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Dental biofilms are highly assembled microbial communities surrounded by an

extracellular matrix, which protects the resident microbes. The microbes,

including commensal bacteria and opportunistic pathogens, coexist with each

other to maintain relative balance under healthy conditions. However, under

hostile conditions such as sugar intake and poor oral care, biofilms can generate

excessive acids. Prolonged low pH in biofilm increases proportions of acidogenic

and aciduric microbes, which breaks the ecological equilibrium and finally causes

dental caries. Given the complexity of oral microenvironment, controlling the

acidic biofilms using antimicrobials that are activated at low pH could be a

desirable approach to control dental caries. Therefore, recent researches have

focused on designing novel kinds of pH-activated strategies, including pH-

responsive antimicrobial agents and pH-sensitive drug delivery systems. These

agents exert antibacterial properties only under low pH conditions, so they are

able to disrupt acidic biofilms without breaking the neutral microenvironment

and biodiversity in the mouth. The mechanisms of low pH activation are mainly

based on protonation and deprotonation reactions, acids labile linkages, and H+-

triggered reactive oxygen species production. This review summarized pH-

activated antibiofilm strategies to control dental caries, concentrating on their

effect, mechanisms of action, and biocompatibility, as well as the limitation of

current research and the prospects for future study.

KEYWORDS

biofilm, pH-responsive, antibiofilm agents, drug delivery systems, dental caries,
Streptococcus mutans
1 Introduction

Oral biofilms are highly assembled microbial communities surrounded by an

extracellular matrix (Bowen et al., 2018). After saliva glycoproteins cling to the tooth

surface, oral microorganisms begin to gather and adhere, and form an orderly structured

community wrapped in the extracellular matrix (Marsh et al., 2016). Under normal
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conditions, the resident microbes, including commensal bacteria

and opportunistic pathogens, coexist with each other to maintain

relative dynamic balance, which plays an essential role in oral and

whole-body health (Gao et al., 2018; Rosier et al., 2018). However,

under hostile conditions such as high-carbonhydrate diet and poor

oral hygiene, glycometabolic microorganisms in the biofilms can

generate excessive organic acids from diet through a fermentation

process (Simón-Soro and Mira, 2015; Hajishengallis et al., 2017).

The organic acids are confined in the local biofilm by extracellular

matrix, creating acidic niches (Benoit et al., 2019). The acidic

environment affects the metabolic activity of oral microorganisms

and exhibits an acid-induced selection, increasing the proportions

of acidogenic and aciduric bacteria, such as Streptococcus mutans (S.

mutans), the major cariogenic bacteria (Takahashi and Nyvad,

2011). Dental caries start with the break of the oral eubiosis,

shifting from commensal biofilm to cariogenic biofilm with

abundant acidogenic and aciduric microbes (Selwitz et al., 2007;

Pitts et al., 2017; Tanner et al., 2018). There is a prolonged drop in

pH value of cariogenic biofilm, leading to demineralization of

dental hard tissue and development of dental caries when the

value falls below 5.5 and lower (Margolis et al., 1999; Selwitz

et al., 2007; Pitts et al., 2017; Xu et al., 2022b). Study confirmed

that the pH at active caries niches was reduced to about 4.5 - 5.5

(Bowen, 2013). Therefore, it is tremendous significance to control

acidic biofilm to prevent and treat dental caries.

Despite remarkable progress in the prevention of dental caries,

especially with the application of fluoride, controlling acidic dental

biofilms is still associated with serious challenges (Liu et al., 2018).

Compared with planktonic bacteria, pathogens in the established

biofilm are protected by extracellular matrix barriers (Kuang et al.,

2018). Conventional drugs are incapable of degrading the matrix,

resulting in far less effective against preformed acidic biofilm.

Moreover, conventional broad-spectrum antimicrobials, such as

chlorhexidine (CHX), kill oral microorganism effectively without

selectivity, bringing challenges to long-term therapeutic use (Zhang

et al., 2022a). Frequent use of antibacterial strategies without

selectivity would potentially damage the ecological balance, which

increases possibility of reinfection by opportunistic pathogens (Guo

et al., 2015).

Efforts have been made to develop novel strategies to deal with

these problems, including the following: 1) killing cariogenic

pathogens specifical ly by S. mutans-specific targeting

antimicrobial agents (Guo et al., 2015; Huo et al., 2018; Xiang

et al., 2019); 2) modulating the biofilm pH via alkali production by

alkali-producing bacteria to protect against plaque acidification and

further dominance of cariogenic bacteria that thrive in acidic

conditions (Liu et al., 2012); 3) digesting the protective

extracellular matrix via enzymes to facilitate penetrability of

antibacterial agent into mature biofilms (Gao et al., 2016; Liu

et al., 2016); and 4) activating antimicrobial capacity smartly by

components that can be activated by ambient stimuli (Gupta et al.,

2002; Kost and Langer, 2012). Various stimuli are applied in

stimuli-triggered antimicrobial strategies, such as thermal (Gopal

et al., 2016; Imai et al., 2018), pressure (Montoya et al., 2021) and

pH (Chen et al., 2022). pH is closely related to caries development,

that is, dental hard tissues demineralize once the ambient pH
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continuously drops below 5.5. As mentioned above, the pH of

local niches of caries is about 4.5 - 5.5, while in the physiological

conditions, salivary pH range 6.2 - 7.6 (Baliga et al., 2013).

Therefore, acidic pH is the most promising stimuli that can be

used to combat cariogenic biofilm smartly. Acidic-triggered

strategies show antibacterial effect only under acidic conditions

and do not function under neutral physiological conditions,

exhibiting ability to maintain oral microecological homeostasis

(Liu et al., 2018; Liang et al., 2020). In recent years, acidic-

triggered strategies have attracted more and more attention in the

prevention and treatment of caries, based on keeping balance and

biodiversity of oral microecology (Liang et al., 2020; Naksagoon

et al., 2021). This review summarizes the research progress of pH-

responsive antibiofilm strategies to control dental caires in recent

years, mainly focusing on antibiofilm effect, antimicrobial

mechanism and biocompatibility, as well as the limitation of

current research and the prospects for future research, in an

attempt to provide reference for subsequent study.
2 pH-responsive antibiofilm strategies

The pH-activated antibiofilm strategy enhances the selectivity

and efficacy of antimicrobial agents. Recent researches have focused

on designing novel pH-activated strategies to control dental caries,

including pH-responsive antimicrobial agents and pH-sensitive

drug delivery systems.
2.1 pH-responsive antibiofilm agents

Several pH-responsive antibiofilm agents have been generated

to inhibit the formation and development of cariogenic biofilm, and

disrupt the unbalanced microbial composition. The agents include:

1) pH-responsive antimicrobial peptides; 2) organic compounds

with amine groups; 3) iron oxide nanoparticles with peroxidase-like

activity (Table 1).

2.1.1 pH-responsive antimicrobial peptides
Antimicrobial peptides (AMPs), a kind of pervasive natural

peptides, exert the ability of antibiosis and antivirus and are present

in both plants and animals as potent antibiotics for the inherent

immune system (Zasloff, 2002; Reddy et al., 2004; Harris et al.,

2009). These peptides have been reported to show the ability to

inhibit the formation and development of pathogenic biofilm (Luo

and Song, 2021), indicating that AMPs may be a promising

antibiofilm strategy for dental caries control. Besides, AMPs are

less likely to induce drug resistance since they target almost non-

specific modes at multiple sites on microbial membranes (Malik et

al., 2016; Steinbuch and Fridman, 2016). However, non-specific

targeting to oral microorganism would potentially lead to ecological

dysbiosis, which increases possibility of opportunistic infections

(Eckert et al., 2006). In order to increase selectivity of AMPs,

researchers developed novel kinds of AMPs with a targeting

domain and an antimicrobial domain, such as C16G2 and C10-

KKWW, which can selectively target S. mutans and kill them
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effectively (Guo et al., 2015; Xiang et al., 2019). These peptides exert

efficacy in not only cariogenic but also healthy niches. Another

strategy is pH-activated AMPs, which exert potent antimicrobial

efficiency only in acidic environment and do not function under

neutral physiological conditions, exhibiting ability to maintain oral

microecological homeostasis (Liu et al., 2018; Liang et al., 2020).

