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Introduction: Chromoblastomycosis (CBM) is a form of chronic mycosis that

affects the skin and mucous membranes and is caused by species of

dematiaceous fungi including Exophiala spp., Phialophora spp., and Fonsecaea

spp. The persistence of this disease and limitations associated with single-drug

treatment have complicated efforts to adequately manage this condition.

Methods: In this study, a microdilution assay was used to explore the synergistic

antifungal activity of everolimus (EVL) in combination with itraconazole (ITC),

voriconazole (VRC), posaconazole (POS), and amphotericin B (AMB) against a

range of clinical dematiaceous fungal isolates.

Results: These analyses revealed that the EVL+POS and EVL+ITC exhibited

superior in vitro synergistic efficacy, respectively inhibiting the growth of 64%

(14/22) and 59% (13/22) of tested strains. In contrast, the growth of just 9% (2/22)

of tested strains was inhibited by a combination of EVL+AMB, and no synergistic

efficacy was observed for the combination of EVL+VRC.

Discussion: Overall, these findings indicate that EVL holds promise as a novel

drug that can be synergistically combined with extant antifungal drugs to

improve their efficacy, thereby aiding in the treatment of CBM.

KEYWORDS
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1 Introduction

Rates of dematiaceous melanized fungi-related infections have risen in recent years,

including diseases such as chromoblastomycosis (CBM), phaeohyphomycosis (PHM), and

mycetoma that most commonly develop in subtropical and tropical regions (Lupi et al.,

2005; Revankar and Sutton, 2010). CBM, which is primarily an occupational fungal disease,

exhibits a global burden that is similar to or greater than that associated with mycetoma.

Given its global distribution, disproportional impact on impoverished individuals, and
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refractory nature, CBM represents an important but often

overlooked disease (Hotez et al., 2020; Santos et al., 2021). Fungi

responsible for CBM infections include members of the Exophiala

(E. moniliae), Phialophora (P. verrucosa, P. chinenis, P.

macroaphora, P. americana), and Fonsecaea (F. pedrosoi, F.

monophora) genera, among others (Najafzadeh et al., 2011; Li

et al., 2017; Ahmed et al., 2021). While infections by these fungi

generally begin in the skin, if they are not detected in the early stages

of disease they can invade deep into the underlying tissues (Seas and

Legua, 2022). CBM is a form of chronic mycosis, and the patients

undergoing long-term treatment may develop acquired resistance

to antifungal drugs, contributing to a high risk of recurrent disease

(Sousa et al., 2022). Treatment with a combination of antifungal

drugs is common in individuals with severe invasive infections, but

there have been few studies of combination drug therapy specifically

focused on dematiaceous fungi. As such, it is vital that researchers

specifically test the in vitro activity of specific therapeutic

combinations against dematiaceous fungi in an effort to explore

approaches to overcoming the limitations associated with current

antifungal treatment strategies.

The target of rapamycin (TOR) signaling pathway is best

studied as a therapeutic target in cancer, but given its central role

in the regulation of cell cycle progression, stress responsivity, and

protein synthesis, it may also represent a viable antifungal target

(Fingar and Blenis, 2004). The TOR inhibitor sirolimus

(rapamycin) was recently shown to disrupt the survival,

morphogenesis, and stress responses of Candida and Aspergillus

species while decreasing Candida azole tolerance (Kumari et al.,

2022). Combining sirolimus with itraconazole (ITC), posaconazole

(POS), and amphotericin B (AMB) also reportedly yields synergistic

antifungal efficacy against Mucorales (Dannaoui et al., 2009).

However, the robust immunosuppressive effects of sirolimus on

humans limit its value as an antifungal drug.

