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Stem cells play a crucial role in re-establishing homeostasis in the body, and the

search for mechanisms by which they interact with the host to exert their

therapeutic effects remains a key question currently being addressed.

Considering their significant regenerative/therapeutic potential, research on

mesenchymal stem cells (MSCs) has experienced an unprecedented advance

in recent years, becoming the focus of extensive works worldwide to develop

cell-based approaches for a variety of diseases. Initial evidence for the

effectiveness of MSCs therapy comes from the restoration of dynamic

microenvironmental homeostasis and endogenous stem cell function in

recipient tissues by systemically delivered MSCs. The specific mechanisms by

which the effects are exerted remain to be investigated in depth. Importantly, the

profound cell-host interplay leaves persistent therapeutic benefits that remain

detectable long after the disappearance of transplanted MSCs. In this review, we

summarize recent advances on the role of MSCs in multiple disease models,

provide insights into the mechanisms by which MSCs interact with endogenous

stem cells to exert therapeutic effects, and refine the interconnections between

MSCs and cells fused to damaged sites or differentiated into functional cells early

in therapy.
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1 Introduction

Mesenchymal stem cells (MSCs) are the current focus of

extensive works worldwide, directed to elucidate their nature and

properties, as well as to develop cell-based therapies for various

diseases (Kfoury and Scadden, 2015; Harrell et al., 2019; Lerman,

2021; Zhu et al., 2021; Hoang et al., 2022). Our understanding of the

therapeutic potential of MSCs has been promoted by research

progresses such as the identification and characterization of MSCs

from diverse origins (Darzi et al., 2016; Donders et al., 2016; Lu

et al., 2016; Cooper et al., 2020; Medrano-Trochez et al., 2021),

recognition of MSC contributions to organismal homeostasis and

diseases (Sui B. D et al., 2016; Neri and Borzì, 2020; Sui et al., 2020;

Krampera and Le Blanc, 2021; Spallanzani, 2021), the application or

intervention of MSCs in tissue engineering and cytotherapy

(Akiyama et al., 2012; Cassandras et al., 2020; McNeill et al.,

2020), and clarification of transcription factors and signaling

pathways capable of controlling the behaviors of MSCs (Feng

et al., 2017; Elbaz et al., 2019; Zecchini et al., 2019; Choi et al., 2021).

Further illuminating matters, function and therapeutic efficacy

of MSCs are highly regulated by the surrounding niche/

microenvironment (Zhu et al., 2016; Mehrbani Azar et al., 2018;

Tejero et al., 2019; Gilchrist et al., 2021), and studies on skeletal

degenerative and autoimmune conditions have highlighted the

essence of cell-host interplay in the forms of cell-cell contact and

paracrine secretion in MSC cytotherapy (Liu S. et al., 2015; Kou

et al., 2018; Li et al., 2018; Liu et al., 2018; Tejero et al., 2019; Ha

et al., 2020). Interestingly, these interactions provide persistent

therapeutic benefits that remain detectable long after the

disappearance of transplanted MSCs (Liu S. et al., 2015; Ng et al.,

2015). Therefore, there is an urgent need for a more complete

understanding of the molecular mechanisms and biological

processes underlying MSC therapies.

In this review, we summarize recent developments regarding

the role of MSCs in a variety of disease models and provide insight

into the mechanisms by which MSCs interact with endogenous

stem cells to exert therapeutic effects, refining the interconnection

between MSCs and cells fused or differentiated into functional cells

at the site of damage in the early stages of treatment. This landscape

offers a unifying explanation of how the MSC therapy re-establishes

the health of the diseased organism across diverse tissues with long-

lasting beneficial profiles, shedding light on the future development

of cell-free and cell-targeted therapies.
2 The MSC overview: Potent
candidates in cytotherapy

The concept of MSCs originated from seminal studies

performed by Friedenstein et al. who confirmed that postnatal

mammalian bone marrow (BM) contains a subset of non-

hematopoietic stromal cells that are both self-renewing and

multipotent. Currently, the MSC concept is referred to as

primitive cells capable of adherence, forming fibroblastic colonies

and multilineage differentiation when cultured ex vivo (Kfoury and
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Scadden, 2015). MSCs, other than those derived from the BM