Some natural peptides have pH-responsive properties, and a

number of researchers focus on designing novel pH-activated

antimicrobial peptides.

Histatins, isolated from the human parotid salivary gland in

1988, is a group of pH-activated peptides rich in histidine residues

(Fabian et al., 2012; Krzyściak et al., 2015; Khurshid et al., 2017).

The antifungal activity of histatin-3 and histatin-5 have been proven

to be enhanced by acidic pH (Mochon and Liu, 2008), and histatin-

5 exhibits the ability to inhibit the formation of S. mutans biofilm
Frontiers in Cellular and Infection Microbiology 03
(Krzyściak et al., 2015). Kappacin, another natural antibacterial

peptide, is the active form of Caseinomacropeptide, a heterogeneous

C-terminal fragment from bovine milk (Malkoski et al., 2001).

Kappacin has been proven to exhibit the antibacterial activity of

inhibiting the growth of Gram-negative and Gram-positive bacteria

in oral cavity, including S. mutans, Porphyromonas gingivalis (P.

gingivalis) and Actinomyces naeslundii (A. naeslundii),which are

components of supra gingival dental plaque (Malkoski et al., 2001;

Dashper et al., 2007). An increase in antimicrobial activity against S.

mutans and A. naeslundii has discovered under mildly

acidic conditions.

Peptide pHly-1 forms into nanofibers at physiological pH, but

can generate coil-helix conformation and turn into nanoparticles

under an acid environment (Zhang et al., 2022a). It has been

confirmed that pHly-1 nanoparticles were capable of suppressing
TABLE 1 pH-responsive antibiofilm agents to control acidic biofilm.

Class

pH respon-
sive

antibiofilm
agents

Antibiofilm activity Mechanisms of action Toxicity Assay Author, year

Antimicrobial
peptide

Histatins-5
Inhibit the formation of S. mutans
biofilm

Protonation of histidine residues
under acid environment

– In vitro

(Mochon and
Liu, 2008;
Krzyściak et al.,
2015)

Antimicrobial
peptide

Kappacin
Inhibit the growth of S. mutans, P.
gingivalis and A. naeslundii

Membranolytic action at acidic
pH

– In vitro
(Malkoski et al.,
2001; Dashper
et al., 2007)

Antibacterial
peptide
nanoparticles

pHly-1 NPs
Inhibit formation of EPS and S.
mutans biofilm and development of
S. mutans biofilm

Via protonation of the histidine
at low pH, peptide pHly-1
adopts random coil-helix
conformation at low pH and
forms nanoparticles

Low toxicity on the
normal oral and
gastric tissues

In vitro
& in
vivo

(Zhang et al.,
2022a)

Antimicrobial
peptide

AAPs
Inhibit the growth of S. mutans
within the biofilm community

Via protonation of histidine
residues at low pH, AAPs
undergo a transition from a
helical conformation to a
random coil

– In vitro
(Clark et al.,
2021)

Antimicrobial
peptide

GH12

Inhibit formation of EPS, water-
insoluble glucan, and lactic acid in
S. mutans biofilm as well as killing
S. mutans within the multispecies
biofilm

Due to protonation of histidine
residues under acid
environment, GH12 forms an
amphipathic a-helix

Negligible cytotoxicity
to human gingival
fibroblast cells

In vitro

(Tu et al., 2016;
Wang et al.,
2017; Jiang et al.,
2018; Jiang et al.,
2021)

Antimicrobial
peptide

LH12

Inhibit virulence and growth of
cariogenic pathogens, as well as
enhancing the competitiveness of
commercial bacteria in the mixed-
species microbiota

Via protonation of histidine
residues under acid
environment, LH12 forms an
amphipathic a-helix

Show slight
cytotoxicity to human
gingival epithelial cells
at a high concentration
of 128 mg/mL

In vitro
(Jiang et al.,
2022)

Quaternary
pyridinium
salt

Azo-QPS-C16
Inhibit acid-producing bacteria in
multispecies biofilm

Weakly acid Azo-QPS-C16 and
bases can assemble into inactive
agglomerate at neutral pH, but
the agglomerate will collapse at
low pH

– In vitro
(Yang et al.,
2018)

Tertiary
amine

DMAEM
HMAEM

Inhibit formation of EPS and S.
mutans biofilm and regulate oral
microecological balance

Protonation of amine groups in
tertiary amine under acid
environment

Low cytotoxicity to
human oral
keratinocyte cells

In vitro
& in
vivo

(Liang et al.,
2020; Shi et al.,
2022)

Nanoparticles
Iron oxide
nanoparticles

Kill bacteria in biofilm and break
down EPS

The peroxidase-like activity of
iron oxide nanoparticles

High biocompatibility
In vitro
& in
vivo

(Gao et al.,
2016)
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both formation and development of S. mutans biofilm at acidic pH,

while negligible antibiofilm activity was found at neutral pH. The

minimum inhibition concentration (MIC) and minimum

bactericidal concentration (MBC) of pHly-1 nanoparticles against

S. mutans were estimated to be 5.5 mM and 6.7 mM at pH 5.5, but >

44 mM and > 22 mM at pH 7.0, respectively. Besides, the agent

exerted potent effects in inhibiting bacterial clusters and the

formation of extracellular polymeric substances (EPS) in the

preformed biofilms at pH 4.5 while negligible effects were

observed at pH 7. Furthermore, initial, moderate, and severe

dental caries lesions were significantly decreased by the use of

pHly-1 NPs in the animal study with a rat carious model. It is worth

mentioning that pHly-1 NPs exhibited a better anticaries effect than

CHX in vivo.

Clavanins are a kind of a-helical amphipathic antimicrobial

peptide with 23 amino acid residues, which were firstly purified

from hemocytes of the invertebrate styela clava. It was found that

Clavanin A was rich in both histidine and phenylalanine residues

and had broad-spectrum antibacterial properties (Lee et al., 1997b).

When the pH drops, the protonation of histidine residues enhances

the ability to target bacterial membranes. At the same time,

phenylalanine residues enable the AMP to form a flexible and

hydrophobic structure to facilitate the interaction with membrane

lipids (Lee et al., 1997a; van Kan et al., 2002; van Kan et al., 2003a;

van Kan et al., 2003b). According to the structure of Clavanin A,

two acid-activated peptides (AAPs), named AAP1 and AAP2, were

designed to combat dental caries (Clark et al., 2021). It appeared

that AAPs performed a more potent antibacterial ability than

Clavanin A under a low pH value while overcoming Clavanin A’s

shortcoming of exhibiting antimicrobial efficacy at neutral pH.

APP2 exerted more potent antibacterial activity at pH 5 than

AAP1. In the test against microbes in S. mutans biofilms, AAP2

showed the potential to reduce the acid-producing flora within the

biofilm community.