The TOR kinase inhibitor everolimus (EVL) exhibits a high

level of potency and oral bioactivity such that it has received FDA

approval as a prophylactic therapy for a range of malignant tumor

types with minimal toxicity (Yao et al., 2016). As therapeutic targets

in tumors and fungi are very similar, EVL has been explored as a

treatment for various fungal infections albeit not as a treatment for

dematiaceous fungi (Jiang et al., 2022). This study was thus

designed to evaluate the combined effects of EVL with AMB and

a range of azole antifungal drugs in an effort to determine whether

these drugs would exhibit synergistic activity against a range of

clinical Exophiala spp., Phialophora spp., and Fonsecaea spp.

isolates, which are the primary fungi responsible for CBM cases.
2 Results

2.1 Analysis of the single-agent in vitro
activity of tested drugs

Initially, the antifungal activity of the tested drugs of interest

against a range of dematiaceous fungi was tested using a

checkerboard broth microdilution approach. MIC value ranges

for single-agent treatment with EVL, ITC, VRC, POS, and AMB
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were > 16 mg/mL, 0.063-1 mg/mL, 0.031-2 mg/mL, 0.031-1 mg/mL,

and 0.125-4 mg/mL, respectively (Table 1).
2.2 Analysis of the synergistic effects of
combinations of EVL and antifungal agents

The combination of EVL and ITC was associated with

reductions in the MIC values for these compounds to 0.25-16 mg/
mL and < 0.031-0.5 mg/mL, with evidence of synergistic efficacy

against 100% of E. moniliae, P. macroaphora, and F. monophora

strains, 44% of P. americana strains, and 33% of F. pedrosoi strains

included in this analysis (Tables 1 and 2).

The combination of EVL and POS was associated with

reductions in the MIC values for these compounds to 0.25-8 mg/
mL and < 0.031-0.25 mg/mL, with evidence of strong synergistic

efficacy against 100% of E. moniliae, P. verrucosa, P. chinenis strains,

75% of P. macroaphora strains, 67% of F. monophora strains, 56% of

P. americana strains and 33% of F. pedrosoi strains included in

this analysis.

The combination of EVL and AMB was associated with

reductions in the MIC values for these compounds to 0.25-2 mg/
mL and 0.125-4 mg/mL, with evidence of synergistic efficacy against

100% of E. moniliae strains, although it exhibited poor synergistic

activity just against 11% of P. americana strains.

The combination of EVL and VRC was associated with

reductions in the MIC values for these compounds to 0.25-16 mg/
mL and 0.031-2 mg/mL, but this combination did not exhibit

synergistic efficacy against any tested E. moniliae, Phialophora

spp., or Fonsecaea spp.

No antagonistic interactions between EVL and any of these

antifungal agents were detected through this in vitro

experimental approach.
3 Discussion

Here, we describe the synergistic treatment of EVL with azoles

and AMB against CBM, which is characterized by sclerotic cells

corresponding to the parasitic stage of the fungus together with a

pronounced pyogenic and granulomatous tissue reaction in the

infected host (Queiroz-Telles et al., 2009; Queiroz-Telles et al.,

2017). No standard drug regimens or clinical procedures for this

disease currently exist, hampering efforts to cure affected patients. A

range of therapeutic strategies have been proposed to date including

cryotherapy, surgery, and chemotherapy together with antifungal

treatment, but the disease is often refractory to many treatments

such that cure rates range from 15-80% (Heidrich et al., 2021).

Therapeutic efficacy is largely tied to disease severity, with relapses

being common and often disabling.

The antifungal agents most frequently used to treat CBM include

ITC and terbinafine (TBF). F. pedrosoi strains generally exhibit good

susceptibility to ITC, whereas they are resistant to AMB, 5-

flucytosine, and fluconazole. However, concerns have been

expressed regarding the emergence of ITC resistance in CBM

patients that undergo prolonged treatment using this drug. While
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TABLE 2 In vitro drug interactions summary.

