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Use of in vitro derived human
neuronal models to study
host-parasite interactions of
Toxoplasma gondii in neurons
and neuropathogenesis of
chronic toxoplasmosis

Sandra K. Halonen*

Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
Toxoplasma gondii infects approximately one-third of the world’s population

resulting in a chronic infection with the parasite located in cysts in neurons in the

brain. In most immunocompetent hosts the chronic infection is asymptomatic,

but several studies have found correlations between Toxoplasma seropositivity

and neuropsychiatric disorders, including Schizophrenia, and some other

neurological disorders. Host-parasite interactions of bradyzoites in cysts in

neurons is not well understood due in part to the lack of suitable in vitro

human neuronal models. The advent of stem cell technologies in which

human neurons can be derived in vitro from human induced pluripotent stem

cells (hiPSCs) or direct conversion of somatic cells generating induced neurons

(iNs), affords the opportunity to develop in vitro human neuronal culture systems

to advance the understanding of T. gondii in human neurons. Human neurons

derived from hiPSCs or iNs, generate pure human neuron monolayers that

express differentiated neuronal characteristics. hiPSCs also generate 3D

neuronal models that better recapitulate the cytoarchitecture of the human

brain. In this review, an overview of iPSC-derived neurons and iN protocols

leading to 2D human neuron cultures and hiPSC-derived 3D cerebral organoids

will be given. The potential applications of these 2D and 3D human neuronal

models to address questions about host-parasite interactions of T. gondii in

neurons and the parasite in the CNS, will be discussed. These human neuronal

in vitro models hold the promise to advance the understanding of T. gondii in

human neurons and to improve the understanding of neuropathogenesis of

chronic toxoplasmosis.
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1 Introduction

Toxoplasma gondii is an intracellular protozoan parasite with

approximately one-third of the worlds’ population chronically

infected. In chronically infected individuals, the parasite resides in

the central nervous system (CNS) within neurons in cysts, that persist

for the lifetime of the individual (Ferguson and Hutchison, 1987). In

immunocompromised individuals, such as AIDS patients or

individuals undergoing chemotherapy, the parasite can reactivate

from the cyst stage and differentiate into the rapidly replicating

tachyzoite stage causing a severe to potentially fatal encephalitis

(Luft and Remington, 1992). The chronic infection in

immunocompetent individuals is typically asymptomatic, though

several studies have found correlations between Toxoplasma

seroposit ivity and neuropsychiatric disorders such as

Schizophrenia, prenatal depression, and suicidal thoughts and the

chronic infection has also been associated with cryptogenic epilepsy

and mild cognitive effects in elderly individuals, further indicating the

chronic infection exerts effects on neuronal activity in the central

nervous system (Yazar et al., 2003; Groer et al., 2011; Okusaga et al.,

2011; Pedersen et al., 2012; Torrey et al., 2012; Beste et al., 2014;

Sutterland et al., 2015; Xiao et al., 2018; Burgdorf et al., 2019; Oncu-

Oner and Can, 2022). The mechanisms by which the parasite affects

neuronal activity and CNS functions are not well understood.

Neurons are the predominant host cell for the bradyzoite stage

and cysts in the chronic infection (Melzer et al., 2010; Cabral et al.,

2016). Despite the central importance of bradyzoites and cysts in

neurons in the chronic infection, these stages of the parasites’ life cycle,

remain poorly understood. Studies on the effects of T. gondii infection

in neurons is primarily derived from in vivo studies in mice. Early

ultrastructural studies done in chronically infected mice found the

synapse of infected neurons containing cysts remains intact, indicating

parasite infection does not affect neuronal transmission (Sims et al.,

1989). More recent in vivo studies in chronically infected mice

however found neurons infected with the cyst stage are functionally

silenced, have altered neurotransmitter levels and neural connectivity,

and there is evidence of disruption of glutamate regulation by

astrocytes and a loss of perisomatic inhibitory synapses, all

indicating the parasite significantly alters neuronal functions

(Prandovszky et al., 2011; Haroon et al., 2012; Brooks et al., 2015;