Inspired by the template (XXYY)n (X refers to a hydrophobic

residue, Y refers to a hydrophilic residue, and n refers to the number

of repeats) proposed byWiradharma et al. as an appropriate structure

of amphipathic, cationic a-helical AMPs, Wang et al. designed a

peptide with 12 amino acid residues called GH12 against cariogenic

bacteria (Wiradharma et al., 2011; Wang et al., 2017). Study showed

that GH12 had much lower MIC against dental caries-associated

bacteria (S. mutans, Streptococcus sanguinis, Streptococcus gordonii (S.

gordonii), Streptococcus mitis, Streptococcus salivarius, Streptococcus

sobrinus, Actinomyces viscosus, Actinomyces naeslundii, Lactobacillus

acidophilus, Lactobacillus casei, and Lactobacillus fermentum) at pH

5.5 than at pH 7.2. The production of EPS component, water-

insoluble glucan synthesis, and lactic acid in preformed S. mutans

biofilm was also inhibited by GH12, and the inhibitory effects

increased when pH dropped from 7.2 to 5.5 (Jiang et al., 2021). In

addition to suppressing the formation and viability of S. mutans

biofilm at pH 5.5, GH12 exhibited different antibacterial effect in

killing different bacterial species in multispecies biofilm, which

indicates that GH12 have the ability to change the microbiota

composition of cariogenic biofilm (Jiang et al., 2018).
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Another cationic amphiphilic a-helical AMP, named LH12,

was also designed based on the (XXYY)n formula (Jiang et al.,

2022). LH12 exhibited stronger antimicrobial activity against S.

mutans in response to acidic environment. MIC and MBC of LH12

against S. mutans were about 12mg/ml and 16mg/ml at pH 5.5, but

21mg/ml and 32mg/ml at pH 7.2. In addition to kill S. mutans, 16 mg/
mL and 32 mg/mL LH12 could reduce the production of lactic acid

and EPS, as well as completely suppressing the biofilm formation.

Furthermore, in the dual-species biofilm model, the proportion of S.

gordonii was increased while the proportion of S. mutans was

decreased, which indicated that LH12 could regulate the

microbial composition.

2.1.2 Organic compounds with amine groups
A novel quaternary pyridinium salt with pH-controlled activity,

(E)-1-hexadecyl-4-((4-(methacryloyloxy)phenyl)diazenyl)-

pyridinium bromide (Azo-QPS-C16), was designed to curb the

growth of acid-producing microbes (Yang et al., 2018). An 8-fold

difference in efficacy against S.mutans was observed in acidic

solutions than in neutral solutions. Via the saliva-derived

multispecies biofilm model containing Enterobacter spp.,

Klebsiella spp. and Streptococcus spp., the ability of Azo-QPS-C16

to kill or inhibit acid-producing bacteria was monitored. The result

showed that Azo-QPS-C16 could selectively eliminated sucrose-

fermenting, acidogenic bacteria in biofilm while increasing the

biomass of commensals. It is worth noting that the application of

Azo-QPS-C16 was able to maintain the pH of culturing solutions

above 5.5, below which demineralization of dental enamel happens

(Kleinberg, 2002).

Liang et al. designed and synthesized two kinds of tertiary amine

(TA) monomers: DMAEM (dodecylmethylaminoethyl methacrylate)

and HMAEM (hexadecylmethylaminoethyl methacrylate). TheMICs

of DMAEM and HMAEM against the Streptococci species ranged

from 0.18 to 5.95 mg/mL and 0.2 to 0.8 mg/mL, respectively at pH 5.0,

while no antibacterial effect was detected even at the concentration up

to 13.5 mg/ml at pH 7.0. Aimed at inhibiting secondary caries, the

TAs with pH responsiveness were incorporated into adhesive resins,

getting the TA-modified resin adhesives (TA@RAs) (Liang et al.,

2020). There was no significant difference in antibiofilm activity

between DMAEM@RAs and HMAEM@RAs. However, the pH of

DMAEM@RAs and HMAEM@RAs when they started to exert

antibacterial efficacy was 5.3 ± 0.03 and 4.1 ± 0.01, respectively,

indicating that DMAEM-modified resin adhesives are more sensitive

to pH than resin adhesives modified by HMAEM. Researchers in the

same group further explored the antimicrobial effect of DMAEA@RA

on dual-species biofilms of S. mutans and Candida albicans to

prevent secondary caries (Shi et al., 2022). Results showed that

DMAEM@RA were capable of inhibiting the development of dual-

species biofilms as well as suppressing the production of EPS and acid

when pH was below 5.5, while those activities at pH 6.0 were similar

to negative control groups. Via down-regulating the expression of

pH-regulated genes, virulence-associated, and cariogenic genes,

DMAEA@RAs could reduce the mineral loss of teeth both in vitro

and in vivo in a pH-dependent manner.
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2.1.3 Iron oxide nanoparticles with peroxidase-
like activity

Iron oxide nanoparticles, having been regarded as nanozymes,

exert intrinsic enzyme mimetic efficiency to activate H2O2 which is

similar to peroxidases (Gao et al., 2007). The nanoparticles have

attracted great attention due to their antibacterial, antifungal, and

anticancer abilities and low toxicity to human body (Dadfar et al.,

2019). Gao et al. synthesized catalytic iron oxide nanoparticles (CAT-

NP) containing Fe3O4 and found that there was an increase in catalytic

efficiency of CAT-NP when pH dropped from 6.5 to 4.5 (Gao et al.,

2016). CAT-NP exhibited potent efficacy to induce extracellular matrix

degradation and kill bacteria within the acidic microenvironment of

cariogenic biofilm. Moreover, it possessed an additional pH-dependent

mechanism to control dental caries by directly decreasing the

demineralization of enamel in acidic environment. A kind of

dextran-coated iron oxide nanoparticles termed nanozymes (Dex-

NZM) was designed to specifically target biofilms (Naha et al., 2019).

Dextran, a polysaccharide with low toxicity, can be embedded into the

matrix of growing biofilms by bacterial exoenzymes, resulting in high

selectivity toward biofilms (Gibbons and Banghart, 1967; Xiao et al.,

2012). Compared with uncoated NZM, Dex-NZM displayed a better

role in controlling dental biofilms at pH 4.5. To go a step further,

Huang et al. combined glucose oxidase (GOx) with dextran-coated iron

oxide nanoparticles (Dex-IONP) (Huang et al., 2021). GOx can

catalyze glucose in cariogenic biofilms to generate H2O2, which

facilitates the pH-dependent production of reactive oxygen species

(ROS) by Dex-IONP. Dex-IONP-GOx displayed greater catalytic

activity at pH 4.5 and 5.5 than at pH 6.5. In the in vitro test with a

mixed-species biofilm model, Dex-IONP-GOx was confirmed to

inhibit the cariogenic S. mutans potently, but with negligible effects

against the commensal Streptococcus oralis.
2.2 pH-responsive drug delivery systems

The downside of traditional antimicrobial drugs, such as fanasol

and CHX, is the toxicity or side effects caused by low selectivity.

Killing microorganisms without selectivity reduces the diversity of

microbial communities, thus destroying the ecological balance of

microbial communities and bringing great challenges for clinical

treatment. Therefore, great importance has been attached to

strategies by which drugs are delivered without disrupting the

internal oral environment. Acid-triggered drug delivery systems

are able to deliver the drug to acidogenic biofilms effectively without

disrupting the commensal biofilms. The carriers used to fabricate

pH-activated drug release systems often contain a specific

functional group, which can respond to changes in the pH of the

ambient environment. The mechanisms by which carriers respond

to pHmainly includes the charge shifting of pH-responsive residues

and the degradation of acid-degradable residues (Deirram et al.,

2019) (Figure 1; Table 2).

2.2.1 pH-responsive charge and/or hydrophilicity
shifting systems

To equip carriers with pH-dependent activity, one strategy is to

add moieties that can change charge and/or hydrophilicity when pH
Frontiers in Cellular and Infection Microbiology 05
decreases. The acidic pH can trigger the protonation of those groups

or the change from hydrophobicity to hydrophilicity of polymers,

which leads to the degradation of carriers and the release of drugs

(Deirram et al., 2019). In some cases, polymers are self-assembled

into cationic hydrophilic exteriors and pH-responsive hydrophobic

interiors. When pH decreases below their pKa, the inner groups

become hydrophilic and the carriers cleave (Horev et al., 2015; Zhou

et al., 2016; Zhang et al., 2021).