Species (n) n (%) of isolates showing S (synergism) for the combination

EVL/ITC EVL/VRC EVL/POS EVL/AMB

E. moniliae (1) 1 (100%) 0 (0%) 1 (100%) 1 (100%)

P. verrucosa (1) 0 (0%) 0 (0%) 1 (100%) 0 (0%)

P. chinenis (1) 0 (0%) 0 (0%) 1 (100%) 0 (0%)

P. macroaphora (4) 4 (100%) 0 (0%) 3 (75%) 0 (0%)

P. americana (9) 4 (44%) 0 (0%) 5 (56%) 1 (11%)

F. monophora (3) 3 (100%) 0 (0%) 2 (67%) 0 (0%)

F. pedrosoi (3) 1 (33%) 0 (0%) 1 (33%) 0 (0%)

Total (22) 13 (59%) 0 (0%) 14 (64%) 2 (9%)
F
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ITC, itraconazole; VRC, voriconazole; POS, posaconazole; AMB, amphotericin B; EVL, Everolimus.
TABLE 1 Combination activity of EVL and antifungal drugs against dematiaceous fungi isolates.

No. Species MICs (mg/mL)a

Agents aloneb Combinationc

EVL ITC VRC POS AMB EVL/ITC EVL/VRC EVL/POS EVL/AMB

00017 E. moniliae >16 0.5 0.063 0.5 0.5 2/0.125(S) 0.25/0.063(I) 2/0.125(S) 2/0.125(S)

215-2133 P. verrucosa >16 0.125 0.063 0.25 4 1/0.063(I) 0.25/0.031(I) 2/0.063(S) 0.25/4(I)

00104 P. chinenis >16 1 0.25 0.5 2 2/0.031(I) 16/0.125(I) 2/0.031(S) 0.25/2(I)

00106 P. macroaphora >16 0.063 0.063 0.063 0.5 0.25/<0.031(S) 0.25/0.031(I) 0.5/<0.031(I) 0.25/0.5(I)

0047 >16 0.125 0.063 0.125 2 1/0.031(S) 0.25/0.031(I) 1/0.031(S) 0.25/2(I)

01236 >16 0.125 0.125 0.25 2 2/0.031(S) 2/0.063(I) 2/0.063(S) 2/1(I)

CBS273.37 >16 0.25 0.031 0.125 0.5 2/0.063(S) 0.25/0.031(I) 1/0.031(S) 0.25/0.5(I)

00107 P. americana >16 1 0.25 1 0.125 4/0.125(S) 0.25/0.25(I) 8/0.031(S) 0.25/0.125(I)

00109 >16 0.125 0.25 1 1 2/0.125(I) 0.25/0.25(I) 2/0.125(S) 0.25/1(I)

00121 >16 0.063 0.125 1 0.25 0.25/0.063(I) 0.25/0.125(I) 4/0.25(S) 0.25/0.25(I)

CBS225.97 >16 1 0.5 0.25 0.5 2/0.5(I) 0.25/0.5(I) 2/0.125(I) 0.25/0.5(I)

CBS281.35 >16 0.5 0.25 0.125 1 2/0.125(S) 0.25/0.25(I) 1/0.063(I) 2/0.25(S)

CBS400.67 >16 0.5 2 0.25 4 0.25/0.5(I) 0.25/2(I) 4/0.125(I) 0.25/4(I)

CBS840.69 >16 1 0.063 0.25 2 4/0.125(S) 2/0.063(I) 0.25/0.25(I) 0.25/2(I)

0009 >16 0.25 0.125 0.5 0.25 2/0.063(S) 8/0.063(I) 1/0.063(S) 0.25/0.25(I)

JZ202205 >16 0.125 0.063 0.25 2 0.5/0.063(I) 0.25/0.063(I) 1/0.031(S) 0.25/2(I)

07631 F. monophora >16 0.25 0.125 0.25 2 8/0.063(S) 0.25/0.125(I) 0.5/0.125(I) 0.25/2(I)

07632 >16 0.25 0.063 0.063 2 1/0.063(S) 8/0.031(I) 0.25/<0.031(S) 0.25/2(I)

07633 >16 0.25 0.25 0.25 2 1/0.063(S) 0.25/0.25(I) 4/0.125(S) 0.25/2(I)