(BMMSCs) (Jiang et al., 2002), have been shown to reside in a

variety of tissues, such as the adipose (ADSCs) (Zuk et al., 2002),

umbilical cord (UCMSCs) (Erices et al., 2000), tendon (TSPCs) (Bi

et al., 2007), dental pulp (DPSCs) (Gronthos et al., 2000),

periodontal ligament (PDLSCs) (Seo et al., 2004) and even the

exfoliated deciduous teeth (SHED) (Miura et al., 2003). The surface

profiles of MSCs are still not fully understood; we use a complex of

heterogeneous distinct subsets of MSCs, which can be considered as

a network of stromal components with interrelated and

complementary in vivo capabilities in the maintenance of tissue

homeostasis (Kfoury and Scadden, 2015) (Figure 1). Despite recent

studies on identifying functional heterogeneity and specific markers

of these cells (Chan et al., 2015; Worthley et al., 2015), the ready

abilities of isolation, amplification and differentiation have made

MSCs an ideal subject for extensive investigation in tissue

engineering and regenerative medicine (Kfoury and Scadden,

2015). Furthermore, emerging experimentation elucidating

immunomodulation, tissue regeneration, anti-aging ability and in

vivo biology of MSCs has prompted their potent applications in cell-

based therapy (Yue et al., 2016; Carr et al., 2019; Fu et al., 2019;

Yang et al., 2019). Recent experiments with MSCs have been applied

to the study and treatment of COVID-19, and the rapid response to

emergent diseases is evidence of the promise of MSCs in the

treatment of immune and infectious diseases (Li et al., 2020;

Meng et al., 2020; Abdelgawad et al., 2021; Shi L. et al., 2021).
2.1 Functional characteristics of MSCs

According to this definition, the basic functional characteristics

of MSCs are plastic adherent and clonogenic ex vivo, by which

MSCs can be isolated. MSCs induced in conditioned medium for a

period of time can be stained with alkaline phosphatase and alizarin

red in vitro and express a series of markers of osteogenic

differentiation such as alkaline phosphatase (ALP), Runt-related

transcription factor 2 (RUNX2), osteocalcin (OCN) and osterix

(OSX). In addition, MSCs induced in conditioned medium can be

stained with oil red O and microscopically show obvious lipid

droplet formation and express markers of lipogenic differentiation

such as peroxisome proliferator activated receptor gamma (PPARg)
and lipoprotein lipase (LPL). The self-renewal and multipotency of

MSCs were further confirmed in vivo though serial transplantation

assays, with labeling of green fluorescent protein (GFP) or surface

markers such as Nestin and CD146 , demonstrating the ability to

reconstitute heterotopic ossicles when implanted subcutaneously

and maintain identical phenotypes when generating secondary

MSCs and ossicles. In addition to self-renewal and multipotency,

MSCs have been identified as potent immunosuppressors (Bárcia

et al., 2015; Yang et al., 2017; Vázquez et al., 2020). They possess the

ability to modulate innate immune responses (Jiang et al., 2021;

Dave et al., 2022), suppress the proliferation and differentiation of B

cells, induce T-cell apoptosis and restore the balance between T-cell

subsets , and rescue the onset of inflammation. The

immunomodulatory/anti-inflammatory capacity of MSCs has
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been proven to be particularly important when MSCs treating

autoimmune or skeletal degenerative diseases (Csobonyeiova

et al., 2017; Jiang et al., 2021; Zhu et al., 2021) upon systemic

delivery. Another capacity of MSCs is migration, which enable them

to migrate toward damaged tissues during development and after

systemic infusion, to differentiate into functional cells that exert a

reparative therapeutic effect, or to fuse with cells at the site of

damage and then regenerate the damaged tissue (Chen et al., 2016;