A kind of 21 nm, self-assembly cationic nanoparticles

encapsulating farnesols were designed to achieve pH-responsive

drug release and selective oral biofilm disruption (Horev et al., 2015;

Zhou et al., 2016; Sims et al., 2018). The nanoparticles, consisting of

2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl

methacrylate (BMA), and 2-propylacrylic acid (PAA) (p

(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)), overcame the

hydrophobicity-related bad effect of farnesols in conventional

treatments against oral biofilms. The nanoparticle generated

higher binding affinities to pellicle and EPS at acidic pH than

physiological conditions and enhanced the antibiofilm activity of

farnesol via promoting drug localization. Farnesol release rate at pH

4.5 was twice as fast as the rate at pH 7.2, indicating that farnesol

release was activated by acidic pH. Compared to solely farnesol, 4-

fold enhancement was discovered in S. mutans biofilms disruption

in drug-loaded nanoparticles group at pH 4.5. The drug-loaded

nanoparticles group compromised the mechanical stability of

biofilms, thus displaying more than 2-fold biofilm removal ability

compared to free farnesol when exposed to shear stress (Horev

et al., 2015).

Zhou et al. synthesized pH-activated, doxycycline (DOX)-

loaded nanoparticles that contained N,N,N-trimethyl chitosan

(TMC) and liposomes (Lips) (Zhou et al., 2018). The data

displayed that DOX release half-life was 0.75 h at pH 4.5, yet

2.3 h at pH 6.8. In addition to releasing the DOX, TMC processed

an antibacterial effect itself. Hu et al. tested the antibiofilm activity

of this nanoparticle and results indicated that TMC-Lip-DOX

nanoparticles disrupted the biofilm architecture and reduced the

number of bacteria significantly, compared with TMC group and

DOX group (Hu et al., 2019). Both in vivo and in vitro tests showed

that the nanoparticles were able to inhibit dental plaque effectively

and had nontoxicity.

Glycol chitosan with pH-activated charge inversion is able to

target acidic bacterial infection sites and exhibits better

antimicrobial efficiency (Yu et al., 2019; Yan et al., 2020). Based

on this, a novel kind of photothermal antimicrobial nanoagent with

pH responsiveness, named FePAgPG, was synthesized (Xu et al.,

2022a). Fe3O4 nanoparticles were modified by Ag and two

polydopamine layers in sequence and then wrapped with glycol

chitosan. When pH decreased, the zeta potential of FePAgPG

shifted from anionic (-24.57 ± 1.31 mV) to cationic value (7.89 ±

0.48 mV) due to the protonation of glycol chitosan. Thus, at acidic

pH, the positively charged nanoparticles could better attach to

negative S. mutans and 1.7-fold enhancements in efficacy against

S. mutans was observed at pH 5.4 than at pH 7.4. Via infrared

irradiation at low temperature, FePAgPG nanoparticles exerted a

potent antimicrobial rate of over 95% against planktonic S. mutans

and inhibited the formation of S. mutans biofilm.
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Sun et al. designed a pH-responsive hydrogel coating which

loaded antimicrobial peptides to capture and kill microbes. The pH-

r e s pon s i v e c o a t i n g , c a r boxyb e t a i n e me th a c r y l a t e -

dimethylaminoethyl methacrylate copolymer p(CBMA-co-

DMAEMA), could capture bacteria and release antimicrobial

peptides simultaneously, performing as a smart hunter (Sun et al.,

2022). Zeta potentials of the surface shifted from -0.79 mV at pH 7

to 4.07 mV, 8.05 mV and 54.03 mV at pH 6, 5 and 4 respectively.

When pH changed from 7.0 to 5.5, the number of dead bacteria on

hydrogel layers loaded with antimicrobial peptides increase. The

result indicated that the pH-activated capture of hydrogel layers

mainly relied on cationic surface charge.

In order to inhibit cariogenic biofilms, Peng et al. designed a

novel CHX-loaded pH-sensitive nanoparticle (p(DH)@CHX),

composed of DMAEMA and hydroxyethyl methacrylate (HEMA)

(Peng et al., 2022). According to data, the release of CHX was stable

with low volume over time under physiological conditions, yet

increased gradually at the acidic pH. In the test against cariogenic

biofilm, researchers found that both p(DH)@CHX and CHX were

capable of inhibiting the lactic acid production by biofilms, and no

significant difference was found in the lactic acid production. CHX,

an antibacterial agent with pronounced cytotoxicity while

continuously used, exerted lower cytotoxicity against human oral

keratinocytes when loaded into nanoparticles. Besides, p(DH)

@CHX showed no effect on healthy saliva-derived biofilm while
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exhibiting the same antimicrobial activities as free CHX on

cariogenic biofilm.

An antibacterial agent, bedaquiline, exhibits high effects on

killing planktonic bacteria but have limited efficacy in removing

mature biofilm (Flemming et al., 2016; Bowen et al., 2018; Zhang

et al., 2021). In order to improve permeability of bedaquiline to

mature biofilm, Zhang et al. synthesized a novel pH-activated nano

micelle, core-shell nano micelle (mPEG-b-PDPA), for loading

hydrophobic antibacterial agents (Zhang et al., 2021). The release

rate of bedaquiline was very gentle at pH 7, with about 35% in the

first 12 h, while the amount released within 3 h reached 92.2% at pH

5. It has been confirmed that the bedaquiline-loaded micelles

system could inhibit S. mutans biofilm formation and take

antimicrobial effect against mature S. mutans biofilm.

2.2.2 pH-responsive systems with acid-
degradable linkages

A simple and compelling strategy to design pH responsive

polymers is to design nanocarriers including pH-responsive

linkages with stabilization at neutral pH and activity at acidic pH.

Those linkages mainly incorporate hydrazone linkages with ketone/

aldehyde and hydrazide; imine linkages with an aldehyde (ketone)

and amine; maleic acid amide linkages with amine and maleic

anhydride; ortho ester linkages with alcohols and formate or ester

(Deirram et al., 2019).
FIGURE 1

Acid-triggered drug delivery systems deliver the drug to acidogenic biofilms effectively.
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Aimed at reducing the side effect caused by the low selectivity of

CHX, Zhao et al. designed a type of pH-responsive polymer that

could release CHX in acid niches of cariogenic biofilms (Zhao et al.,

2019). The whole system was named CA-PICMs. CHX was

encapsulated in the core-shell polyionic complex micelles

(PICMs) which were composed of cationic poly(ethylene glycol)-

block-poly(2-((2-aminoethyl)carbamoyl)oxy)ethyl methacrylate

(PEG-b-PAECOEMA) and anionic citraconic anhydride (CA).

The citraconic amide is acid-degradable, and PEG block promotes

the stability of the structure regardless of enzyme, pH, and

temperature (Harris and Chess, 2003; Osada et al., 2005). While

CA-PICMs reduced the toxicity of CHX, there was no statistical

difference in antibacterial effects against S. mutans biofilms between
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CA-PICMs and CHX, which indicates that the polymers may be a

promising approach for dental caries therapy (Zhao et al., 2019).

In order to combat tooth decay and enhance enamel

res torat ion , Xu et a l . synthes ized the mice l lars , 3-

maleimidopropionic acid-poly(ethyleneglycol)-block-poly(L-

lysine)/phyenylboronic acid (MAL-PEG-b-PLL/PBA), which

contained pH-cleavable boronate ester bond (Xu et al., 2022b).

