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Comparative transcriptomes
reveal pro-survival and cytotoxic
programs of mucosal-associated
invariant T cells upon Bacillus
Calmette–Guérin stimulation

Manju Sharma, Liang Niu, Xiang Zhang and Shouxiong Huang*

Department of Environmental and Public Health Sciences, College of Medicine, University of
Cincinnati, Cincinnati, OH, United States
Mucosal-associated invariant T (MAIT) cells are protective against tuberculous

and non-tuberculous mycobacterial infections with poorly understood

mechanisms. Despite an innate-like nature, MAIT cell responses remain

heterogeneous in bacterial infections. To comprehensively characterize MAIT

activation programs responding to different bacteria, we stimulated MAIT cells

with E. coli to compare with Bacillus Calmette-Guérin (BCG), which remains the

only licensed vaccine and a feasible tool for investigating anti-mycobacterial

immunity in humans. Upon sequencingmRNA from the activated and inactivated

CD8+ MAIT cells, results demonstrated the altered MAIT cell gene profiles by

each bacterium with upregulated expression of activation markers, transcription

factors, cytokines, and cytolytic mediators crucial in anti-mycobacterial

responses. Compared with E. coli, BCG altered more MAIT cell genes to

enhance cell survival and cytolysis. Flow cytometry analyses similarly displayed

a more upregulated protein expression of B-cell lymphoma 2 and T-box

transcription factor Eomesodermin in BCG compared to E.coli stimulations.

Thus, the transcriptomic program and protein expression of MAIT cells

together displayed enhanced pro-survival and cytotoxic programs in response

to BCG stimulation, supporting BCG induces cell-mediated effector responses of

MAIT cells to fight mycobacterial infections.

KEYWORDS

transcriptome, MHC-related protein 1 (MR1), Bacillus Calmette-Guérin (BCG), mucosal-
associated invariant T (MAIT) cells, Mycobacterium tuberculosis (M. tuberculosis)
Abbreviations: MAIT, mucosal-associated invariant T; MHC, major histocompatibility complex; MR1,

MHC-related protein 1; CD, cluster of differentiation; NK, natural killer; TNFa, tumor necrosis factor a;

IFNg, interferon g; TCR, T cell receptor; HLA, human leukocyte antigens; PBMCs, peripheral blood

mononuclear cells; BCG, Bacillus Calmette-Guerin; M. bovis, Mycobacterium bovis; M. tuberculosis,

Mycobacterium tuberculosis; E. coli, Escherichia coli; L. monocytogenes, Listeria monocytogenes; Va7.2,

variable segment 7.2 of the T cell receptor alpha chain; APC/Cy7, Allophycocyanin/Cyanine7; PE,

phycoerythrin; DEGs, differentially expressed genes; Eomes, Eomesodermin; Bcl-2, B-cell lymphoma 2.
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Introduction

An effective T cell response leads to a low lifetime risk of

developing active tuberculosis and a successful vaccine mostly aims

to boost protective T cell responses (Cooper, 2009). Conventional T

cells are essential for maintaining a low bacterial load, as shown using

antibody depletion or adoptive transfer of CD4+ or CD8+ T cells in

mice (Flynn and Chan, 2001; Behar, 2013), increased risk of active

tuberculosis with reduced CD4+ T cell frequency inHIV co-infection of

humans (Cooper, 2009; Prezzemolo et al., 2014), and loss of protection

against tuberculosis in primates with CD8+ T cell depletion (Chen et al.,

2009). However, anti-mycobacterial roles of CD8+ T cells in humans

remain poorly characterized, and weak peptide-specific CD8+ T cell

responses have been shown in multiple human vaccine trials (Tameris

et al., 2013). Recent findings demonstrated that a large portion of

mycobacterial-reactive CD8+ T cells in humans are not conventional T

cells but mucosal-associated invariant T (MAIT) cells (Gold et al., 2010;

Le Bourhis et al., 2010). Unlike conventional T cells that are activated

by the peptide antigens presented by major histocompatibility complex

(MHC) or human leukocyte antigens (HLA), MAIT cells are activated

by non-peptidic small metabolite antigens presented by MHC class I-

related protein 1 (MR1) (Huang et al., 2005; Hansen et al., 2007; Huang

et al., 2008; Huang et al., 2009; Gold et al., 2010; Le Bourhis et al., 2010;

Chua et al., 2011; Young et al., 2013; Huang, 2016; Huang and Moody,

2016; Sharma et al., 2020). Different from the highly variable MHC or

HLA proteins for the presentation of eminently divergent peptide

antigens, MR1 is monomorphic in humans for the presentation of

conserved metabolite antigens such as bacterial riboflavin metabolites,

defining the innate-like nature of MAIT cell responses in a donor-

unrestricted manner. Stimulation with mycobacterial-infected antigen-

presenting cells can strongly enhance the expression of

proinflammatory cytokines, surface activation markers, and cytolytic

molecules of MAIT cells (Gold et al., 2010; Le Bourhis et al., 2010;

Sharma et al., 2020) with poorly known mechanisms, to further bridge

the innate and late onset of adaptive immune responses (Meierovics

et al., 2013; Huang, 2016; Ioannidis et al., 2020).

MAIT cells are protective against multiple non-tuberculous

mycobacterial and M. tuberculosis infections (Le Bourhis et al., 2010;

Rossjohn et al., 2015; Huang, 2016). Specifically, MAIT cell

overexpression in mice inhibits the growth of non-tuberculous M.

abscessus (Le Bourhis et al., 2010) and M. bovis (Chua et al., 2012;

Sakala et al., 2015), and partially suppresses M. tuberculosis infections

(Sakai et al., 2021). In contrast, MR1-knockout mice display a higher

load of M. abscessus (Le Bourhis et al., 2010), M. bovis (Chua et al.,

2012; Sakala et al., 2015), andM. tuberculosis in vivo (Sakai et al., 2021).

These recent findings highlighted MAIT cells as promising targets to

induce immune protection against non-tuberculous and tuberculous

mycobacterial infections. In the meantime, theM. bovis strain Bacillus

Calmette-Guerin (BCG) activatesMAIT cells rapidly (Chua et al., 2012;

Sharma et al., 2020) and is the licensed vaccine against tuberculosis

(Raviglione et al., 1995; Oettinger et al., 1999; Li J. et al., 2021).