David et al., 2016; Carrillo et al., 2020). Studies of Toxoplasma-infected

neurons in vitro are limited to the study of the parasite in either

primary neurons from rodents or human neuronal cell lines which do

not display mature neuron characteristics (Sahm et al., 1997; Creuzet

et al., 1998; Fagard et al., 1999; Schluter et al., 2001). Neither of these in

vitro culture systems are adequate for study of effects of bradyzoites

and cysts on human neuronal functions. A study in human neurons

demonstrated neurons could support cyst development but was

inadequate for long term culture needed for cyst maturation or the

study of impact on neuronal functions (Halonen et al., 1996). Finally,

the recent finding that bradyzoites and cysts are dynamic and

heterogeneous entities in the chronic infection, as opposed to static

structures as long thought, highlights the lack of understanding of

these crucial stages and underscores the need for better in vitro

neuronal models in which these stages of the parasites life cycle in

human neurons can be studied (Watts et al., 2015).
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A better understanding of the host-parasite interactions of T.

gondii in human neurons and of the parasite effects on neuronal

function is limited due to lack of suitable in vitro human neuronal

models. The advent of cellular reprogramming technologies in

which somatic cells can be used to derive functional human

neurons in vitro, either via induced pluripotent stem cells (iPSCs)

or via direct conversion of somatic cells to induced neurons (iNs),

affords the opportunity to develop in vitro human neuronal culture

systems to better understand host/parasite interactions of T. gondii

in human neurons. Both hiPSC-derived neurons and iNs can

generate two-dimensional (2D) neuronal monolayer cultures

enabling cellular and molecular mechanistic studies to be done

while hiPSC can also be used to derive three-dimensional (3D)

cerebral organoids, affording disease modeling studies of

neurological effects of T. gondii in the brain to be conducted. The

use of stem cell technologies in Parkinson’s Disease (PD),

Alzheimer’s Disease (AD), and Schizophrenia, has revolutionized

the study and understanding of these neurological disorders

(Brennand et al., 2011; Logan et al., 2019; Ferrari et al., 2020;

Powell et al., 2020; D'Souza et al., 2021; Legault et al., 2022). These

cellular reprogramming approaches have not been widely used in

the study of T. gondii in the central nervous system (CNS) although

they offer many of the same benefits such as providing an in vitro

source of differentiated, mature, functional human neurons,

enabling mechanistic studies, drug discovery and disease

modeling studies, to be done.

Here, a review of iPSC-derived neuron and iN protocols leading

to 2D neuronal monolayer cultures and hiPSC-derivation of 3D

cerebral organoids models will be given with the goal of this review

to summarize differentiation strategies of hiPSC-derived neurons,

iNs, and 3D brain organoids, and to encourage the utilization of

these in vitro-derived human neuronal models to address

outstanding questions about host-parasite interactions of T.

gondii in the human neuron host cell. A few Toxoplasma studies

have used these approaches and a summary of the findings and

potential applications of these 2D and 3D human neuronal models

to address outstanding questions about the biology of T. gondii in

neurons and neuropathogenesis of T. gondii chronic infection will

be discussed. These cellular reprogramming approaches to generate

human neuronal in vitro models hold the promise to advance the

understanding of T. gondii interactions in human neurons and of

neuropathogenesis of chronic toxoplasmosis.
2 Neurodifferentiation strategies

Human neurons are generated in vitro either from human

induced pluripotent stem cells (hiPSCs) or via direct conversion

producing iNs (Figure 1). Both approaches generate 2D monolayers

of relatively pure populations of differentiated, functional neurons.

In addition, 3D organoid cultures can be produced from hiPSCs.

Here an overview of methods used in the generation of hiPSC-

derived neurons vs. direct conversion of iNs will be given, with a

comparison of advantages and disadvantages of each approach.
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2.1 hiPSC-derived neuronal cells

Human somatic cells exposed to Yamanaka factors, OCT4,

KLKF4, SOX2 and c-MYC (OKSM), are reprogrammed into iPSCs

which can be differentiated into different cell lineages, as first

demonstrated in 2007 (Takahashi et al., 2007). In the years since

the advent of iPSC technology refinements and improvements have

occurred (Mertens et al., 2016; Traxler et al., 2019). Most

differentiation protocols involve application of extrinsic factors to

guide the differentiation process towards a cell fate, mimicking the

regionalization processes that occur during the developmental

process, followed by specific growth factors. In brief, hiPSC can be

neutralized via dual SMAD signaling inhibition producing neural

stem cell (NSCs), followed by addition of specific growth factors such

as BDNF and GDNF and cAMP to induce differentiation into

postmitotic neurons (Figure 1A) (Chambers et al., 2009; Shi et al.,

2017). Differentiation into postmitotic neurons from NSCs typically

takes 3-4 weeks. NSCs are multipotent and can be differentiated into

astrocytes or oligodendrocytes with differentiation to these glial cell

types typically requiring at least 60 days in in vitro culture (Hirbec

et al., 2020). hiPSCs can be induced toward the mesodermal lineage

and microglia generated, via specific growth factors, in about 15 days

(Abud et al., 2017; Douvaras et al., 2017; Pandya et al., 2017).
2.2 Induced neurons