The antibacterial agent tannic acid, NaF, and salivary-acquired

peptide (SAP) were conjugated with MAL-PEG-b-PLL/PBA to

form PMs@NaF-SAP. PMs@NaF-SAP exerted better performance

against S. mutans biofilm under acidic environment, since there was

an increase in drug release when pH dropped. When pH reached 5,

the antibacterial potency of PMs@NaF-SAP was stronger than the
TABLE 2 pH-responsive drug delivery systems to control acidic biofilm.

Nanocarriers Drug Antibiofilm activity Mechanisms of
action Toxicity Assay Author,

year

p(DMAEMA)-
b-p(DMAEMA-
co-BMA-co-
PAA)

Farnesol
Nanoparticles generate high binding affinities to
pellicle and EPS surfaces and enhance
antibiofilm activity of farnesol

Protonation of tertiary
amines in DMAEMA
and carboxyl groups in
PAA at acidic pH

–

In vitro
& in
vivo

(Horev et al.,
2015; Zhou
et al., 2016;
Sims et al.,
2018)

TMC-Lip
nanoparticles

Doxycycline
Nanoparticles disrupt the biofilm architecture
and reduce the number of bacteria significantly

Protonation of amino
groups

Good
cytocompatibility on
human periodontal
ligament fibroblasts

In vitro
& in
vivo

(Zhou et al.,
2018; Hu et al.,
2019)

FePAgPG Ag
Nanoparticles inhibit the formation of S. mutans
biofilm

Protonation of amino
groups in glycol
chitosan

Good
biocompatibility on
human oral
keratinocytes cells

In vitro
(Xu et al.,
2022a)

p(CBMA-co-
DMAEMA)

pH-
switchable
antibacterial
octapeptides

The positively charged surface is able to capture
cariogenic bacteria under acid environment and
when pH decrease, the number of dead bacteria
on hydrogel layers increase

Protonation of carboxyl
groups in CMBA and
tertiary amines in
DMAEMA at low pH

Good
biocompatibility on
human oral
keratinocyte cells

In vitro
(Sun et al.,
2022)

poly
(DMAEMA-co-
HEMA)

Chlorhexidine
The whole system exhibits the same
antimicrobial activities as free chlorhexidine on
cariogenic biofilm

Protonation of tertiary
amines in DMAEMA at
low pH

Lower the
cytotoxicity of
chlorhexidine
against human oral
keratinocytes

In vitro
(Peng et al.,
2022)

mPEG-b-PDPA Bedaquiline Inhibit S. mutans biofilm formation

Protonation of amine
groups in PDPA
segments under acid
environment

No significant
cytotoxicity

In vitro
(Zhang et al.,
2021)

PEG-b-
PAECOEMA/
CA

Chlorhexidine
Respond to acid microenvironments of
cariogenic biofilms and rapidly release
chlorhexidine for efficient bacteria killing.

Degradation of
citraconic amide groups
at low pH

The carrier reduces
the toxic of
chlorhexidine

In vitro
(Zhao et al.,
2019)

MAL-PEG-b-
PLL/PBA

Tannic acid
& sodium
fluoride

PMs@NaF-SAP can suppress the growth of S.
mutans biofilm and inhibit demineralization and
facilitates remineralization in enamel slices

Cleavage of boronate
ester bonds

The system exhibits
much lower
cytotoxicity than
chlorhexidine

In vitro
& in
vivo

(Xu et al.,
2022b)

PPi-Far-PMs Farnesal
PPi-Far-PMs can inhibit the growth of S.
mutans both in vivo and in vitro

Cleavage of hydrazone
bonds

–

In vitro
& in
vivo

(Yi et al., 2020)

MSNs
Ag ions &
chlorhexidine

Inhibit growth of S. mutans and S. mutans
biofilm formation

Cleavage of disulfide
bonds

Significantly reduce
the toxicity of
chlorhexidine

In vitro
& in
vivo

(Yue et al.,
2018)

ZnO2-Cu@RB
NPs

Rose Bengal
Kill S. mutans in cariogenic biofilm and
suppress the formation of EPS

Fenton reaction – In vitro
(Zhang et al.,
2022b)
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positive control treatment with CHX. In addition, PMs@NaF-SAP

showed a significant inhibitory on bacterial adhesion compared

with PMs@NaF, whilst NaF added inhibited demineralization and

facilitated remineralization in enamel slices.

Farnesal (Far) was conjugated to PEG via acid-sensitive

hydrazone bonds, which was then linked with pyrophosphate

(PPi) and encapsulated into polymeric micelles to form a novel

drug delivery system, PPi-Far-PMs (Yi et al., 2020). Far was released

from its carriers much faster under an acidic condition (pH 4.5)

than in a neutral environment (pH 7.4). PPi-Far-PMs could bind to

dental enamel rapidly and inhibit the growth of S. mutans, while the

antibacterial effects of free Far and farnesol groups showed no

obvious difference from negative control. The in vivo test showed

that PPi-Far-PMs facilitated the antibiofilm ability of Far, as well as

restoring the microarchitecture of teeth with caries.

Yue et al. synthesized a novel kind of mesoporous silica

nanoparticles (MSNs) with disulfide bonds introduced into the

silica framework, which improved the degradable ability faced with

environmental stimuli (Yue et al., 2018). To battle oral pathogens,

Lu et al. loaded these MSNs with silver and CHX to form a novel

kind of redox/pH dual-controlled nanoparticles (Lu et al., 2018). It

has been confirmed that Ag-MSNs@CHX exhibited a glutathione-

and pH-dependent release behavior of silver ions and CHX.

Compared with CHX, Ag-MSNs@CHX exerted a more effective

ability to inhibit the growth of S. mutans biofilms.

2.2.3 Others
Fenton reaction is a classical reaction that catalyzes H2O2 to

generate strong oxidizing hydroxyl radical (•OH) and other reactive

oxygen species under the effect of ferrous ion (Fe2+) (Pignatello

et al., 2006). It has been widely used to degrade organic matter that

is difficult to be removed in sewage. In recent years, Fenton and

Fenton-like reactions have been applied to other fields beyond the

ecological environment, such as Chemodynamic therapy (CDT).

CDT is a novel strategy to induce the apoptosis of cancer cells via

catalyzing H2O2 to produce •OH and other strong oxidizing active

species in the acidic microenvironment of tumor lesion areas (Li

et al., 2021b). Since the pH of the cariogenic microenvironment is

below physiological pH and ROS is capable of killing bacteria,

researchers applied Fenton and Fenton-like reactions to antibiofilm.

Based on Fenton and Fenton-like reaction, novel copper-doped zinc

peroxide nanoparticles with the antibacterial agent Rose Bengal

(ZnO2-Cu@RB NPs) were created (Zhang et al., 2022b). H2O2 can

be created by the reaction between ZnO2 and hydrogen ions (H+) in

the acid environment, which triggers the Fenton-like reaction

between Cu and H2O2. In-vitro results showed that ZnO2-Cu@RB

NPs performed potent inhibition against S.mutans in acidic biofilm.

Reduction in the demineralization of apatite and suppression in the

formation of EPS could also be found in vitro studies.
3 Mechanisms of action

Many antibacterial mechanisms of pH-responsive antibacterial

strategies have been proposed, and can be summarized into the

following three parts: (1) Protonation and deprotonation reactions.
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Protonation reactions can transform the charge and structure of

antimicrobial agents or drug carriers under an acid environment.

(2) Acid labile linkages. Those linkages can cleave at low pH,

contributing to the disassembly of carriers and drug release. (3)

H+-triggered ROS production. By generating ROS under low pH,

ROS productive systems can kill bacteria in cariogenic acidic

biofilm selectively with slight side effects (Deirram et al., 2019; Fu

et al., 2021) (Figure 2).
3.1 Protonation and deprotonation
reactions

Protonation is capturing protons to chemical species, such as

atoms, molecules, or ions at low pH, while deprotonation is

removing protons when pH increases. Properties of chemicals,

such as charge and hydrophilic, change after protonation or

deprotonation of specific groups. The low pH value in cariogenic

microenvironment can trigger the protonation of chemicals and

then result in the transformation of electric properties. In recent

years, based on protonation and deprotonation mechanism,

researchers have explored novel pH-activated antibiofilm

strategies for dental caries control.

