAR

(Iudin et al., 2016) separately provide 3D density maps and original

2D tilt-series projections. It involves a small amount of resolved

density maps and corresponding tilt series applied in the

microorganism in nature. However, the amount of data occupies

a vast storage, which is a challenge for computer equipment. To the

best of our knowledge, there is no unified benchmark of cryo-ET for

deep learning method training, testing, and comparing. In future,

computer hardware development for massive data storage and

uniform standard training and test datasets will be needed.

With the development of computing technology and artificial

intelligence, the resolution of resolved structures is increasing.

Although many reconstruction software shown in Table 1 have

been developed, such as IMOD, RELION, DYNAMO, and EMAN2,

each has its characteristics. However, there are several problems: (1)

For structural biologists, after obtaining the cryo-ET tilt-series

projections, selecting suitable software quickly and accurately

remains a difficult problem; (2) Files of different software are in

different formats, which cannot be used among different software.

The ScipionTomo (Morena et al., 2022) provides an integrated

platform where all software is available, including IMOD, Relion,

Dynamo, motioncorr2, Gctf, Tomo3d, Aretomo, and NovaCTF.

Users can compare different methods for solving the same task

instead of wasting time installing software. However, ScipionTomo
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does not solve the problem of different input/output file types

between different software. Furthermore, another new platform

can be developed for converting files from different software to

uniform formats.

Mathematically, the reconstruction process from a two-

dimensional tilt series to a three-dimensional electron density

map involves various inverse problems. Specifically, these inverse

problems are included in the standard processing discussed above:

beam-induced motion fitting, parameter determination of CTF, tilt-

series acquisition, noise modeling, and multi-view geometry of

three-dimensional reconstruction. In addition, the inherent

problems of cryo-ET are the limiting electron dose, the

algorithmic enhancement, and the non-unique and unstable

numerical solution due to the missing wedge. Thus, a bundle of

inverse problems could lead to multiple paths in the pursuit of

highly accurate resolution of cells in situ. In general, there should be

a wide range of mathematical applications in cryo-ET, which may

continue to produce outstanding data processing strategies

and methods.

With the rapid development of artificial intelligence (AI), many

new deep learning-based methods have been designed for cryo-ET

like U-net, Resnet, manifold learning, active learning, automatic

encoder, and CNN. However, there are several problems. One is

that the disunity of training and testing datasets makes the

results of comparison among approaches of the same task less

reliable. It also confuses users in choosing a suitable one when

they want to analyze a new specimen. In addition, input–output

gaps also exist with existing software, making some methods

less usable. There is much room for improvement in accuracy

and speed of calculation. Furthermore, it is certain that

more deep learning methods will emerge for 3D reconstruction

in cryo-ET. Many new artificial intelligence approaches may be

further revised to 3D reconstruction cryo-ET such as methods

based on a transformer, manifold learning, and representation

theory. Thus, it is necessary to establish a uniform dataset,

evaluation criteria, and document format requirements for each

task. Cryo-ET will play an increasingly important role in biological

science, and may be applied further to medicine, pharmacy, and

other fields to promote human progress and the development

of science.

Above all, popular deep learning methods and classical

mathematical methods have improved the resolution of cryo-ET

reconstruction. However, as far as we know, few methods are

designed for cryo-ET reconstruction by combining mathematical

theory and AI algorithms to complement each other. These kinds of

approaches have been used for natural image processing (Wang

et al., 2020; Zhao et al., 2021; Li et al., 2022b). The MoAMNmethod

(Zhao et al., 2021) combined the EM algorithm and a denoiser for

Gaussian noise to remove a mixture of additive and multiplicative

noise. A learnable regularizer provides a good image prior to

denoising images in Li et al. (2022b) by integrating the variational

method into the architecture of denoiser. Similarly, an image

segmentation model with adaptive similarity was developed in
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Wang et al. (2020). Mathematical knowledge can increase the

prior knowledge of AI methods and enrich their interpretability.

Meanwhile, the AI approaches improve the mathematical methods

to be more flexible and fit to actual data. Therefore, combining

mathematical theory and AI algorithms can be an alternative

development trend for cryo-ET in the future.

AI professionals and mathematicians have devoted themselves

to developing methods for cryo-ET reconstruction procedures.

There is still much room to develop new ways to improve

resolution besides deep learning methods and mathematical

methods (as mentioned above). The combination of the two, and

even the integration of biology, physics, and other fields of

knowledge. We hope that this review will attract more

interdisciplinary researchers to join in developing cryo-ET

approaches. In particular, experts from different fields can

collaborate to take full advantage of their strength.
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et al. (2019). Automatic local resolution-based sharpening of cryo-em maps.
Bioinformatics 36, 765–772. doi: 10.1093/bioinformatics/btz671

Rice, G., Wagner, T., Stabrin, M., and Raunser, S. (2023). Tomotwin: Generalized 3d
localization of macromolecules in cryo-electron tomograms with structural data
mining. Nat. Methods 20, 871—880. doi: 10.1038/s41592-023-01878-z

Rohou, A., and Grigorieff, N. (2015). Ctffind4: Fast and accurate defocus estimation
from electron micrographs. J. Struct. Biol. 192, 216–221. doi: 10.1016/j.jsb.2015.08.008.
Recent Advances in Detector Technologies and Applications for Molecular TEM.

Rosenthal, P. B., and Henderson, R. (2003). Optimal determination of particle
orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy.
J. Mol. Biol. 333, 721–745. doi: 10.1016/j.jmb.2003.07.013

Rubinstein, J. L., and Brubaker, M. A. (2015). Alignment of cryo-em movies of
individual particles by optimization of image translations. J. Struct. Biol. 192, 188–195.
doi: 10.1016/j.jsb.2015.08.007

Sanchez-Garcia, R., Gomez-Blanco, J., Cuervo, A., Carazo, J., Sorzano, C., and
Vargas, J. (2021). Deepemhancer: A deep learning solution for cryo-em volume post-
processing. Commun. Biol. 4, 874. doi: 10.1101/2020.06.12.148296

Sanchez-Garcia, R., Segura, J., Maluenda, D., Carazo, J. M., and Sorzano, C. O. S.
(2018). Deep consensus, a deep learning-based approach for particle pruning in cryo-
electron microscopy. IUCrJ 5, 854–865. doi: 10.1107/S2052252518014392
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