Human neurons can be generated in vitro through direct

conversion of somatic cells into iNs (Figure 1B). Human

fibroblasts can be converted into iNs via a combination of 3

transcription factors, BRN2, ACSL1, and MYTL1, the BAM

reprogramming factors, in addition to the neurodifferentiation

factor, NEUROD1 (Pang et al., 2011). It is now understood that

during direct conversion, so called pioneering transcription factors
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bind closed chromatin structures and coordinate the binding of

secondary transcription factors, to initiate a new cell fate (Mertens

et al., 2016). Now, numerous conversion strategies have been

developed involving the use of differing combinations of

pioneering transcription factors, small molecules, and miRNAs

(Schluter et al., 2001; Vierbuchen et al., 2010; Ladewig et al.,

2012; Wapinski et al., 2013; Zhao et al., 2015). Most direct

conversion protocols generate iNs from fibroblasts as the somatic

cell, but diverse cells have been used for generating iNs, including

blood cells, glial cells, pericytes and post-mortem brain tissues

(Zhao et al., 2012; Rose et al., 2018; Traxler et al., 2019).
2.3 Generation of neuron subtypes from
iNs and hiPSC-iNs

Subtype specific neurons, including glutaminergic, GABAergic,

dopaminergic, and serotonergic neurons, can be generated either via

from hiPSCs or iNs. Initial methods to derive neuronal subtypes from

hiPSCs first created NSCs and then derived glutaminergic,

GABAergic, and serotonergic neurons via mimicking

developmental cues (Tao and Zhang, 2016). However, hiPSCs-NSC

derived neuronal subtypes required long differentiation times leading

to generation of heterogenous cell populations. More recently direct

conversion of hiPSC to iNs (iPSC-iNs), called forward programming,

has been found to generate highly pure populations of specific

subtypes of neurons in an easy, reproducible manner (Flitsch et al.,

2020; Canals et al., 2021). Forward programming is done via applying

overexpression of lineage-specific transcription factors (TFs). This

TF-based approach can generate dopaminergic neurons,

glutaminergic neurons, GABAergic neurons and motor neurons

from hiPSCs (Canals et al., 2021). Direct conversion of iNs

similarly has been accomplished via the use of pioneering

transcription factors in combination with factors shown to be
A

B

FIGURE 1

Schematic of steps involved in the generation of in vitro generation of human neurons from hiPSCs and direct conversion of induced neurons (iNs).
Human primary fibroblasts or other somatic primary cells are used to generate human neurons in vitro via (A). Neuronal differentiation from hiPSCs
or (B). Direct conversion into iNs. Neuronal differentiation from hiPSCs involves first reprogramming into hiPSCs via Yamanaka Factors, followed by
neural induction into neural stem cells (NSCs) via dual SMAD inhibition, and differentiation with the aid of neurotrophic factors to generate hiPSC-
neurons. hiPSCs-generated NSCs can also generate astrocytes and oligodendrocytes, while microglia can be generated from hiPSCs. Direct
conversion into iNs involves overexpression of neuronal transcription factors, SMAD inhibition and other factors, to generate Induced Neurons (iNs).
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important in neural subtype determination, with protocols to

generate dopaminergic, GABAergic, and serotonergic neurons, now

available (Vierbuchen et al., 2010; Caiazzo et al., 2011; Pfisterer et al.,

2011; Victor et al., 2014; Mertens et al., 2015; Vadodaria et al., 2016;

Xu et al., 2016; Mertens et al., 2018).
2.4 Cerebral organoids: 3D neuronal
models

3D cerebral organoids contain multiple brain-specific cell types,

obtain specialized function, and achieve an organ-like organization

and overcome of the limitations of 2D neuronal monolayers (Liu

et al., 2018; Logan et al., 2019; Pacitti et al., 2019). Cerebral

organoids are derived from hiPSCs via both guided and unguided

methods (Koo et al., 2019; Qian et al., 2019). Guided methods are

dependent upon iPSCs intrinsic ability to assemble and differentiate

towards the neuronal fate and yield cerebral organoids with the

major features of the developing cortex, such as the outer

subventricular zone and neural subtypes constituting all 6 cortical

layers, formed (Koo et al., 2019; Sidhaye and Knoblich, 2021). In

unguided methods, region-specific cerebral organoids are directed

by region-specific growth factors, differentiation factors and specific

cellular inhibitors. Protocols to generate region-specific cerebral

organoids, including forebrain, midbrain, cerebellar, hippocampal,

and hypothalamic organoids, are now established (Muguruma et al.,

2015; Sakaguchi et al., 2015; Qian et al., 2016; Qian et al., 2018).