Although BCG vaccination of newborns or toddlers protects children

or young adults from pulmonary tuberculosis, its efficacy in higher ages

is usually compromised by various factors, including environmental
Frontiers in Cellular and Infection Microbiology 02
mycobacteria infection (McShane et al., 2012; Kumar, 2021) or an

extended period after vaccination (Michelsen et al., 2014; Katelaris

et al., 2020). Conventional T cell responses have been a focus for

interpreting anti-mycobacterial immunity. BCG vaccination induces

antigen-specific CD4+ T cell responses critical for regulating cellular

and humoral immunity (McShane et al., 2012; Soares et al., 2013).

However, CD8+ T cell responses to BCG vaccination remain poorly

characterized, and peptide-specific CD8+ T cells appear at a much

smaller scale than CD4+ T cells (Murray et al., 2006). This deficit can be

likely explained by a high percentage of mycobacterial-specific CD8+ T

cell clones that have been recently characterized as mucosal-associated

invariant T (MAIT) cells (Gold et al., 2010; Le Bourhis et al., 2010),

which feature innate-like activation kinetics different from

conventional CD8+ T cells.

It remains unclear how MAIT cells are stimulated by

mycobacteria and develop unique transcriptomic programs to elicit

anti-mycobacterial immunity. As known, bacterial activation of

MAIT cells is mainly mediated by MR1 presentation of bacterial

metabolites (Le Bourhis et al., 2010; Huang, 2016). BCG, E. coli (Le

Bourhis et al., 2010; Sakala et al., 2015; Sharma et al., 2020), or

Salmonella Typhimurium (Chen et al., 2017) are expected to provide

riboflavin precursor (Kjer-Nielsen et al., 2012; Corbett et al., 2014;

Harriff et al., 2018) or other metabolites to be presented by MR1 for

MAIT cell activation. Further, MAIT cell activation is depleted by the

anti-MR1 antibody blockade of the interaction between the bacterial

antigen-loadedMR1 protein and T cell receptor (TCR) (Sharma et al.,

2020). The human myelogenous cell line K562 with a defective

expression of human leukocyte antigens (HLA) (Lozzio and Lozzio,

1975; Andersson et al., 1979; Roder et al., 1979; Koeffler and Golde,

1980; Li et al., 2019) has been widely used in various studies for

testing antigen-specific T cell activation (Escobar et al., 2008; de Jong

et al., 2010; de Jong et al., 2014; Sharma et al., 2020; Goodman et al.,

2022) and as an ideal antigen-presenting cell for MAIT cell activation

upon the overexpression of MR1 protein (Sharma et al., 2020).

Similarly, MR1-dependent antigen presentation has been further

demonstrated by an impaired anti-bacterial MAIT cell response in

MR1 knockout mice (Le Bourhis et al., 2010; Sakala et al., 2015; Chen

et al., 2017). Therefore, the co-culture of hMR1-expressing cells with

MAIT cells provides a feasible model to investigate humanMAIT cell

transcriptomes upon the stimulation of MR1-mediated presentation

of different bacterial antigens. The comparative MAIT cell

transcriptomes stimulated by mycobacteria versus extracellular

bacteria are expected to provide MAIT cell activation features and

pathways potentially crucial for fighting mycobacterial infections.

Recent MAIT cell transcriptomes, including single-cell

transcriptomes, have differentiated various MAIT cell subsets in

mice (Chandra et al., 2021; Tao et al., 2021) and humans (Vorkas

et al., 2022). Moreover, human MAIT cell stimulation through

signaling, cytokines, anti-CD3/CD28, or bacterial infections display

transcriptomes associated with tissue repair (Hinks et al., 2019; Leng

et al., 2019; Chandra et al., 2021; Tao et al., 2021; Vorkas et al., 2022),

polyfunctional effector functions (Koay et al., 2019; Lamichhane et al.,

2019; Salou et al., 2019; Lee et al., 2020), and innate-like activation

programs (Sharma et al., 2020). However, MAIT cells stimulated by
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MR1 antigen presentation with different bacterial infections or

stimulations display heterogeneous responses that have been

considered as pathogen selectivity, labeled with diverse sequences

of TCRb chain and an invariant a chain, and attributed to potentially

different antigens from various bacteria (Reantragoon et al., 2013;

Gold et al., 2014; Jiang et al., 2014; Lepore et al., 2014; Sakala et al.,

2015; Meermeier et al., 2016). Differential humanMAIT cell response

stimulated by BCG vs. E. coli is a representative example (Jiang et al.,

2014) to further understand the mechanisms contributing to MAIT

cell responses to different bacteria. It remains unknown whether

mycobacteria stimulate MAIT cell transcriptomes and pathways that

are associated with anti-mycobacterial immunity in comparison to

extracellular bacteria E. coli. Therefore, we profiled the E. coli-

stimulated MAIT cell transcriptomes to compare with the

previously obtained BCG-stimulated MAIT transcriptomes

(Sharma et al., 2020). Results demonstrated an enhanced program

of pro-survival and cytolytic MAIT cell responses, particularly in

BCG stimulation, supporting cell-mediated responses to

mycobacterial infection.
Materials and methods

MAIT cells were activated by bacterial-incubated antigen-

presenting cells and sorted for transcriptomic analyses with a

summary of analyses provided below and the stepwise procedures

detailed in the Supplementary Materials. We used human HLA-

defective myelogenous leukemia cell line K562 (K562.hMR1) as

antigen-presenting cells for bacterial infection and MAIT cell

stimulation. Bacterial infection used Listeria monocytogenes (L.

monocytogenes), Escherichia coli (E. coli), Mycobacterium bovis (M.

bovis), and avirulent Mycobacterium tuberculosis (M. tuberculosis).