Via protonation reaction, pH-responsive antimicrobial peptides

can change their electric properties and structures under low pH

conditions. Histidine residue is the pH-responsive reactive site of

most AMPs. Histidine is a basic amino acid with an imidazole side

chain that can rapidly accept or provide protons when pH changes

(Horch et al., 2014; Chen et al., 2019). The pKa of histidine is about

6.5, which is closest to the normal oral physiological pH among the

pKa of the 20 proteinogenic amino acids. Histidine is uncharged

with hydrophobicity at neutral pH but can be protonated and

turned into a hydrophilic residue when the ambient pH below its

pKa. Histidine has been widely utilized in the design of pH-sensitive

antimicrobial peptides. Via the protonation of histidine residues at

low pH, most antimicrobial peptides are positively charged and

form an amphipathic structure. Positive charge enhances their

binding ability to the anionic microbial cell membrane, and

amphipathic structure facilitates the peptides to form pores in

membrane bilayer or penetrate into cells to act on intracellular

target points (Bechinger and Gorr, 2017). Hydrophobic surfaces

help peptides insert into microbial membranes, mediating direct

membrane disruption, which can be stabilized by the interaction

between hydrophilic surfaces and the head group regions of the

membranes via electrostatic adsorption (Thaker et al., 2013; Xiong

et al., 2015). According to protonation reaction, scholars introduced

histidine residues into antibacterial peptides to prepare pH-

responsive antimicrobial peptide and carry out a series of studies.

Histatin-5 is one of eminent forms of human histatins, which

has been reported to have potent activity against Candida

organisms (Khurshid et al., 2017). Low pH can enhance the

positive charge of histatin-5 via protonation of histidine residues,

which facilitates the localization of histatin-5 on anionic

membranes, thereby inducing perturbations on the cell surface

that leads to a rapid translocation of the peptide into the

cytoplasm (Mochon and Liu, 2008). Unlike typical pore-forming
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peptides, histatin-5 influences cell membrane functions by acting on

intracellular targets. In addition, some researchers designed a novel

pH-dependent peptide pHly-1 based on the structure of Lycosin-I, a

cationic and amphiphilic peptide (Tan et al., 2013; Wang et al.,

2014c). Aimed at enduing the peptide with the pH-responsive

ability, researchers primarily exchanged lysine residues with

histidine residues which increases positive charge and

hydrophobicity of pHly-1; the anionic glutamic acid residues

within lycosin-I were replaced by neutral glutamine residues

which enabled pHly-1 to better interact with anionic microbial

membranes; to improve hydrophobicity for membrane disruption,

isoleucine with hydrophobicity substituted glycine and serine which

are more hydrophilic (Zhang et al., 2022a). Especially, compared

with the b-sheets and nanofibers structures at neutral pH, pHly-1

could adopt random coil-helix conformation and change into

nanoparticles which promotes membrane permeation when pH

decreased. Furthermore, inspired by the structure and pH-

dependent ability of Clavanin A, other researchers designed two

14 aa long acid-activated peptides (AAPs) rich in histidine and

phenylalanine residues to combat dental caries (Clark et al., 2021).

Via protonation of histidine residues at low pH, positive charges of

AAPs increased, and AAPs underwent a transition from a helical

conformation to a random coil. Although the explicit antimicrobial
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mechanism of AAPs is still unclear, the study confirmed that

antimicrobial activity was closely associated with the increase in

positive charges. Moreover, a 12 amino peptide, named GH12, with

a large proportion of histidine residues and leucine residues, was

synthesized (Wang et al., 2017). The protonation of histidine

residues at low pH increased net positive charge of GH12, which

led to the accumulation of cationic GH12 on negatively charged

bacterial surfaces. Via the protonation reaction of histidine residues

and increase of hydrophobicity around tryptophan sites, GH12

formed an amphipathic a-helix structure and killed bacteria by

forming pores on cell membranes (Jiang et al., 2021). Similar to

GH12, LH12 contains a histidine-rich sequence and can form an

amphipathic a-helix structure to perturb microbial membranes

(Jiang et al., 2022). Results showed that via reducing the gene

expression of lactate dehydrogenase, alpha-subunit of F-type

ATPase and glucosyltransferase, LH12 could inhibit acid

production and biofilm formation.

Second strategy based on the protonation and deprotonation

mechanism is the application of amine groups that exert switchable

protonation and deprotonation ability along with the

transformation of pH (Gannimani et al., 2020). Due to their pH

switchable ability, amine groups have been widely applied to the

design of antimicrobial agents. For example, DMAEM and
B

C

A

FIGURE 2

Mechanism of pH-activated antibacterial strategies: (A) Protonation and deprotonation reaction, (B) Acid labile linkages and (C) H+-triggered ROS
production.
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HMAEM, two novel kinds of tertiary amines, were incorporated

into resin to modify its pH-responsive antibacterial property.

DMAEM and HMAEM are composed of a long-chain alkane that

could insert into bacterial membranes, a tertiary amine group, and a

methacrylate-containing alkane. They have been confirmed to

exhibit acid-activated antimicrobial and anticaries effects (Liang

et al., 2020). In addition to the application in the design of

antimrobial agents, amine groups can be ionizable moieties in

drug delivery polymers, such as p(DMAEMA), trimethylamine,

and polydopamine. Some researchers used poly(DMAEMA-co-

HEMA) as a pH-sensitive drug carrier (Peng et al., 2022).

DMAEMA contains tertiary amine with switchable protonation/

deprotonation ability while responding to changes in pH (Brahim

et al., 2003). Besides, the pKa of DMAEMA (around 7.5) is close to

physiological pH. When pH is below the pKa, the monomer can be

protonated and undergo structural changes, thus leading to swelling

of the whole nanoparticle and delivery of drugs. HEMA, a

hydrophilic polymer, can induce hydrophilicity on hydrophobic

surfaces (Gulsen and Chauhan, 2005; Roointan et al., 2018).

Moreover, amine groups in chitosan can be protonated when pH

decreases (Yu et al., 2019; Yan et al., 2020). Researchers synthesized

TMC-Lip nanoparticles consisting of negatively charged liposomes

and positively charged TMC. Liposome, coated by TMC via

electrostatic adsorption effect, was used to encapsulate DOX. The

residual amines of TMC, as pH-responsive moieties, could

protonate at low pH, which led to the charges of TMC-Lip

nanoparticles shifting to the positive. The positive nanoparticles

were able to selectively target anionic microbial cell surfaces and

accumulate in biofilms. Besides, the protonation of TMC led to the

instability of nanoparticles and drug release (Verheul et al., 2008;

Mourya and Inamdar, 2009). Others grafted glycol chitosan with

polydopamine which coated on the surface of nanoparticles. Via the

protonation of amine groups in glycol chitosan at acid pH, the

negatively charged nanoparticles turned positive, resulting in

stronger adhesion with acidic biofilm (Xu et al., 2022a).

Furthermore, some other researchers synthesized a pH-responsive

core-shell nano micelle, mPEG-b-PDPA, which was capable of

loading Bedaquiline. At low pH (below 6), the protonation of

amine groups in PDPA segments shifted hydrophobicity in the

core to hydrophilicity, and the spherical nanostructure of the

micelle swelled and even disassembled, which resulted in drug

release (Zhang et al., 2021).