Liesveld et al., 2020; Wang et al., 2020; Galgaro et al., 2021; Lee et al.,

2021; Ma et al., 2021). All these repair processes suggest that MSCs

can be mobilized to functional sites for endogenous tissue

regeneration and functional remodeling. Recent studies have also

shown that MSCs exert therapeutic effects through paracrine effects,

such as miRNAs, cytokines and chemokines, which can improve the

pathological microenvironment and repair locally damaged tissues;

and that mitochondrial transfer mechanisms can provide functional

recovery after the repair of mitochondrial dysfunction caused by

aging (Babenko et al., 2018). MSCs-derived extracellular vesicles

(EVs) have been the focus of recent research, producing membrane-

enclosed vesicles in response to external stimuli and playing a

critical role in regulating the immune microenvironment, inhibiting

inflammatory factor expression and promoting angiogenesis

(Babenko et al., 2018).
2.2 Dynamic interactions with
microenvironments

A conspicuous functional characteristic of MSCs is their reciprocal

regulation with the surrounding niche/microenvironment. MSCs

reside in a complex architecture composed of neighboring cells and
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abundant neurovascular bundles (Zhao et al., 2018; Imhof et al., 2020;

Wu et al., 2022). MSC behaviors of quiescence and activation of MSCs

are tightly controlled by the local niche according to the requirements

of the host tissues (Baccin et al., 2020; Hageman et al., 2020). MSCs also

accept long-distance regulation by the circulatory microenvironment

through soluble factors, such as hormones (for example, estrogen),

metabolites (for example, glucose) and inflammatory cytokines (for

example, tumor necrosis factor-alpha [TNF-a] and interferon-gamma

[IFN-g]). (Sala et al., 2015; Sui B. D. et al., 2016; SimovicMarkovic et al.,

2017). MSCs modulate the ambient microenvironmental properties

through cell-cell contact and paracrine secretion of various cytokines

(Li et al., 2019; Song et al., 2020) and EVs (Liu S. et al., 2015; Hade et al.,

2021). MSCs can produce gasotransmitters of nitric oxide (NO) (Ren

et al., 2008) and hydrogen sulfide (H2S) (Liu et al., 2014) to create

favorable microenvironments through autocrine/paracrine regulatory

loops. These mutual communications between MSCs and

microenvironments, particularly those connecting MSCs with the

host immune systems and release-based interactions, provides crucial

mechanisms underlying the therapeutic applications of MSCs (Ansari

et al., 2017; Weiss et al., 2019; Planat-Benard et al., 2021; Yao

et al., 2021).
3 Roles of MSC in organismal
homeostasis and disease

Despite the well-documented experimentation describing the

functional characteristics of MSCs, including easy access, anti-

inflammatory activity mainly in the form of a thirst for damaged

cells, immune modulation and regeneration promotion, a

fundamental issue concerns the identity and physiological
FIGURE 1

The MSC landscape in tissue homeostasis, disease and therapies. The powerful self-renewal and differentiation capabilities, immunomodulatory
capacity, regeneration-promoting functions, and paracrine effects of MSCs all play important roles in tissue homeostasis, mesodermal histogenesis,
and maintenance of HSC function. MSCs can intervene in disease development and treat related diseases through systemic or local applications.
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function in vivo (Figure 1). However, studies in this field have been

hampered by a lack of MSC-specific antigens that permit both

prospective identification and fate mapping. According to the latest

statistic, it is estimated that > 9233 clinical trials have been

registered and conducted on MSCs, but the lack of adequate

standardized methods to assess the main safety issues involved in

MSCs, specifically the lack of MSC-specific antigens for prospective

identification and fate localization, has hindered their use in clinical

settings. Until recently, lineage tracing and ablation studies

identified several surface markers representing subsets of MSCs

related to their respective nature and niches. In particular, regarding

the ability of MSCs to trigger and promote tumorigenesis, although

few studies have supported that MSCs are relatively safe for clinical

use, the same MSCs applied to other receptors or tissues and organs

also require further discussion and study.