Bacterial-incubated K562.hMR1 cells were co-cultured with anti-

Va7.2-enriched primary human MAIT cells from the blood

samples of de-identified healthy donors following the Institutional

Review Board (IRB)-approved protocol. The activated MAIT cells

were gated on Va7.2+CD161+CD4-CD8+ cells to sort CD69+CD26++

activated and CD69+/-CD26+/- inactivated CD8+ MAIT cells for

transcriptomic profiling using an Illumina sequencing platform and

flow cytometry analyses as we reported (Sharma et al., 2020). In this

study, we profiled MAIT cell transcriptomes upon incubating with

MAIT-stimulatory E. coli and non-stimulatory Listeria (accession #

pending). The E. coli-activated MAIT cell transcriptomes were

analyzed in comparison with previously obtained raw RANseq data

from BCG-activated MAIT cells (accession # GSE124381),

considering the baseline activities of inactivated CD69+/-CD26+/-

CD8+ MAIT cells in the identical and inter-bacterial incubation

(Sharma et al., 2020). The obtained transcriptomic data were

analyzed using edgeR program for differentially expressed genes

(DEG) with calculated p-values, Toppcluster program for gene

clustering with Bonferroni correction of p-values, Cytoscape for

pathway demonstration, and Gene Set Enrichment Analysis

(GSEA) program with enrichment scores and nominal p-values for

expression profile comparison. Statistical analyses of flow cytometry
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results used a pairwise t-test for the directional difference between E.

coli and BCG stimulations. Detailed materials and methods are

described in the Supplementary Materials.
Results

Differentially expressed genes
(DEG) of MAIT cells upon BCG
and E. coli stimulations

As various pathogens provide different immune stimuli

(Kauffman et al., 2018; Sakai et al., 2021), the determination of

differential MAIT transcriptomes stimulated by BCG versus E. coli

facilitates characterizing anti-mycobacterial immunity of MAIT cells.

We have shown that BCG and E. coli activated MAIT cells from

human blood (Sharma et al., 2020), providing an in vitro MAIT cell

activation model for intracellular vs. extracellular bacterial

stimulation. In this model, human myelogenous leukemia cell line

K562 with hMR1 overexpression (K562.hMR1) was incubated with

BCG or E. coli overnight, washed, and co-cultured with MAIT cells,

which were pre-enriched from the peripheral blood of healthy donors

using magnetic bead-conjugated anti-Va7.2 antibody. Upon

overnight stimulation with bacterial-incubated K562.hMR1, CD8+

MAIT cells as the major peripheral MAIT cell population in humans

were gated on Va7.2+CD161+CD4-CD8+ (Figure S1A) to sort the

activated (CD69+CD26++) and inactivated (CD69+/-CD26+/-) MAIT

cell subsets using flow cytometry (Figures 1A, S1B) (Gold et al., 2010;

Sharma et al., 2020) for total RNA extraction and mRNA profiling.

Identification and separation of activatedMAIT cells are based on the

expression of CD69 and CD26 upregulated upon the incubation of

stimulatory bacteria, but not non-stimulatory Listeria or bacterial-

free condition (Sharma et al., 2020) (Figure S1B). It has been noted

that E. coli and BCG activate MAIT cells through MR1 presentation

of bacterial metabolite antigens to interact with MAIT cell TCR (Le

Bourhis et al., 2010; Sakala et al., 2015; Chen et al., 2017; Sharma et al.,

2020). Recent studies have also identified riboflavin precursor

metabolites from E. coli, Salmonella, and Mycobacterium smegmatis

for MAIT cell activation (Kjer-Nielsen et al., 2012; Corbett et al.,

2014; Harriff et al., 2018), but not from non-stimulatory bacteria

Listeria because of a defective expression of riboflavin synthesis

enzymes in Listeria (Le Bourhis et al., 2010; Kjer-Nielsen et al.,

2012; Gutierrez-Preciado et al., 2015). Further, the upregulation of

CD69+CD26++ on activated MAIT cells upon bacterial stimulation

can be largely blocked by anti-MR1 antibody, supporting the

dependence of MR1-mediated bacterial antigen presentation for

MAIT cell activation (Sharma et al., 2020). Therefore, the validated

combinatory marker CD69+CD26++ was used to label the activated

primary human MAIT cells stimulated by MR1-dependent

presentation of bacterial antigens (Sharma et al., 2020). Upon

RNAseq profiling, gene identities were assigned by aligning the

detected sequences with the human genome in GenBank database.

We used a robust algorithm of edgeR package in R for multi-factorial

comparisons (McCarthy et al., 2012) to generate differentially
frontiersin.org
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FIGURE 1

BCG and E.coli stimulate different MAIT cell transcriptomes. Anti-Va7.2-enriched MAIT cells from blood of healthy donors were co-cultured
overnight with bacterial-infected K562.hMR1 cells together with anti-CD28 antibody, then gated on Va7.2+CD161+CD4-CD8+ cells, and further
sorted into activated versus inactivated MAIT cells labeled with CD69+CD26++ and CD69+/-CD26+/-, respectively (A, Figure S1). The sorted activated
vs. inactivated MAIT cells were used for RNA purification and next-generation sequencing. Based on the sequencing results, differentially expressed
genes (DEGs) were identified using the edgeR package in R program and shown in Volcano plots as red dots. On the plots, vertical green lines label
two-fold changes in intensity counts, and horizontal green lines label p-values of 0.05. For activated MAIT cells between BCG and E. coli
stimulations, the horizontal green line label a p-value of 0.1 (A). DEGs were used to search biological processes and pathways through the
Toppcluster program. Results show multiple functional clusters associated with cell proliferation, apoptosis, cytokine regulation, and cell activation
upon BCG and E. coli stimulations (B, C).
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expressed genes (DEGs) from inactivatedMAIT cell subsets and from

activated vs. inactivated MAIT cell subsets.

To define a baseline comparator for activated MAIT cells, we

generated DEGs for the inactivated MAIT cells with a CD69+/-

CD26+/- phenotype upon the incubation of MAIT-stimulatory

BCG or E. coli vs. the non-stimulatory Listeria (Figure S1C).

Both volcano plots suggested the heterogeneity of baseline

reactivity with a large number of DEGs between Listeria and

BCG or E. coli incubations (Figure S1C) and the potential impact

of MR1- or TCR-independent factors from different bacteria, such

as pathogen-associated molecular patterns (PAMP). These

bacterial factors independent of antigen presentation likely

contributed to high numbers of DEGs with inter-bacterial

comparison for activated vs. inactivated MAIT cells (Figure

S1D). Further examining DEGs in inactivated MAIT cells (Figure

S1C), we found many genes for regulating downstream reactivities,

including effector molecules, cytokine receptors, signaling

molecules, and exhaustion markers, remained unaltered or

minimally altered, although some genes but not proteins for

encoding surface markers (e.g., CD69, CD161) were higher in

the inactivated MAIT cells from Listeria vs. BCG incubation. This

heterogeneity of baseline inactivated MAIT cells from Listeria

incubation is likely due to a broader CD26 expression similar to

that in bacterial-free condition (Figure S1B), and likely comparable

with a portion of pre-activated MAIT cells potentially induced by

commensal bacteria in uninfected mice or healthy humans, unlike

naïve conventional T cells (Kawachi et al., 2006; Gold et al., 2010;