07671 F. pedrosoi >16 0.125 0.063 0.063 1 16/0.031(I) 8/0.031(I) 0.25/0.031(I) 0.25/1(I)

07690 >16 0.125 0.25 0.031 1 0.25/0.125(I) 0.25/0.25(I) 0.25/<0.031(I) 0.25/1(I)

1000 >16 1 0.125 0.5 1 4/0.25(S) 0.25/0.125(I) 4/0.125(S) 0.25/1(I)
f

aMinimum inhibitory concentration (MIC) values are the concentrations that inhibited 100% of fungal growth.
bEVL, ITC, VRC, POS, AMB respectively correspond to everolimus, voriconazole, itraconazole, posaconazole, amphotericin B.
cFractional inhibitory concentration index (FICI) results are provided in parentheses. S, synergism (FICI ≤ 0.5); I, indifference (0.5 < FICI < 4).
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combinations of drugs can achieve good clinical outcomes and

enhance the efficacy of individual agents, there have been few

studies to date on the impact of different combination drug

regimens on melanized fungi. In one prior study testing the effects

of antifungal drugs (AMB, ITC, and TBF) against CBM-causing fungi

including P. verrucosa, C. carrionii, and F. pedrosoi isolates (Yu et al.,

2008), no synergistic or antagonistic effects were observed when

combining AMB with TBF or ITC for any of the tested fungal target

strains, although synergy between TBF and ITC was observed for one

C. carrionii isolate. While combining antifungal treatments

represents a promising approach to treating severe invasive

mycoses, there is thus currently a lack of sufficient information

regarding the efficacy of different antifungal agents when applied in

combination, emphasizing a need to study antifungal drug synergies

in greater detail (Daboit et al., 2014).

A range of targets for novel anticancer drugs exhibit homologous

proteins in fungi that are involved in key cell signaling pathways

(Bastidas et al., 2008; Chen et al., 2011). As such, efforts to investigate

these targets and inhibitors thereof may highlight new avenues for

antifungal treatment. TOR is a highly conserved serine/threonine

kinase that regulates metabolic activity and growth in eukaryotic cells

(Blenis, 2017). Mammalian TOR (mTOR) dysregulation is believed

to play important roles in autoimmunity, cancer, cardiovascular

disease, metabolic disorders, and fungal virulence and pathogenicity

(Yu et al., 2014; Mossmann et al., 2018; So et al., 2019). Efforts to

target TOR signaling may thus be of value for the treatment of both

cancer and fungal infections. In prior studies, rapamycin was shown

to exert antifungal effects and to reverse C. albicans drug resistance

through the suppression of TOR signaling, although its intrinsic

toxicity greatly limited its antifungal application (Tong et al., 2021).

EVL is a less toxic rapamycin analog that exhibits excellent oral

bioavailability and has been used to treat a range of cancers

including breast, lung, and pancreatic tumors (Babiker et al.,

2019). In precious several studies, the EVL-induced cell survival

rate in HaCat, Caki-1, and HepG2 cells were greater than 70% at 30

mM (≈28.75 mg/mL), especially up to 100 mM in HepG2 cells

(Yamamoto et al., 2013; Navarro-Villarán et al., 2016). Recent

studies have also demonstrated the activity of EVL against

Aspergillus, Scedosporium, and Lomentospora species (Wang et al.,

2022). However, there have not been any published studies

assessing the effects of EVL against dematiaceous fungi. Given the

relevance of Exophiala, Phialophora, and Fonsecaea species as

important pathogens that can cause CBM, this study was

performed to examine the combined therapeutic effects of EVL

and existing antifungal drugs against these fungi.

Here, the antifungal effects of EVL alone and in combination

with different antifungal drugs were tested. In total, 22 clinical

Exophiala, Phialophora, and Fonsecaea isolates were used for this

testing effort. These analyses ultimately revealed that EVL exhibited

synergistic efficacy when combined with AMB or azoles, resulting in

significant reductions in the MIC values for these antifungal agents.