The developmental origin and function of MSCs remain an

active area of research. Although it was originally believed that

MSCs (particularly BMMSCs) are derived from the mesoderm and

give rise to mesenchymal cells, such as osteoblasts, adipocytes and

chondrocytes (Dennis and Charbord, 2002), evidence has emerged

that suggests the existence of different MSC subsets during

development and possibly in adults with distinct origins and

functions. Dental MSCs are generated from a unique neural crest

or glial source in development (Miletich and Sharpe, 2004; Kaukua

et al., 2014); most recently, Nestin+ BMMSCs have also been

revealed as descendants of the neural crest, and unlike

mesoderm-derived MSCs, they maintain hematopoietic stem cells

(HSCs) but do not contribute to fetal osteochondrogenesis (Isern

et al., 2014). Therefore, as an HSC niche component, MSCs have

been detected in major hematopoietic sites during mouse

development, such as the aorta-gonad-mesonephros and fetal

liver during mid-gestation and in neonatal and adult BM

(Mendes et al., 2005). However, the developmental hematopoietic

function of MSCs seems to depend on their bone-forming capacity

in the BM, where Osx-deficient MSCs fail to form osteoblasts in the

metaphyseal area with reduced HSC function (Cos ̧kun et al., 2014).

Despite these findings, whether fetal MSCs function differently than

postnatal MSCs remain unclear.

The postnatal roles of MSCs in tissue homeostasis is clearly

understood. In this regard, BMMSCs have been intensively

investigated for their putative contribution to skeletal remodeling

(Chan et al., 2015; Worthley et al., 2015) and hematopoiesis

(Derecka et al., 2020; Borella et al., 2021; Cai et al., 2022; Schloss

et al., 2022). For instance, leptin receptor (Lepr)+ (Yue et al., 2016;

Schloss et al., 2022) and Gremlin1+ (Worthley et al., 2015) cells are

enriched for osteogenesis with either adipogenesis or

chondrogenesis of perivascular BMMSCs in the adult skeletal

system, and Nestin+ (Burt et al., 2019; Nobre et al., 2021) and

platelet-derived growth factor receptor alpha (PDGFRa)+CD51+

(Lawal et al., 2017; Rux et al., 2017; Mennan et al., 2019) cells have

shown co-segregation between colony-forming activity and HSC

maintenance activity of BMMSCs. Moreover, dental MSCs have

been shown to actively participate in the dynamic turnover of

craniofacial bone (Zhao et al., 2015) and dental tissues, as

represented by Gli1+ MSC subsets. However, critical questions
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remain as to whether different MSC markers overlap with each

other and how distinct MSC subsets coordinate tissue homeostasis

and diseases.

Although specific markers with related physiological function of

MSCs in vivo remain to be elucidated, their pathophysiological

contributions to diseases, as shown by declined or altered behaviors

in situ and ex vivo, have been recognized in skeletal and dental

systems. Osteoporosis, the skeletal degenerative disease, is

characterized by loss of bone mass with increased marrow

adiposity. It has been well documented that BMMSCs suffer from

reduced proliferation with a differentiation shift from osteogenesis

to adipogenesis in osteopenias of diverse pathologies (Liu et al.,

2016; Sui et al., 2016a; Li et al., 2017). These functional impairments

of BMMSCs could be attributed to the detrimental effects of

diseased microenvironmental factors, such as estrogen deficiency

and inflammation status (Chen et al., 2015; Shao et al., 2015).

Similar damages to local resident MSCs have also been observed in

other inflammatory conditions, e.g. osteoarthritis (Zhen et al., 2013)

and periodontitis (Xue et al., 2016). Besides, ablation of Gli1+ cells

leads to craniosynostosis and arrest of skull growth, indicating

MSCs are indeed indispensible for skeletal homeostasis (Zhao et al.,

2015). In addition, MSC aberrations have been revealed as a key

pathogenesis in mutant-HSC-driven leukemia, in which BMMSCs

could be impaired by neuropathy of the marrow niche to alter their

HSC-maintaining secretome (Dong et al., 2016). The above findings

further confirm the pathophysiological importance of MSC

interactions with microenvironments in tissue homeostasis

and diseases.
3.1 In situ regeneration: Stepping toward a
future therapeutic option