Le Bourhis et al., 2010). Moreover, the upregulated genes from the

inactivated MAIT cells upon Listeria vs. BCG incubation were

analyzed using Enrichr epigenetics enrichment tools (https://

maayanlab.cloud/Enrichr/) (Kuleshov et al., 2016) and enriched

in the top hit gene sets from thymus tissues or T cells with DNA

methylation or histone modification, supporting potential

epigenetic regulation in Listeria incubation. Thus, inactivated

MAIT cells with different bacterial incubation remain

heterogeneous. In contrast, MAIT cell subsets from an identically

treated condition yielded more homogeneous inactivated MAIT

cells to allow accurate analysis and association of altered genes with

MR1-dependent MAIT cell activation (Figure 1A), because these

activated vs. inactivated MAIT subsets responded to the same

bacterium and stimulation, underwent identical incubation,

staining, and FACS sorting process, and minimized the technical

variation. Thus, we focused on the comparative transcriptomes of

activated vs. inactivated MAIT cells from the identically treated

samples to defined DEGs with a four-fold difference of intensity

counts (Figure 1A). Several hundred upregulated genes from

activated MAIT cells upon BCG and E. coli stimulations were

shown with volcano plots (Figure 1A), in comparison with the

inactivated MAIT cells identically stimulated and processed.
Different gene clusters of MAIT cells upon
BCG and E. coli stimulations

To determine the gene clusters differentially stimulated by BCG vs.

E. coli, we used Toppcluster (https://toppcluster.cchmc.org/)
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(Eisen et al., 1998; Chen et al., 2007) to search DEGs associated with

various biological processes and pathways. Although multiple

pathways in cytokine production and cell activation are similar

(Figure S1E), gene clusters involving cell survival, death, and

cytolysis differ between BCG and E. coli stimulations (Figure S1E,

Figures 1B,C). Overall, BCG stimulation altered more gene clusters in

regulating apoptosis and cell life in comparison to E. coli stimulation

(Figure S1E, Figures 1B,C), such as tumor necrosis factor a (TNFa)
stimulation and signaling, caspase (CASP)-induced apoptosis, and

anti-proliferative effects of p53 (Figure 1B). These gene clusters

include the intrinsic anti-apoptotic genes represented by upregulated

B-cell lymphoma 2 (BCL2) and the counteracting molecules such as

downregulated Bcl-2 interacting killer gene (BIK) but upregulated BLK

(Hegde et al., 1998). E. coli altered less number of genes in the clusters

regarding cell proliferation or apoptosis (Figure 1C). As MAIT cells are

cytotoxic T cells, both bacteria upregulated the expression of GNLY

(granulysin) and PRF1 (perforin) (Leeansyah et al., 2015) to induce the

cytolytic effect of bacterial-infected cells (Figures 1B,C). Activated

MAIT and natural killer NK cells also co-expressed multiple genes,

including KLRB1 (CD161, Killer cell lectin-like receptor subfamily B,

member 1) (Lanier et al., 1994) as an MAIT cell marker (Ussher et al.,

2014), NCR3 (NKp30) a natural cytotoxicity triggering receptor to

interact with CD3x (CD247) for NK cell differentiation (Siewiera et al.,

2015), SLAMF1 (Signaling lymphocytic activation molecule 1, CD150)

as an activation marker (Sharma et al., 2015), ID2 (DNA-binding

protein inhibitor ID-2) a transcriptional regulatory protein

constitutively expressed in NK cells (Li ZY. et al., 2021), together

with genes LYST (lysosomal trafficking regulator) and STX11

(Syntaxin-11) regulating endocytic functions (Valdez et al., 1999; Gil-

Krzewska et al., 2016). These data support the overall enhanced cell

survival and cytotoxicity of MAIT cells upon BCG and E. coli

stimulations, respectively. It was reasonable to expect that a direct

comparison of the activated MAIT cells between BCG and E. coli

stimulation generated less degree of difference in gene intensity counts

and less altered gene clusters associated with cell reactivity (Figure S1F),

although thresholds were set more aggressively to potentially visualize

this critical difference. However, specific pathway analyses are needed

to further understand gene interaction for regulating MAIT cell

survival, death, and effector response.
Enriched pro-survival pathways of MAIT
cells upon BCG and E. coli stimulations

We used the Cytoscape program to search the network that

comprehensively depicts various recently reported pathway

mechanisms (labeled by Roman numerals) for regulating cell survival

and death (Figures 2A; S2). The intrinsic pathways include (i) anti-

apoptotic BCL2 family gene members (Czabotar et al., 2014), (ii) pro-

apoptotic BCL2 family gene members (Marsden and Strasser, 2003),

and other intrinsic factors acting through BCL2 family genes for cell

growth regulation, such as (iii) MDM2 (mouse double minute 2)-p53

(tumor suppressor gene) and pro-oncogene MYC-p53 counteraction

(Wu and Prives, 2018) and (iv) insulin-like growth factor 1 (IGF1)

signaling. The extrinsic pathways include TNF signals to mediate (v)

proliferative nuclear factor-kappa B (NF-kB), (vi) proliferative
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mitogen-activated protein kinase (MAPK) pathways (Webster and

Vucic, 2020), and (vii) necrotic receptor-interacting protein kinase

(RIPK) signaling (Petersen et al., 2015), (viii) FAS-mediated apoptosis

(Yamada et al., 2017), (ix) caspase-mediated apoptosis and pyroptosis

(Wallach et al., 2014), and (x) interferon-regulatory factor 5 (IRF5)-
Frontiers in Cellular and Infection Microbiology 06
promoted apoptosis associated with type I interferons (Hu and

Barnes, 2009).