When combined with EVL, the MIC range for ITC declined from

0.063-1 mg/mL to < 0.031-0.5 mg/mL, with a total synergy rate of

59%. Similarly, combining POS with EVL resulted in the best

synergistic efficacy, with decreases in MIC ranges from 0.063-1

mg/mL to < 0.031-0.25 mg/mL and a total synergy rate of 64%. In
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contrast, combining EVL and AMB yielded a relatively weak

synergy rate (9%), while the combination of EVL and VRC failed

to exhibit synergistic efficiency, likely as the analyzed strains were

sensitive to single-agent VRC.

Given that the long-term drug treatment of CBM patients can

contribute to the emergence of therapeutic resistance, this study was

developed to examine the synergistic effects of EVL in combination

with other antifungal drugs in vitro against a range of Exophiala,

Phialophora, and Fonsecaea isolates. These results demonstrate that

combining EVL with azoles and AMB represents a promising

approach to treating diseases caused by these fungi, although

additional work will be necessary to clarify the mechanisms

underlying this synergistic activity and to test whether these

results translate to in vivo efficacy.
4 Materials and methods

4.1 Reagents

EVL (RAD001, 99.69%) was obtained from Selleck Chemicals

LLC (TX, USA). ITC and AMB were from Macklin (Shanghai,

China). VRC and POS were from Solarbio Biotechnology (Beijing,

China). RPMI-1640 was from Gen-view Scientific Inc. (FL, USA).

All reagents were prepared as per Clinical and Laboratory Standards

Institute M38-A2 guidelines (CLSI, 2008).
4.2 Fungal isolates

For this study, 22 different dematiaceous fungi isolates were utilized

including one E. moniliae, one P. verrucosa, one P. chinenis, four P.

macroaphora, nine P. americana, three F. monophora, and three F.

pedrosoi strains, all of which were clinical isolates. Candida parapsilosis

ATCC 22019 and Aspergillus flavus ATCC 204304 strains were used

for the purposes of quality control. Strain identities were confirmed

through a combination of morphological identification and ITS

sequencing. All specimens were deposited in the Department of

Dermatology of Jingzhou Central Hospital.
4.3 Inoculum preparation

After incubation for 4 days on potato dextrose agar (PDA) at

28°C, conidia were prepared from all strains at 1-5 × 106 conidia/

mL in 0.9% sterile saline followed by 100-fold dilution using RPMI-

1640 to a final concentration of 1-5 × 104 conidia/mL.
4.4 Checkerboard microdilution method

The minimum inhibitory concentration (MIC) values of EVL

alone or in combination with ITC, VRC, POS, or AMB against

various dematiaceous fungi were assessed as per the guidelines

established by the Clinical and Laboratory Standards Institute

(CLSI) M38-A2. The working concentrations for the tested drugs
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were 0.06-4 mg/mL for ITC, VRC, POS, and AMB, and 0.25-16 mg/
mL for EVL. Briefly, 50 ml of serially diluted EVL solutions were

added to horizontal rows of a 96-well plate containing the conidia

suspension prepared above (100 ml/well), followed by the addition

of 50 ml of serially diluted ITC, VRC, POS, or AMB in the vertical

columns of this plate. Plates were then incubated for 4 days at 28°C,

with MIC values then being established based on the minimum

drug concentration necessary to suppress 100% of fungal growth

relative to control conditions.

Interactions between EVL and specific antifungal drugs were

assessed based on the fractional inhibitory concentration index (FICI)

as follows: FICI = (MICAc/MICAa) + (MICBc/MICBa), where MICAc

and MICBc respectively correspond to test drug combinations, and

MICAa and MICBa correspond to the MIC values for drugs A and B

when used as single-agent treatments. A FICI ≤ 0.5 was indicative of

synergism, while 0.5 < FICI < 4 indicated no interaction or

indifference, and FICI ≥ 4 indicated antagonism. All experiments

were independently repeated in triplicate.
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