Given the putative key roles of MSCs in tissue homeostasis, a

strategy of in situ regeneration has been proposed to reverse the

functional decline of resident MSCs in treating degenerative

diseases . Through inhibi t ion of microenvironmental

inflammatory impacts, systemically infusion of neutralizing

antibodies of either TNF-a or IFN-g, as well as the non-steroidal

anti-inflammatory drug aspirin, has been documented to be

sufficient to rescue BMMSC deficiency in osteoporosis (Sala et al.,

2015; Liao et al., 2016; Xu et al., 2016; Lu et al., 2017; Simovic

Markovic et al., 2017; Chang et al., 2022). Microenvironmental

agents for the improvement of MSC function in osteoporosis

have also been reported to include the gasotransmitter H2S

donor GYY4317 and Insulin-like growth factor 1 (IGF1),

together with its binding protein (IGFBP3). More agents have

been developed based on mechanistic studies unraveling

pharmacological targets in MSC functional regulation, such as the

mammalian target of rapamycin (mTOR) signaling inhibitor

rapamycin (Chen et al., 2015; Liu et al., 2016), the Notch

signaling inhibitor DAPT (Liu S. et al., 2015), the nuclear

transcription factor-kappa B (NF-kB) signaling inhibitor PDTC,

and the migration stimulator LLP2A-Ale for directing MSCs to

bone formation surfaces.
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Despite the fact that these pharmacological interventions have

proven effective in restoring MSC function in certain disease

models, in situ MSC-based regeneration is still in the process of

becoming a feasible option, as limitations still exist, including the

specificity and sustainability of their therapeutic influences. To date,

no MSC-targeted agents have been approved or applied in clinically.

Current preclinical and clinical studies have more extensively

applied exogenous MSC cytotherapy in harnessing MSCs for

therapeutic use, which has been shown to be capable of restoring

endogenous MSC function (Liu S. et al., 2015; Chen et al., 2017), as

discussed below.
4 MSC therapy: The efficacy based on
cell-host interplay

The functional characteristics of MSCs indicate their

therapeutic potential. In support of this, research on MSC therapy

has experienced unprecedented advances in recent years, becoming

the focus of extensive work worldwide to develop approaches for a

variety of diseases. In particular, evidence for the potent efficacy of

MSC therapy comes from in-depth understanding of the restoration

and mechanisms of systemically delivered MSCs in recipient tissue,

microenvironmental homeostasis, and endogenous stem cell

function. Interestingly, the benefits of MSCs are wide-ranging and

remain detectable long after the disappearance of transplanted

MSCs (Liu S. et al., 2015; Ng et al., 2015). Accordingly, the

current recognition of MSC therapy has advanced from cell-
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autonomous functional determination to the essence of cell-host

interplay (Figure 2).

The landscape of current MSC therapy contains at least two

aspects: systemic and locoregional delivery of exogenous MSCs.

Among these two application strategies, systemic MSC cytotherapy,

primarily through intravenous and intraperitoneal injections, is

currently a research hotspot in stem cell therapy, which has been

recognized to have therapeutic effects in various diseases. In

particular, the immunomodulatory capability of MSCs has made

them attractive and potent candidates for autoimmune and

inflammatory conditions, in which they can modify the systemic

microenvironment further toward a beneficial environment

for tissue repair (Shi et al., 2018; Medhat et al., 2019; Borella

et al., 2021; Markov et al., 2021). Their ability to suppress

immune responses has become the basis for numerous preclinical

and clinical studies on a range of systemic conditions and

their complications, including systemic lupus erythematosus

(SLE), graft versus host disease (GvHD), rheumatoid arthritis

(RA) (Liu R. et al., 2015; Gu and Shi, 2016), systemic sclerosis

(SSc), inflammatory bowel disease (IBD), type 1 and type 2

diabetes (T1D and T2D), osteoporosis, and osteonecrosis.