DEGs between activated versus inactivated CD8+ MAIT cells in

BCG stimulation are expected to regulate cell activation, growth or

death, cytokines, and cytotoxicity (Figure 2A). In the anti-apoptotic
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FIGURE 2

BCG stimulate differential gene and protein expression of MAIT cells in proliferation and apoptosis pathways. DEGs between activated (CD69+CD26+

+) subsets versus inactivated (CD69+/-CD26+/-) subsets of CD8+ MAIT cells upon BCG stimulation were annotated in pathways of cell proliferation
and apoptosis (A). Protein expression of key cytokine TNFa and key regulatory protein Bcl-2 were confirmed with the percentage of CD69+TNFa+,
and CD69+Bcl-2+ subsets in comparison to the CD69+CD26++ subset of CD8+ MAIT cells detected by flow cytometry (B). The gating strategy is
shown in Figure S1. The percentage of CD69+TNFa+ or CD69+Bcl-2+ subsets of CD8+ MAIT cells was normalized with the percentage of activated
CD69+CD26++ subsets of CD8+ MAIT cells. Plots show the means of these normalized percentages and standard errors from multiple donors. A
pairwise t-test was used to determine the significance of differences between BCG and E. coli stimulations (C).
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BCL2 gene family (i), the expression of BCL2, BCL2L1 (BCL-XL),

BCL2A1 (BFL1), and BLK was enhanced. Favoring cell survival, the

expression of pro-apoptotic BCL2 gene family (ii) was unaltered,

including BID, BIM (BCL2L11), BAD, and pro-apoptotic “effectors”

BAX and BAK1 (Marsden and Strasser, 2003). In MDM2-p53 and

MYC-p53 counteractions (iii), enhanced MDM2 and MYC

expression could inhibit the pro-apoptotic effect of p53 and

stimulate cell growth (Eischen et al., 1999). Further, the reduced

expression of insulin-like growth factor 1 (IGF1) gene (iv) was

associated with a lower activity of the pro-apoptotic protein BAD,

further supporting an anti-apoptotic effect of BCG stimulation.

Together, enhanced expression of anti-apoptotic genes and

unaltered or reduced expression of pro-apoptotic genes in various

BCL2 gene family members and interacting pathways supported a

pro-survival effect of MAIT cells in BCG stimulation (Figure 2A).

In extrinsic pathways altered by BCG stimulation (Figure 2A),

the enhanced TNF (TNFa) and lymphotoxin (LTA) cytokines

function as both effector molecules in anti-bacterial responses and

self-feedback stimuli for regulating cell growth and death. TNF-

induced proliferative nuclear factor kB (NF-kB) (v) and mitogen-

activated protein kinase (MAPK) (vi) pathways supported a pro-

survival effect. BCG induced a lower expression of caspase gene

expression (CASP10 and CASP6) following TNF and necrotic

RIPK1 signaling (vii), also supporting a pro-survival effect.

However, a higher expression of the FAS gene (viii) involved in

the self-recognition of FAS ligand could lead to FAS-mediated

apoptosis (Yamada et al., 2017). Further, enhanced caspase 7

(CASP7) and upstream perforin 1 (PRF1) expression involved

activation-mediated apoptosis and pyroptosis (Wallach et al.,

2014). Enhanced expression of IRF5 (x) could promote the

apoptosis associated with type I interferons (Hu and Barnes,

2009). In addition, the expression of TNF receptor 2 (TNFR2)

also named TNF receptor superfamily 1B (TNFRSF1B), TNF

receptor-associated factor 1 (TRAF1), and baculoviral IAP repeat

containing 3 (BIRC3 or cIAP2) were enhanced to play an anti-

apoptotic role (Silke and Brink, 2010). Overall, enhanced gene

expression was associated with the extrinsic pathways promoting

cell survival, with a balance of pro-apoptotic signals for self-

act ivated control of ce l l growth and death in BCG

stimulation (Figure 2A).

Although E. coli changed the expression of many above genes

also altered in BCG stimulation, the expression of anti-apoptotic

genes BCL2L1 (BCL-XL), TNFRSF25 (APO3 or DR3), MAP2K4,

MDM2, IRF5, IRF6, IGF1, and the pro-apoptotic gene CASP7 were

unaltered, while the MDM2 suppressor (CDKN2A) and FAS ligand

(FASLG) were upregulated (Figure S2A). This difference suggested a

more apoptotic effect with E. coli than BCG stimulation. We further

directly compared the gene expression of the activated CD8+ MAIT

cell subset upon BCG vs. E. coli stimulation. The higher expression

of intrinsic BIM (BCL2L11) and CASP4 genes in BCG stimulation

compared with E. coli stimulation likely suggest a higher baseline

gene expression in BCG stimulation for regulating cell survival and

apoptosis (Figure S2B). Results also showed a higher expression of

BCL2 and BIRC3 genes, but a lower expression of CDKN2A (cyclin-

dependent kinase inhibitor 2A) and IRF6 genes in BCG stimulation,

supporting an overall pro-survival transcriptomic program.
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Flow cytometry detected a more
enhanced Bcl-2 expression upon BCG
vs. E. coli stimulation

To confirm the protein expression of key upregulated genes for

regulating cell growth or death, we applied flow cytometry to test the

expression of TNFa and Bcl-2 proteins in E. coli, BCG, and M.

tuberculosis stimulations.We similarly gated on the CD8+MAIT cells

(Va7.2+CD161+CD4-CD8+ cells) as in Figure S1 and used the

negative control L. monocytogenes (Figure 2B), which is absent of

active riboflavin B metabolic pathway for providing an MAIT cell

antigen. Because CD69+CD26++ was used as a combinatory marker

to label the total activated MAIT cells (Sharma et al., 2020), we

determined % CD69+TNFa+ or CD69+Bcl-2+ cells over

CD69+CD26++ CD8+ MAIT cells (Figure 2C). This similar % of

CD69+CD26++ CD8+ MAIT cells supported highly comparable

conditions between BCG vs. E. coli stimulation, allowing further

examining relative differences of various gene and protein expression.

Results showed a higher percentage of Bcl-2-expressing CD8+ MAIT

cells in mycobacterial than E. coli stimulations, supporting the

enhanced Bcl-2 protein expression. Listeria incubation did not

enhance CD69+CD26++ CD8+ MAIT cells and was not included in

statistical analyses. TNF protein expression was more variable among

donors and not statistically significant for BCG vs. E. coli comparison.
Enriched cytolytic pathways of MAIT cells
upon BCG and E. coli stimulation