Polymers with carboxyl groups, such as PAA and

carboxybetaine methacrylate (CBMA), can also be protonated and

applied to designs of drug release systems. Based on this, p(CBMA-

co-DMAEMA) was fabricated as a pH-responsive hydrogel layer

(Sun et al., 2022). Due to the protonation/deprotonation of carboxyl

groups as pH changes, CBMA possesses the pH-activated property

(Shao and Jiang, 2015). The protonation of amine groups and

carboxyl groups in a carrier can exhibit synergistic pH-activated

effects, so DMAEMA was incorporated as a synergistic pH switch.

The protonation of the CBMA and DMAEMA at low pH accounted

for the positive charges of hydrogel surface, which can capture

negatively charged pathogens. With the transition of the layer’s

charge, the structure disassembles, accompanied by the release of

antibacterial octapeptides (Sun et al., 2022). It is worth mentioning
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that the octapeptide (Ac-Leu-Lys-Phe-Gln-Phe-His-Phe-Asp-NH2,

IKFQFHFD) also processes pH-responsive properties (Wang et al.,

2019). After the carboxylate groups were protonated, the

IKFQFHFD formed a cationic amphiphilic structure similar to

that of AMP, generating a potential pH-activated antimicrobial

effect. In addition, other researchers designed the p(DMAEMA)-b-

p(DMAEMA-co-BMA-co-PAA) that could self-assemble into ~21

nm cationic nanoparticles. The nanoparticle consisted of cationic

coronas, p(DMAEMA), and p(DMAEMA-co-BMA-co-PAA) cores,

which formed a structure with a hydrophilic surface and pH-

activated hydrophobic interior. At acidic pH, DMAEMA and

PAA residues protonated and the structure of carriers became

unstable, accounting for drug release. It has been confirmed that

cationic nanoparticles could selectively accumulate in the negatively

charged bacter ia l biofi lm surface and target anionic

microorganisms (Ng et al., 2013).
3.2 Acid labile linkages

In addition to mechanisms based on protonation and

deprotonation, pH-responsive antibiofilm systems with linkages

that are labile at acidic environment are other promising

strategies. pH responsive carriers incorporate citraconic amide,

boric acid ester, hydrazone, disulfide bond, acid-base reaction, or

ortho ester, into them as acid labile linkages, with which carriers are

able to degrade when pH decreases (Huang et al., 2014; Lu et al.,

2018; Deirram et al., 2019; Xu et al., 2022b).

Citraconic amide is formed by the reaction between citraconic

anhydride and primary amines. At physiological pH, the citraconic

amide is negatively charged and stable, but when pH decreases, it

promptly cleaves back into the positively charged primary amine

via degradation of linkage (Huang et al., 2014). When citraconic

amide is incorporated into pH-sensitive drug delivery vehicles, the

cleavage of citraconic amide at low pH can break the electrostatic

balance and trigger the degradation of whole polymers (Lee et al.,

2007; Lee et al., 2009), leading to drug release. Based on this

mechanism, PEG-b-PAECOEMA/CA, the pH responsiveness of

which comes from citraconic amide groups, was fabricated as a

carrier of CHX (Zhao et al., 2019).

Boric acid ester bond, formed by the reaction between boric acid

and hydroxy compound, is stable at physiological pH, but can

degrade at low pH. MAL-PEG-b-PLL/PBA, the micelles carrier of

tannic acid, conjugated tannic acid to PBA via boric acid ester bond.

The micelles were pH-activated and capable of cleaving under

cariogenic acidic conditions (Xu et al., 2022b). When the

nanoparticles targeted the cariogenic dental plaque, boronate ester

bonds responded to low pH and degraded, resulting in the release of

tannic acid.

The hydrazone linkages are formed by condensation between

hydrazide groups of carriers and aldehyde or ketones groups of the

drugs (Sonawane et al., 2017). Those linkages can promptly

hydrolysis when pH decreases below neutral physiological pH.

Based on this, hydrazone linkages have been widely applied in

conjugation between drugs and polymer backbones, aimed at

reducing systemic toxicity by pH-triggered drug delivery (Yoshida
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et al., 2013). For example, Far, derived from farnesol, was linked to

PEG via hydrazone bonds. In acidic cariogenic microenvironment,

the cleavage of hydrazine linkages leads to rapid release of Far,

which improve the selectivity of Far (Chen et al., 2013; Mazzoni

et al., 2015).

Disulfide bonds can cleave while reacting with H+ and

glutathione. Lu et al. introduced disulfide bonds into the silica

framework of a novel kind of Mesoporous silica nanoparticles

(MSNs), which was designed with redox/pH dual-controlled drug

release ability (Lu et al., 2018). When pH decreases, the MSNs could

degrade via the cleavage of disulfide bonds and glutathiones in the

matrix could accelerate this process, resulting in the release of

loaded Ag ions and CHX.

The chemical complexes assembled by the interaction of acid

and base are unstable at low pH. Based on this, a novel kind of pH

activated quaternary pyridinium salt was synthesized. The

reversible control of antibacterial activity is achieved by acid-base

interaction. Azo-QPS-C16 is a kind of antimicrobial agent. At

physiological pH, alkaline triethanolamine interacted with weakly

acid Azo-QPS-C16, and then two or more Azo-QPS-C16 assembled

tightly into a sandwich stacking structure, which prevented Azo-

QPS-C16 from exerting antibacterial efficiency. If pH decreases, the

sandwich stacking structure will collapse and the Azo-QPS-C16 will

come into effect. The active antimicrobial part of the Azo-QPS-C16

is the quaternary pyridinium salt and long alkyl chain, which can

interact with the hydrophobic membrane and lyse the cell (Chen

and Cooper, 2002). The quaternary pyridinium salt was able to

adsorb on bacterial membranes by protonation in low pH while the

long alkyl chain could insert into microbial membranes (Cheng

et al., 2017; Gannimani et al., 2020).
3.3 H+-triggered ROS production

ROS, an umbrella term referring to oxygen species with high

reactivity, includes hydrogen peroxide (H2O2), singlet oxygen (
1O2),

hydroxyl radical (•OH), and superoxide anion radical (O2•
-)

(Nosaka and Nosaka, 2017; Cao et al., 2021). Besides directly

damaging lipids, proteins, and DNA, ROS can destroy microbial

membranes and cause the leakage of intracellular substances, which

eventually results in the death of the bacteria (Li et al., 2021a). In

addition, ROS production, as a major sterilization strategy, has

higher antimicrobial efficacy and can reduce resistance of bacteria in

contrast with traditional sterilization methods (Fu et al., 2021; Zhu

et al., 2021). Therefore, H+-triggered ROS production is a promising

strategy for biofilm control.

CDT is a novel strategy to control cariogenic biofilm via ROS.

The acid microenvironment can be used as a stimulus to trigger the

production of H2O2. Metals ions such as Fe2+, Mn2+, and Cu2+ are

able to react with H2O2 and promote the accumulation of ROS,

mainly •OH, through the Fenton reaction or Fenton-like reaction

(Bokare and Choi, 2014; Tang et al., 2019; Zhou et al., 2021), which

leads to degradation of refractory organics (Chamarro et al., 2001;

Pignatello et al., 2006) and inhibition of biofilm growth (Gao et al.,

2016). ZnO2-Cu@RB NPs are drug-loaded nanoparticles which

achieves antibacterial responsiveness via the Fenton-like reaction
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(Zhang et al., 2022b). ZnO2 was added to produce H2O2 under acid

environment by reaction ZnO2+2H
+ ! Zn2++H2O2, enduing the

nanoparticles with pH responsiveness. After that, copper ions could

convert H2O2 into •OHwith antibiofilm effects through the Fenton-

like reaction (2Cu2++H2O2 ! 2Cu++O2+2H
+, Cu++H2O2 ! Cu2+

+ OH— +·OH).