Furthermore, systemically delivered MSCs benefit locoregional

lesions in diverse tissues, such as myocardial infarction (Luo

et al., 2017), liver fibrosis, (Watanabe et al., 2019; Shi M. et al.,

2021) and renal failure (Yun and Lee, 2019). The promise of MSC

cytotherapy in restoring organismal homeostasis has ushered

in hundreds of clinical trials that have employed systemic

infusion of MSCs.
FIGURE 2

Cell-host interplay determines efficacy of MSC therapy. Systemic infusion and local transplantation of MSCs can secrete anti-inflammatory factors to
target cells through immunomodulatory ability to repair damaged tissues and maintain local tissue immune homeostasis. A variety of cytokines and
EV forms of tissue trophic factors can be secreted through the paracrine effect to promote mobilization, proliferation, and anti-apoptosis, to
improve the microenvironment of the recipient and inhibit the development and progression of disease.
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Locoregional application, has been extensively investigated in

regenerative medicine. Studies based on tissue engineering

techniques have successfully regenerated/repaired craniofacial (Yu

et al., 2021) and long bone defects (Zhao et al., 2021), cartilage

(Kangari et al., 2020), functional tooth roots and dental pulp (Xuan

et al. , 2018; Guo et al. , 2021), periodontal structures

(Sui et al., 2019), cutaneous wounds (An et al., 2015), infarcted

myocardium, neurons and nerves. Furthermore, applications are in

continuous progress by optimizing MSC viability with the cell-

sheet/cell-aggregate technique (Xuan et al., 2018), improving

scaffold materials with nanotechnology (Kuang et al., 2016) or

microencapsulation (Moshaverinia et al., 2015), and combining

favorable agents for MSC function with preconditioning (Shuai

et al., 2016) or co-delivery systems (Moshaverinia et al., 2015).

However, a significant challenge in this field is to maintain the

viability of implanted MSCs in diseased microenvironments and to

maximize their efficacy during the survival period. It has been

reported that recipient immune systems, primarily T cells and

secreted TNF-a and IFN-g, remarkably inhibit MSC-mediated

tissue regeneration by inducing MSC apoptosis and impairing

MSC differentiation (López-Garcıá and Castro-Manrreza, 2021;

Xie et al., 2021) (Figure 2). Further diminishing the regenerative

potential, the detrimental impacts of donor comorbidities regarding

aging, inflammation, and hyperglycemia are just beginning to

emerge, constituting the main barrier for the application of

autologous MSCs. Therefore, further studies are required toward

optimizing locoregional application of MSCs, compared to systemic

MSC therapy, which demonstrates distinctive advantages of

minimum injuries and stable, long-lasting, and wide-ranging

beneficial effects.
5 Cell-host interplay in systemic
MSC therapy

5.1 Long-term restoration of
recipient homeostasis

One of the most profound cell-host interplay in MSC therapy is

the re-establishment of the recipient immunological balance,

particularly homeostasis among T-cell subsets. Generally,

systemic MSC infusion can reduce the number of CD3+ T cells

by inhibiting proliferation and inducing apoptosis (Fujii et al., 2018;

Sui et al., 2018) while also reducing recipient CD4+ and CD8+ T-cell

populations (Wang et al., 2018; Harrell et al., 2021). Specifically, for

the CD4+ T-cell subsets, the infused MSCs can suppress pro-

inflammatory T helper 1 (Th1) and Th17 cells while promoting

anti-inflammatory Th2 and CD4+CD25+Foxp3+ regulatory T cells

(Tregs), thus restoring the functional balance (Court et al., 2020).

Mechanistically, the infused MSCs exert combined effects by

paracrine secretion and cell-cell contact: MSCs secrete monocyte

chemotactic protein 1 (MCP-1) to recruit T cells (Liu et al., 2021)

and various immunosuppressive cytokines such as NO and

indoleamine 2,3-dioxygenase (IDO), and they express FAS ligand
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(FASL) and bind to FAS on T-cell surfaces to induce apoptosis (Liu

et al., 2021). Interestingly, MSCs also express FAS, which plays an

important role in regulating MCP-1 secretion to enhance

recruitment. Apoptotic T cells can be further engulfed by

macrophages and can stimulate macrophage TGF-b production

to induce Tregs for immune tolerance. Surprisingly, these effects

start as early as 1.5 h post-infusion in mice and last as long as 12–18

months in humans post-infusion. The amazingly persistent efficacy

indicates unrecognized mechanisms underlying the long-term

functional restoration of each T-cell subset. Similar phenomena

were also detected when MSCs maintained macrophage

homeostasis by promoting anti-inflammatory M2 polarization

and inhibiting pro-inflammatory M1 polarization (Lee et al.,

2015; Xie et al., 2016; Pajarinen et al., 2019; Arabpour et al., 2021).