Upon bacterial stimulations, multiple genes involved in the cytolysis

of MAIT cells were generally upregulated in BCG stimulation

(Figure 3A). Beyond the upregulated genes for T cell activation, such

as CD8A (CD8a), CD247 (CD3x), and CD69, cytokine receptor

expression was also enhanced, including IL2RG (common g chain),

IL2RB (interleukin 2 receptor b subunit), and IL15RA (interleukin 15

receptor a subunit). Regarding cytotoxicity, multiple receptors,

costimulatory molecules, signaling molecules, and transcription factors

were upregulated in bacterial stimulations. CD161, a C-type lectin-like

receptor encoded by the upregulated KLRB1, labels the maturation and

cytotoxicity of NK cells (Lanier et al., 1994; Konjevic et al., 2009; Kurioka

et al., 2018). The upregulated KLRG1 gene encodes a co-inhibitory

receptor predominantly on late-differentiated effector andmemory CD8+

T and NK cells (Nakamura et al., 2009). The enhanced NKG7 gene

encodes natural killer cell granule protein 7, which is a regulator of

lymphocyte granule exocytosis and inflammation, such as CD107a

(Lamp1 or lysosomal-associated membrane protein-1) translocation to

the cell surface for target cell killing (Ng et al., 2020). Multiple genes

encoding effector molecules, such as FAS, perforin (PRF1), and

granulysin (GNLY), were enhanced differentially in BCG stimulations

(Figure 3A) for the cytolysis of the infected targeted cells (Lettau and

Janssen, 2021). E. coli stimulation similarly upregulated cytotoxic genes

(Figure S3A), with alteration of multiple genes at a lower degree

compared with BCG stimulation (Figure S3B). Eomesodermin

(EOMES) was interestingly more upregulated in activated MAIT cells

in BCG than E. coli stimulation, indicating a higher basal expression of

EOMES gene in BCG stimulation to promote cytolytic responses.
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Flow cytometry detected a more enhanced
Eomes expression upon BCG than
E. coli stimulation

For protein expression, flow cytometry was used to detect

granulysin and Eomes as described in Figure 2. Data were

similarly analyzed by normalizing % CD69+Eomes+ CD8+
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MAIT cells with CD69+CD26++ CD8+ MAIT and showed

more enhanced % CD69+Eomes+ CD8+ MAIT cells in BCG

st imula t ion compared wi th E. co l i , f rom one donor

(Figure 3B) and multiple donors (Figure 3C). Together,

b o t h g e n e a nd p r o t e i n e x p r e s s i o n d emon s t r a t e d

upregulated cytolyt ic molecules to fight intracel lular

mycobacterial infections.
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FIGURE 3

BCG and E.coli stimulate differential gene and protein expression of MAIT cells in cytotoxic pathways. Similar to Figure 2, DEGs between activated
(CD69+CD26++) subsets versus inactivated (CD69+/-CD26+/-) subsets of CD8+ MAIT cells upon BCG stimulation were annotated in pathways of
cytotoxic T cell responses (A). Protein expression of key effect molecule granulysin and key transcription factor Eomes were confirmed with the
percentage of CD69+granulysin+ or CD69+Eomes+ subsets in comparison to the CD69+CD26++ subset of CD8+ MAIT cells detected by flow
cytometry (B). The gating strategy is shown in Figure S1 as well. The percentage of CD69+granulysin+ or CD69+Eomes+ subsets of CD8+ MAIT cells
were normalized with the percentage of activated CD69+CD26++ subsets of CD8+ MAIT cells. Plots show the means of these normalized
percentages and standard error from multiple donors. A pairwise t-test was used to determine the significance of differences between BCG and E.
coli stimulations (C).
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MAIT transcriptomes stimulated by BCG
are more comparable with conventional
CD8+ T cells in intracellular
microbial infections

To comprehensively compare BCG-stimulated MAIT

transcriptomes with other cellular transcriptomes under bacterial

or other stimulatory conditions, we performed gene set enrichment

analyses (GSEA) for MAIT cell transcriptomes against MSigDB

gene expression databases (http://software.broadinstitute.org/gsea/

msigdb). The enriched gene sets were cut off with a significant

nominal p-value (<0.05) and ranked by the normalized enrichment

scores. GSEA analyses generally resulted in around two thousands

of such reported gene sets, including various gene sets from

conventional CD8+ T cells, CD4+ T cells, NKT, NK cells,

macrophages, dendritic cells, and many other cell types under

different stimulation conditions from different biological hosts.

Enrichment plots displayed three and one representative gene sets

that were selected out of the top twenty ranked gene sets enriched

with activated or inactivated MAIT phenotypes, respectively

(Figure 4). Heatmaps displayed the representative MAIT cell

genes from both activated and inactivated MAIT subsets and

from the Rank-Ordered List based on the top running

enrichment scores (ES) of the tested genes in the targeted gene

sets (Figure 4). As a result, gene enrichment of MAIT cell

transcriptomes in BCG stimulation demonstrated a similar

upregulation in activated conventional memory CD8+ T cells with

intracellular bacterial infection and in PBMCs from infants at ten

weeks after BCG vaccination at birth, or a similar downregulation in

PBMCs of patients with sepsis, but reversely altered in bystander

activated CD4+ T cells independent of antigen-presentation

(Figure 4A). In contrast, MAIT cell genes in E. coli stimulation

showed reversely altered in viral peptide-activated CD8+ T cells,

bystander activated CD4+ T cells independent of antigens,

lipopolysaccharide-stimulated dendritic cells, and IL15-stimulated

NK cells (Figure 4B). Overall, MAIT cell gene profiles in BCG

stimulation were comparable with memory CD8+ T cells or PBMCs

responding to intracellular bacterial infections. In contrast, MAIT

cell gene profiles in E.coli stimulation showed a different or reversed

association. Results supported similar gene expression of MAIT and

other CD8+ T cells in response to intracellular pathogens.
Discussion

Extracellular growing E. coli can secrete intermediate

metabolites ribityllumazine and ribityluracil from riboflavin

biosynthetic pathways to the culture supernatant (Kjer-Nielsen

et al., 2012; Corbett et al., 2014; Harriff et al., 2018). These

metabolites function as agonist antigens to be loaded to MR1

protein and presented on antigen-presenting cells for MAIT cell

activation (McWilliam et al., 2020). Intracellular bacteria such as

BCG andM. tuberculosis provide antigens for MAIT cell activation,

likely involving endocytic compartments for antigen loading and

presentation (Huang et al., 2008; Harriff et al., 2016; Huber et al.,

2020; Sharma et al., 2020). Our MAIT gene profiles in BCG
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stimulation showed similar alterations to memory CD8+ T cells

or PBMCs with intracellular bacterial infections, whereas MAIT cell

gene profiles in E. coli stimulation showed reversal association with

CD8+ T cells in intracellular bacterial infections. Transcriptomic

analyses on intracellular mycobacterial infections have been mostly

focused on macrophages (Nalpas et al., 2015) or monocytes (Kong

et al., 2021) for understanding host-pathogen interaction and blood

cells from tuberculosis patients. It remains poorly understood how

T cell transcriptomes are altered in BCG vaccination or stimulation

in a manner dependent on bacterial antigen presentation. As MAIT

cells are protective against mycobacterial infections, including M.

tuberculosis (Sakai et al., 2021), M. abscessus (Le Bourhis et al.,

2010), and M. bovis (Chua et al., 2012; Sakala et al., 2015), this

protection likely attributes to MAIT cell responses against

intracellular bacterial growth (Le Bourhis et al., 2010; Chua et al.,

2012; Sakala et al., 2015; Sakai et al., 2021). Indeed, MAIT cell

transcriptomes stimulated by BCG in this study demonstrated pro-

survival and cytolytic programs that crucially contribute to the

immunity against mycobacterial infections. In the meantime, results

discriminate differential MAIT cell transcriptomes responding to

intracellular M. bovis BCG strain versus extracellular bacteria E.

coli, suggesting genetic pathways regulating T cell immunity to fight

intracellular bacterial infections.