CAT-NP can also produce ROS to control biofilms. Instead of

relying on Fenton reactions, the catalytic activity has been

confirmed to derive from the nanoparticles themselves (Wang

et al., 2014a; Wang et al., 2014b). CAT-NP is able to perform a

peroxidase-like activity that promptly catalyzes H2O2 at acid pH to

form free radicals, which can both degrade EPS and kill bacteria

(Gao et al., 2007). Aimed at enhancing the antibiofilm efficacy of

iron oxide nanoparticles, some other researchers added GOx into

iron oxide nanoparticles (Huang et al., 2021). GOx can catalyze

glucose in EPS into H2O2 and H2O2 produced can react with iron

oxide nanoparticles to produce ROS.
4 Biological safety

CHX is commonly used in clinical practice to prevent caries, but

studies have shown that CHX has time-dependent and dose-

dependent cytotoxic effects on gingival fibroblasts, and the

concentration of 0.2% shows high toxicity. In addition, it kills

oral microorganisms without selectivity and reduces the diversity

of oral microbial community, thus destroying the ecological balance

of microbial community and bringing great difficulties and

challenges for clinical treatment (Mao et al., 2022). Studies have

reported that pH-activated release of CHX and Ag-NPs

biodegradable nanosystems (Ag-MSNs@CHX) can not only

improve the anti-biofilm effect, compared to the CHX group

showed significant cytotoxicity, Ag-MSNs@CHX also has a good

safety at high concentrations (Lu et al., 2018). The smart pH-

responsive agent, which only exerts antimicrobial action at acidic

pH, is well suited for use in the uniquely acidic environment in

which caries develop. It shows antibacterial effects during microbial

dysregulation, rather than continuously killing all microorganisms,

improving drug availability and maintaining microecological

balance (Liang et al., 2020). pH-responsive drugs with targeted

effects play their unique advantages in different fields, and their

biocompatibility has attracted a lot of attention from scholars.

Many studies have designed pH activated antibacterial peptides,

among which some scholars have reported that the antibacterial

peptide GH12 has pH response characteristics, and this peptide

shows stronger antibacterial and anti-biofilm activities under acidic

pH. The peptide can not only maintain good stability in saliva, but

also showed only a mild inhibitory effect at concentrations up to

128.0 mg/ml in a biotoxicity study, indicating a low cytotoxicity

against human gingival fibroblasts (Jiang et al., 2021). Dual-

sensitive antimicrobial peptide nanoparticles, pHly-1 NPs, showed

reliable antimicrobial activity against Streptococcus pyogenes in

acidic solutions mainly through cell membrane disruption.

Compared with the clinically used mouthwash CHX, the

development of dental caries in rats could be effectively inhibited

with this nanoparticle. Moreover, by in vitro toxicity analysis, CHX
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showed an IC50 value of 4.9 mM against human gingival fibroblasts,

while pHly-1NPs exceeded 500mM. A concentration of 31.25 mM
CHX induced approximately 40% of gastric-like organ death, but no

significant effect was observed for treatments with pHly-1 NPs up to

500mM. It was shown that the nanoparticles exhibited a higher

safety profile compared to the clinically used antimicrobial agent

CHX (Zhang et al., 2022a).

In addition to pH activated antibacterial peptides, a series of

nanomaterials were developed and designed to degrade the biofilm

matrix by catalyzing the in situ generation of free radicals from

hydrogen peroxide in an acidic environment, thereby destroying the

caries biofilm. It is worth mentioning that the bio-safety of the

materials was also verified while testing their antibiofilm effect. The

experimental results show that the pH-responsive nanohybrid

particles exhibit strong catalytic activity and antibiofilm

properties at acidic pH, which do not cause harmful effects on

mucosal tissues such as gingiva and palate in vivo and have good

biocompatibility (Gao et al., 2016; Naha et al., 2019; Huang et al.,

2021; Zhang et al., 2022b).

To improve the targeted antibacterial ability and reduce the side

effects of broad-spectrum antimicrobial agents, scholars developed

targeted negatively charged doxycycline (DOX) loaded nanocarriers

(TMC-Lip DOX NPs). The experimental results showed that the

material was effective in pH-activated removal of cariogenic

biofilms and was biocompatible with non-toxicity to MC3T3-E1

cells (Zhou et al., 2018). Furthermore, a reactive multidrug delivery

system (PMs@NaF-SAP) has been reported to effectively inhibit

biofilm formation, which specifically adheres to tooth, identifies

cariogenic conditions and intelligently releases drugs at acidic pH,

thereby providing cariogenic biofilm resistance and restoring the

microarchitecture and mechanical properties of demineralized

teeth. Toxicological analysis showed that the nanosystem had

little to no adverse effects on cells as well as gingival and palatal

tissues (Xu et al., 2022b). In summary, pH-responsive antimicrobial

materials, which play an antimicrobial role intelligently only at

acidic pH, have been shown to be stable and biocompatible, and are

a promising anti-biofilm agent.
5 Limitation and future prospects

Although pH-activated strategies have been widely explored,

there are still some challenges that remain to be overcome. First, the

antibiofilm researches are limited to one or several pathogenic

microbes. Dental plaque is a highly diverse community of

microorganism, containing about 500 types of bacteria (Paster

et al., 2001; Wong and Sissons, 2001; Rasiah et al., 2005), so it is

provincial to examine antimicrobial efficiency of agents only by

uncomplicated in vitro model. A more sophisticated biofilm model

in vitro and animal caries model in vivo should be included to better

predict the efficacy of antimicrobial agents in future.

Besides, mature biofilms are highly assembled microbial

communities surrounded by extracellular matrix, which protects

the resident in deep layer from the antibacterial medicine. Digesting

the extracellular matrix helps to improve penetrability of medicine

into mature biofilms. At present, some pH-activated antimicrobial
Frontiers in Cellular and Infection Microbiology 12
medicine are capable of digesting extracellular matrix or inhibiting

the formation of EPS, such as pHly-1, GH12, LH12, DMAEM@RA,

ZnO2-Cu@RB NPs, and CAT-NP, but most of agents lack ability to

digest extracellular matrix. Synergistic combination of pH-activated

bacterial killing and EPS digestion is regarded as a promising

direction because of targeting specificity and eliminating efficacy.

Furthermore, the physical and biological complexity of the oral

environment, such as saliva, should be taken into consideration.

Due to the rapid clearance of saliva, topically applied medicine

usually shows poor retention and a temporary effect. It is of

tremendous significance to study pH-activated strategies with a

long-term antibacterial effect. Some researches endow medicines

with stronger adhesive ability by adding components which can

selectively adhere to dental enamel, such as SAP and tris(tetran-

butylammonium) hydrogen pyrophosphate (Yi et al., 2020; Xu

et al., 2022b). Therefore, improving adhesion of antimicrobial

agents may be a promising direction.

The pH-activated drug delivery system is used for controlling

antimicrobials release, but the systems exhibit an ephemeral effect

since it is hard to recharge the loaded drug once released.

Accordingly, it is vital to develop pH-activated drug delivery

systems which can re-captured agents when pH increases.

Although the researches on pH-activated antibiofilm strategies

are flourishing, they are just carried out in vitro or in animal studies.

More studies including clinical trials are needed to facilitate the

wider acceptance of pH-activated antibiofilm strategies for

controlling dental caries.
6 Conclusion

With the enhancement of microbial balance, pH-activated

therapeutics, precision-guided to the acidic niches, have become

novel strategies to control dental caries and aroused increasing

attention among researchers. There are of tremendous significance

and application potential for pH-activated antibiofilm materials to

be adopted for clinical dental applications. Many studies indicate

that pH-activated antibiofilm materials will be beneficial in

cariostatic filed. But before them entering the market and

reaching the dental chair, huge challenges related to long-term

effects and cost-effectiveness need to be conquered, and the in-vivo

effect should be further validated in clinical experiments.
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