Another example of MSC re-establishment of functional

homeostasis is the restored bone remodeling balance observed in

systemic MSC therapy. In osteoporotic cytotherapy, the systemic

infusion of MSCs rescued the impaired bone formation rate and

reduced the stimulated bone resorption rate under diverse

pathological conditions (Liu S. et al., 2015; Chen et al., 2017; Sui

et al., 2017). The efficacy can be attributed to increased

osteoblastogenesis with decreased osteoclastogenesis through

indirect mechanisms through immunomodulation (Sui et al.,

2017), secretion (Liu S. et al., 2015; Chen et al., 2017), or

potential homing (Sui et al., 2016b). Interestingly, skeletal

therapeutic effects are also long-lasting (at least 8–12 weeks) (Liu

S. et al., 2015; Chen et al., 2017; Sui et al., 2017). The paracrine

effects of transplanted MSCs on other types of recipient somatic

cells, including cardiac myocytes (Cheng et al., 2020), epithelial cells

(Nagaishi et al., 2016), endothelial cells (Lin et al., 2015), fibroblasts

(Picke et al., 2018), smooth muscle cells (Cheng et al., 2017),

adipocytes (Xie et al., 2016), and neurons (He et al., 2021), have

also been reported during MSC application in myocardial

infarction, nephropathy, atherosclerosis, scar formation,

pulmonary hypertension, insulin resistance, and axon guidance.

Collectively, these findings reveal the critical role of cell-host

interplay in mediating the wide-ranging and long-lasting efficacy

of MSC therapy.

In addition to the functional restorations of recipient cellular

components, both systemic and local microenvironments can be

modified by MSC therapy toward beneficial circumstances for tissue

repair. Depending on their immunomodulatory capacity, infused

MSCs exert potent anti-inflammatory effects in the circulation and

tissue niches, underlying indirect therapeutic efficacy in

inflammation-induced bone and pancreatic islet defects (Jin et al.,

2019; Gan et al., 2020; Zhou et al., 2020). The regenerated islet b cells

lead to the secondary rescue of hyperglycemia, which is beneficial for

addressing diabetic complications. Furthermore, both systemically

infused and locoregionally transplanted MSCs secrete numerous

tissue trophic factors in the form of cytokines and EVs, which

possess various microenvironment-improving effects such as pro-

mobilization, pro-proliferation (Deng et al., 2016; Grange et al., 2019;

Mathew et al., 2019), anti-apoptosis (Nagaishi et al., 2016; Grange

et al., 2019), and pro-/anti-angiogenesis (Todeschi et al., 2015; Zanotti
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et al., 2016; Xiao et al., 2021), indicating general recovery of diseased

recipient microenvironments (Figure 2).

Notably, cell-host interplay indicates reciprocal interactions in

that recipient microenvironmental status also greatly influences the

therapeutic performance of MSCs. In addition to the pro-

inflammatory T cells in recipients that inhibit MSC regeneration

through synergistic effects of IFN-g and TNF-a, crosstalk between

transplanted donor MSCs and the recipient immune system also

exists in the systemic application of MSCs, but functions distinctively

to trigger immunomodulation of exogenous MSCs. In particular,

recipient IFN-g combined with other pro-inflammatory cytokines

induce the secretion of chemokines and NO by exogenous MSCs,

which recruit and inhibit recipient T cells, respectively. Recipient

IFN-g also elicits the expression and secretion of other

immunoregulatory cytokines of donor MSCs such as IDO, thus

rescuing the impaired immunosuppressive function of diseased

MSCs. Another recipient factor, nevertheless, participates as a

regulatory element in the immunosuppressive function, in that the

recipient hyperglycemic microenvironment diminishes

immunomodulation and therapeutic effects of systemically infused

MSCs on osteopenia (Le Blanc et al., 2004; Sui et al., 2017). These

findings integrate a previously unrecognized axis into the cell-host

interplay in MSC therapy and ravel that the fulfillment of potent

therapeutic effects of MSCs requires critical assistance from and a

high level of control of recipient microenvironments.
5.2 Persistent rescue of endogenous stem
cell deficiency