Activated MAIT cells are expected to display pathogen

selectivity and ligand discrimination, which have been recently

characterized in MAIT cell responses to different bacteria

(Reantragoon et al., 2013; Gold et al., 2014; Lepore et al., 2014;

Meermeier et al., 2016). MAIT cells express an invariant T cell

receptor a chain (TCRa) to recognize conserved antigens in

contrast to conventional T cells (Nikolich-Zugich et al., 2004;

Logunova et al., 2020). However, the b chain (TCRb) expresses

variable sequences in responses to different bacteria, such as E. coli

and Salmonella Typhimurium that produce typical MAIT cell

agonist antigens ribityllumazine and ribityluracil metabolites

(Kjer-Nielsen et al., 2012; Corbett et al., 2014; Harriff et al., 2018),

versus Streptococcus pyogenes that likely generate other unknown

MAIT cell antigens (Meermeier et al., 2016). Our chemical

purification of bacterial metabolites from BCG also supported the

presence of alternative agonists different from the agonists derived

from E. coli (Corbett et al., 2014). We adapted the HLA-defective

myelogenous cell line K562 (Lozzio and Lozzio, 1975; Andersson

et al., 1979; Roder et al., 1979; Koeffler and Golde, 1980; Li et al.,

2019), widely used as antigen-presentation cells for various T cell

activation (Escobar et al., 2008; de Jong et al., 2010; de Jong et al.,

2014; Sharma et al., 2020; Goodman et al., 2022), with human MR1

overexpression to present bacterial metabolite antigens for primary

MAIT cell activation. Downstream effects of differential pathogen

stimulation and variable TCRb chains (Reantragoon et al., 2013;

Gold et al., 2014; Lepore et al., 2014; Meermeier et al., 2016) are

expected to induce different MAIT cell transcriptomes that serve as

predictors to link stimuli with effector responses. Comparative

MAIT cell transcriptomes in this study depicted multifaceted

programs regarding MAIT cell activation, survival, apoptosis, and

cytolysis, in addition to various cytokine production in BCG vs.

E.coli stimulation. More specifically, BCG stimulated a higher

MAIT cell expression level of EOMES and BCL2 genes and
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proteins to mediate cytotoxic, cytokine production, and pro-

survival programs (Figures 1–3), which are essential in fighting

intracellular mycobacterial infections (Kim et al., 2015; Sharma

et al., 2020).
Frontiers in Cellular and Infection Microbiology 10
Various DEGs of MAIT cells involved in cell survival and death

pathways are astonishing. Although our clustering analyses

suggested a broad alteration of these genes, pathway analyses

comprehensively displayed altered gene expression in over ten
GSEA of DEGs from M. bovis (BCG)-stimulated MAIT cells
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FIGURE 4

Gene set enrichment analyses (GSEA) support that BCG-stimulated MAIT cell transcriptomes are comparable with CD8+ T cells in intracellular
microbial infections. BCG-stimulated DEG genes of MAIT cells were analyzed using the GSEA program to identify comparable gene sets with
similarly enriched genes from different cell types under various stimulation conditions. The representative gene sets with T cells or other immune
cells were selected from the top 20 out of over 4000 enriched gene sets. The representative core-enriched MAIT cell genes shown in heatmaps
were selected based on the top running enrichment scores (ES) of the enriched genes (A). E. coli-stimulated DEG genes of MAIT cells were similarly
analyzed using the GSEA program and shown with representative enrichment plots and enriched genes (B).
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intrinsic and extrinsic gene pathways for regulating cell survival,

apoptosis, necrosis, and pyroptosis. Results demonstrated an anti-

apoptotic gene expression of MAIT cells in four intrinsic pathways

and a balanced survival vs. apoptotic gene expression in extrinsic

pathways upon BCG stimulation. In various intrinsic pathways,

anti-apoptotic BCL2 gene family members were enhanced, and

other intrinsic factors interacting with BCL2 gene family members

also showed an expression pattern favoring cell survival, such as

upregulatedMDM2 andMYC expression for a counteraction of p53

protein in BCG stimulation to facilitate MAIT cell proliferation

instead of apoptosis or senescence (Wu and Prives, 2018). Multiple

extrinsic pathways appear to balance the pro-apoptotic and anti-

apoptotic pathways to play crucial roles in MAIT cell homeostasis.

The extrinsic signals, including TNFa, LTa, and FAS ligand gene

expression enhanced in BCG or E. coli stimulation, are common

cytokines mediating anti-bacterial effector responses by interacting

with corresponding receptors on other effector cells, such as

mycobacterial-infected macrophages. If a bacterial infection is

under control, these cytokines likely turn back and display a self-

feedback control by interacting with their receptors on MAIT cells,

leading to homeostatic control of MAIT cell growth by apoptosis or

cell death. As both producers and targets of TNF cytokines, T cells

can induce the positive feedback of proliferative responses and

negative feedback of T cell apoptosis or regulatory T cell

differentiation (Locksley et al., 2001; Mehta et al., 2018). TNF

production upon BCG stimulation enhanced MAIT cell

proliferative pathways mediated by NF-kB and MAPK signaling,

but inhibited the necrotic signaling mediated by RIPK1 (receptor-

interacting protein or RIP family of serine/threonine protein kinase

1) with reduced downstream caspase expression. TNF effect could

be more complex by stimulating a signaling complex of TNF

receptor-associated factors (TRAF) and TNFR2 (encoded by

TNFRSF1B) proteins. For example, BCG enhanced TRAF1 and

cellular inhibitor of apoptosis 2 (cIAP2 or BIRC3) to activate NF-kB
signaling and prevent TNF-induced apoptosis (Silke and Brink,