Cerebral organoids have a wider application for in vitro

neurological disease modeling than 2D monolayers and have been

successfully used in Alzheimer’s Disease, Parkinson’s Disease, and

Schizophrenia (Choi et al., 2014; Tieng et al., 2014; Lee et al., 2016;

Raja et al., 2016; Stachowiak et al., 2017; Amin and Pasca, 2018).

Disadvantages of organoids include the need for more complex

methods for characterization and analysis and the cost and the time

to generate cerebral organoids.
2.5 hiPSC-neurons vs. iNs 2D neuronal
models: Advantages and disadvantages

hiPSC-neurons and iNs are attractive in vitro 2D neuronal

models for studying neuronal diseases because of their human

origin, affording the ability to conduct mechanistic studies and

screen for therapeutic targets, in human neurons. hiPSC-neurons

and iNs have distinct advantages and disadvantages in terms of time

to generate cells, capacity for expansion, number of cells that can be

generated, epigenetic status and capability as models for

neurological diseases (Mertens et al., 2016; Mertens et al., 2018;

Traxler et al., 2019). The choice of the in vitro neuron culture

method used, should be balanced with the research questions

addressed and the practical experimental needs, to determine if

these methods are worth the time and effort. Foremost amongst

these considerations when thinking of using hiPSC or iN approach,

are those of time and cost efficiency, expandability, epigenetic

effects, and age-related phenotypes, each of which are briefly

discussed below and summarized in Table 1.
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2.5.1 Time and cost efficiency of hiPSCs vs. iNs
The generation of iPSC clones typically takes 2-3 months, but they

can then be expanded indefinitely and provide an infinite supply of

cells. Differentiation of iPSCs to neurons takes 6-15 weeks. NSCs can

be established in about 2-3 weeks which can then be used as a stable

intermediate cell line that can generate neurons in 3-4 weeks. Several

iPSC and NSC cell lines are commercially available from ATCC

(www.atcc.org), WiCell, (www.wicell.org), a variety of Schizophrenia-

derived PSC cell lines are publicly available (Dobrindt et al., 2021) and

several iPSC cell lines are available from NIH Center for Regenerative

Medicine Program (https://commonfund.nih.gov/stemcells/lines).

Conversely, iNs can be generated more quickly with direct

conversion of fibroblasts to iNs generated in 1-3 weeks or with

another 5-6 weeks required to generate fully mature neurons

(Mertens et al., 2018; Traxler et al., 2019).

2.5.2 Expandability and cell numbers
As iPSCs can be expanded infinitely and NSCs are self-renewing,

both iPSC and NSCs can generate large numbers of neurons and thus

suitable for metabolomic, proteomic, transcriptomic, and genomic

analyses. Conversely, direct iN conversion does not involve an

expandable, intermediate stage and given the neurons generated are

post mitotic, the direct conversion of iNs approach is limited in the

numbers of neurons that can be produced.

2.5.3 Epigenetic and age-related effects
iPSC reprogramming involves chromatin remodeling that causes

the epigenetic state of the cell to ‘reset’ into an embryonic-like state,

with multiple rounds of cell division thought to select for and repair

macromolecular damage, leaving iPSCs into what has been called a

‘rejuvenated cell’ (Mertens et al., 2018; Traxler et al., 2019).

Conversely, iNs conserve the age-related epigenetic landscape and

other cellular properties from the cell of origin and does not erase the

cellular aging markers, with iNs derived from fibroblasts showing the

transcriptomic and functional signatures of the age of the parent

fibroblast (Mertens et al., 2015). The age-related epigenetic landscape

of iNs may have advantages for disease modeling type studies where

aged, patient-specific neurons in culture are desired.
3 hiPSC and iNs: new in vitro human
neuronal models to study host/
parasite relationship of T. gondii in
neuron host cell and
neuropathogenesis