These findings, particularly the long-term restoration of

recipient homeostasis, prompt further investigations on the

functional recovery of recipient resident stem cells. Because of the

increased osteoblastogenesis observed in MSC treating

osteoporosis, osteogenic differentiation of recipient BMMSCs has

been extensively examined. As expected, rescue of impaired

osteogenesis of recipient BMMSCs has been detected in MSC

therapies in various murine models, including osteopenia induced

by estrogen deficiency (ovariectomy [OVX]), SLE (Liu S. et al.,

2015; Ma et al., 2015), and SSc (Chen et al., 2017). Furthermore,

recipient BMMSCs exhibited enhanced bone regenerative capability

when transplanted ectopically, suggesting correlations with restored

bone formation rates in situ (Liu S. et al., 2015; Chen et al., 2017).

Recipient BMMSCs also showed stimulated colony-forming

capacity after allogeneic MSC infusion (Chen et al., 2017). In

addition, exogenous MSC therapy inhibits adipogenesis (Chen

et al., 2017) and osteoclastic induction (Ma et al., 2015) of

resident MSCs, thereby restoring skeletal homeostasis.

Importantly, the functional recovery of recipient BMMSCs

persisted for at least 12 weeks post-infusion (Liu S. et al., 2015),

again indicating that a single administration of MSCs is capable of

maintaining the therapeutic effects for a sustained period of time.
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The effects of MSC therapy on the stimulate function of

recipient endogenous stem cells have been observed in other

systems. Intramuscular injection of prostacyclin-overexpressing

MSCs promoted the survival and proliferation of host muscle

progenitor cells under hypoxic conditions to show enhanced

muscle regeneration in a murine hindlimb ischemia model (Deng

et al., 2016). Systemic MSC therapy may also improve pancreatic

islet b-cell regeneration to increase insulin production in T1D mice.

The subcutaneously transplanted MSCs show long-distance

chemotactic and inductive activity on recipient HSCs to form

analog BM elements with ectopic hematopoiesis, which can

rescue lethally irradiated mice and alleviate aging-related

phenotypes in immunocompromised mice. These functional

recoveries of endogenous stem cells, together with those observed

in BMMSCs, are primarily attributed to the paracrine effects of

donor MSCs, rather than their prolonged engraftment in recipient

tissues (Liu S. et al., 2015; Deng et al., 2016; Rahmani et al., 2020; Ma

et al., 2021; Xiao et al., 2021).

In summary, the above result revealed the extensive efficacy of

MSC therapy based on cell-host interplay to trigger intensive

restoration of recipient function (Figure 2). These effects,

particularly the persistent functional recovery of recipient cells

observed in systemic MSC therapy, suggest the existence of

critical molecular alterations that mediate the long-term

detectable therapeutic benefits.
6 Conclusions and future perspectives

The promise of stem cell therapy in regenerating damaged

tissues and restoring organismal homeostasis in aging and diseases

has prompted thousands of clinical trials including > 700 that

employ MSCs. This relies on critical molecular mechanisms.

Moreover, in the future, specific interaction mechanisms will be

based on the paracrine mode of action, and the study of the effects

of EVs will become a hot topic in this field.

MSC therapy is a hot topic based on its current translational

application and MSCs have recently been listed as promising drugs

for the treatment of COVID-19, thus demonstrating their

important role in the treatment of inflammatory and immune

diseases. However, the feasibility and safety of MSCs have only

been tested, and there is a lack of sufficient evidence on their

therapeutic efficacy, particularly with regard to the lack of clear

evidence to fully characterize their potential therapeutic sequelae.

Although some MSCs have been shown to be safe and effective for

clinical use, it is uncertain whether this can be extended to other

tissues. Their therapeutic risks are mainly focused on their

heterogeneity and on the initiation and promotion of tumor

production; however exosomes have been shown to circumvent

these concerns and are safer to use in clinical regeneration. In

conclusion, extensive study is still required before MSCs can be used

in a manner and extended to wider clinical applications.
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