2010). However, self-feedback regulation mediated by FAS in BCG

stimulation could induce an apoptotic effect. Cell death signals

initiated by an upstream cytotoxic molecule FAS mediate the

clearance of bacterial-infected cells such as macrophages through

MHC class I-restriction by conventional T cells (Kagi et al., 1994)

and MR1 restriction by MAIT cells (Boulouis et al., 2020). FAS

protein signals, together with the antigen-stimulated TCR signaling,

will induce caspase 8-mediated apoptosis and provide feedback

control (Bouillet and O’Reilly, 2009; Yamada et al., 2017). In

parallel, perforin upregulation occurs with high expression of

Tbet in conventional CD8+ T cells as reported (Makedonas et al.,

2010) and in MAIT cells as we shown (Figure 1C). Cytokines IFN

stimulate IRF family members together to fight microbial infections,

but high IRF5 expression mediating TRAIL (TNF-related

apoptosis-inducing ligand) receptors- or death receptor-induced

apoptosis functions as negative feedback control (Hu and Barnes,

2009; Fabie et al., 2018). Moreover, lower IGF1 gene expression in

the IGF (insulin-like growth factor) signaling pathway is

contrasting with higher IRF5 expression, leading to less apoptotic

effect in BCG stimulation (Figure 2A). Therefore, extrinsic
Frontiers in Cellular and Infection Microbiology 11
pathways to maintain homeostasis often cross-regulate anti-

microbial responses of MAIT cells in fighting infections.

Cytotoxicity-regulatory genes, including natural killer cell

group 7 (NKG7), GNLY, EOMES, TNF, and FAS, were more

enhanced in BCG stimulation than E. coli. Granulysin, perforin,

and TNF function as effector molecules to mediate the cytolytic

process of targeted cells. NKG7 interestingly optimizes the

exocytosis of lytic granules for the perforin-dependent but not

Fas ligand-mediated cytolytic pathway (Morikawa et al., 2021).

Eomes is an important transcription factor critical for the

formation of effector and memory CD8+ T cells (Kaech and Cui,

2012), by mediating the expression of many essential effector

molecules, such as perforin, granzymes, and IFNg (Intlekofer

et al., 2005; Banerjee et al., 2010; Pipkin et al., 2010), promoting

memory T cell differentiation by inhibiting apoptosis (Banerjee

et al., 2010; Kavazovic et al., 2020), and regulating the exhaustion of

highly activated CD8+ T cells (Li et al., 2018). Enhanced expression

of TBX21, EOMES, and IL2RB (CD122) in MAIT cells in this study

reflects the similarity of MAIT cells to memory CD8+ T cells or NK

cells regarding cytolytic effector responses (Olson et al., 2013).

Moreover, cytolytic responses are controlled by multiple different

transcription factors, including ID2, Tbet, and Eomes, such as in

BCG stimulation, leading to the differentiation of memory,

cytolytic, even exhaustion phenotypes.

In this study, we specifically focused on comparing the activated

MAIT cells labeled by high CD69 and CD26 expression

(CD69+CD26++) with inactivated MAIT cells in BCG and E. coli

stimulations to demonstrate MAIT cell transcriptomes dependent on

MR1-mediated antigen presentation. Beyond dissecting the

transcriptomes of MAIT cell subsets activated by different bacteria,

future studies can include bacterial-free controls to assess the global

effect of bacterial stimulation on the overall transcriptome.

Technically, transcriptomic pathway analyses of T cell responses

serve as a tool to integrate stimuli from different sources and

facilitate understanding genetic pathways for developing protective

anti-bacterial immunity. Consequently, the comparative

transcriptomes of MAIT cells in BCG stimulation provided genetic

pathways for regulating pro-survival, memory, cytolysis, and

exhaustion to elicit anti-mycobacterial MAIT cell immune responses.
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SUPPLEMENTARY FIGURE 1

Gating of activated versus inactivated CD8+ MAIT cells for RNA-seq

analyses. CD8+ MAIT cells were gated on Va7.2+CD161+CD4-CD8+ as

Va7.2+CD161+ gating has been used in multiple studies to detect MAIT
cells (13, 29-32), especially the bacterial-activated MAIT cells (13, 33, 34) (A).
% CD69+CD26++ CD8+ MAIT cells and CD69+/-CD26+/- cells are
annotated, showing the cell populations sorted for RNA-sequencing and

the strategy for gating activated MAIT cells (B). To determine whether the
CD69+/-CD26+/- MAIT subsets at different bacterial incubation conditions

show similar background response, we determined DEGs of CD69+/-

CD26+/- inactivated MAIT cells between Listeria and BCG, or between

Listeria and E. coli, suggesting high heterogeneity (C). High numbers of

DEGs also occur with the activated MAIT subset (CD69+CD26++) upon BCG
or E. coli incubations and inactivated MAIT subset (CD69+/-CD26+/-) with

Listeria incubation (D). DEGs from the activated vs. inactivated MAIT cells
responding to identical bacterial stimulations, the BCG and E. coli

stimulation, were more clustered, respectively, to show genes associated
with MAIT cell activation and survival (E). DEGs of activated MAIT cells from

the direct comparison upon BCG vs. E. coli stimulation are expected to

have a fewer number of genes and show more narrow clusters associated
with MAIT cell reactivities (F).

SUPPLEMENTARY FIGURE 2

BCG and E.coli stimulate differential gene expression of MAIT cells in cell
proliferation and apoptosis pathways. Similar to , DEGs between activated

(CD69+CD26++) subsets versus inactivated (CD69+/-CD26+/-) subsets of

CD8+ MAIT cells upon E. coli stimulation were annotated in pathways of
cell proliferation and apoptosis (A). DEGs of activated MAIT cells between

BCG and E.coli stimulation are also annotated in pathways of cell proliferation
and apoptosis (B).

SUPPLEMENTARY FIGURE 3

BCG and E.coli stimulate differential gene expression of MAIT cells in

cytotoxic pathways. Similar to , DEGs between activated (CD69+CD26++)
subsets versus inactivated (CD69+/-CD26+/-) subsets of CD8+ MAIT cells

upon E. coli stimulation were annotated in pathways of cell activation and
cytotoxicity (A). DEGs of activated MAIT cells between BCG and E.coli

stimulation were annotated in pathways of cytotoxic T cell responses (B).
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