These 2D and 3D in vitro human neuronal models open new

possibilities for investigating T. gondii in human neurons and

neuropathogenesis of T. gondii chronic infection. A few studies

with T. gondii have been conducted using these in vitro human

neuronal models which demonstrate their potential use in the study

of T. gondii in neuronal cells. A brief description of each of these

studies are given below, followed by a discussion of how these

approaches could be applied to address outstanding questions of T.

gondii in the brain, which is summarized in Table 2.
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3.1 Neuronal monolayers: 2D human
neuronal models

3.1.1 Use of hiPSC-derived neurons
Human neurons were derived from NCRM-1 cells, a neural stem

cell (NSC) line obtained from NIH, using a similar protocol as

outlined in Figure 1A (Tanaka et al., 2016; Halonen, 2017). Human

neurons were infected with T. gondii tachyzoites (type II strain) and

at low parasite to host cell ratios (1:100), the majority of infected

neurons supported spontaneous cystogenesis, with tachyzoite to

bradyzoite stage conversion beginning within the first 12 hrs. post
Frontiers in Cellular and Infection Microbiology 05
infection (p.i.) and mature cysts generated by 96h p.i. Mature cysts

developed near the neuronal soma and in the dendritic processes and

could be maintained in neurons for up to 14 days p.i. (Figure 2A).

This study demonstrated that hiPSC-derived human neurons is

an effective in vitro model to study spontaneous cystogenesis and

host/parasite interactions during cystogenesis and of mature cysts,

in the human neuron host cell. As this method generates

differentiated neurons generated from NSCs, a self-renewing

population, this method has the advantage of expandability,

capable of generating large numbers of human neurons and thus

conducive to transcriptomic, proteomic, and other such analyses.
TABLE 2 Outstanding questions of T. gondii in neurons and in the CNS that could be addressed using 2D and 3D Human Neuronal Models.

2D Monolayers 3D Organoids

A. Bradyzoite and
Cyst Biology

1. Allows kinetic studies where temporal events that occur during bradyzoite differentiation
and cystogenesis (1 day-14 days p.i.) can be studied
2. Allows longitudinal studies of bradyzoites in mature cysts to be studied to gain
knowledge of cyst life histories
3. Amenable to live cell microscopy allowing dynamic events occurring within cysts such as
bradyzoite motility and intraneuronal trafficking of bradyzoites to be discerned

1. Allows for mature cyst development 4 weeks
facilitating study of mature cysts
2. Longitudinal studies of mature cysts (4
weeks) could be done although imaging would
be challenging
3. Allow bradyzoite replication and patterns of
cyst growth in mature cysts to be studied

A. Host/parasite
interactions in
neurons

1.Dissect neuronal host-parasite interaction of bradyzoites and cysts in neuron host cell
2. With iNs, can investigate effects of the parasite in neurons from individuals with
neurological disorders

C. Neuropathogenesis 1.Study effects of bradyzoites on neurotransmission and assessment of impacts on neuronal
structures such as dendrites and synapses
2.Study effects of parasite in region-specific neurons such Dopaminergic, GABAergic, or
Serotonergic neurons

1.Study effects of parasite infection on
neurotransmission and neuronal networks
2. Investigate interactions between infected
neurons and astrocytes

D. Drug Discovery Screening and Evaluation of anti-bradyzoite and cyst drugs Evaluate drugs effective against mature cysts
TABLE 1 Comparison of iPSC-derived neurons vs. iNs.

Property iPSCs or NSCs iNs

Cell Source Fibroblasts, keratinocytes, dental pulp cells, blood cells, renal epithelial
cells

Fibroblasts, hepatocytes, adipocytes, pericytes,
astrocytes and iPSCs

Time to Generate neurons 4-6 months from fibroblasts
3-6 weeks from iPSCs
1-4 weeks from NSCs

1-3 weeks plus maturation

Capacity for expansion Infinite Only at fibroblast stage as the derived neurons are
postmitotic

Potential numbers of cells Infinite Limited by the expandability of fibroblasts and
conversion efficiency

Capacity to generate different neural
subtypes

Yes Yes

Diversity and mosaicism iPSC line is a single cell-derived clone Reflects the cellular diversity of the donor tissue

Epigenetic status Identity and age erased Cell type identity erased; details of epigenome
unknown

Capacity to model
neurodevelopment

Yes No

Capacity to model ageing? No; cells are rejuvenated Yes, ageing signatures preserved

Capacity for 3D Cerebral Organoid? Yes, including forebrain, midbrain, cerebellar, hippocampal, and
hypothalamic organoids

No
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3.1.2 Use of schizophrenia-derived iNs to study
T. gondii in neurons

Peripheral fibroblasts were used to generate iNs from several

patients with genetic variations linked to schizophrenia (SZ) and iNs

from normal controls, and growth of T. gondii, RH strain, in disease vs.

normal controls iNs, characterized (Passeri et al., 2016). Tachyzoites

infected and generated cysts in both SZ-iNs and normal iNs, with some

differences in growth found in the SZ-iNs vs. normal-iNs.

This iN study demonstrated mature human neurons can be

generated from peripheral fibroblasts from patients with various

brain disorders. The use of patient-derived iNs allows the

heterogeneity of disease-associated phenotypes to be incorporated

into investigation of molecular mechanisms underlying individual

predisposition to Toxoplasma infection and various brain disorders.
3.2 Brain organoids: 3D human neuronal
models

Two studies have investigated using 3D human neuronal models to

study T. gondii infection in the brain (Seo et al., 2020; Correa Leite et al.,

2021). In both 3D cerebral organoid models, infection with

Toxoplasma tachyzoites, of both Me49 and RH strains, lead to

bradyzoite differentiation and formation of mature cysts, with cysts

persisting up to 4 weeks post-infection, within the cerebral

organoids (Figure 2B).

Both studies demonstrated 3D organoid neuronal models can

recapitulate the in vivo biology of T. gondii in the brain. Persistence of

cystsforupto4weeksinthese3Dmodels isamajoradvantageasthese3D

models would allow studies on mature cysts to be conducted.
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Additionally, brain organoids contain multiple neural cell types,

including neurons, neural progenitors, and glia, allowing dynamic

interactions between neural cells to be studied and generation of neural

cells with greater cellmaturity and improved cell functionality (Liu et al.,

2018; Pacitti et al., 2019). Infection of 3D organoid models also induced

neural cell death, alteration in neural gene expression and triggering of

the release of inflammatory markers in response to Toxoplasma

infection, indicating these 3D neuronal organoids are also good models

to address more complex interactions of the parasite in the brain.
3.3 Potential of 2D and 3D human
neuronal models for T. gondii studies

3.3.1 Use of 2D neuron monolayers to study
T. gondii host/parasite interactions

2D neuronal models derived from hiPSCs offer many

advantages to study T. gondii in neurons, such as the ability to

create monolayers of relatively pure neurons that exhibit

differentiated neuronal morphology that are conducive to single-

cell or population-based assays and afford opportunities to address

questions about the biology of bradyzoites and cysts in neurons. A

major advantage of this in vitro-derived human neuron culture is to

allow neuron host-cell specific responses to Toxoplasma infection to

be addressed. Several recent studies indicate neuron-specific

responses are important. For example, the protein effector export

of the bradyzoites stage was found to be slightly different in neurons

vs. fibroblasts with indication the nuclear effector stability or

effector export was less efficient in neurons (Mayoral et al., 2020).

Additionally, a novel mechanism of IFN- induced bradyzoite
A B

FIGURE 2

Schematic of 2D and 3D human neuronal in vitro models for the study of T. gondii in neurons and the central nervous system. Human neuronal in vitro
models can be generated for the study of T. gondii in human neurons and the central nervous system using (A). 2D human neuronal monolayers or (B). 3D
human neuronal models. For 2D neuronal models hiPSC-derived neurons can be infected with tachyzoites which convert to bradyzoites within 12hr post-
infection (p.i.), leading to spontaneous cystogenesis with mature cysts located in the neuronal soma and dendritic processes by 4 days p.i. and which can be
maintained for up to 14 days p.i. For 3D human neuronal models, cerebral organoids can be infected with tachyzoites which convert to bradyzoites and
generate mature cysts by 5 days p.i. with cysts persisting in the outer layer of cerebral organoids, where mature neurons and some glial cells are found, for 4
weeks post-infection or longer. Tachyzoites are green, bradyzoites are red.
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formation and cyst conversion, via depletion of intracellular

glutamine, was recently identified in human glutamatergic

neurons (Bando et al., 2021). As it is known the molecular

mechanism of IFN-response is different in mice and humans

these in vitro-derived human neurons would also facilitate other

studies investigating mechanisms of IFN-effects on T. gondii in

human neurons (Ohshima et al., 2014; Saeij and Frickel, 2017;

Bando et al., 2018). Other advantages of in vitro-derived human

neurons are they form monolayers that are amenable to

microscopical analysis and would allow host/parasite interactions

of bradyzoites in cysts in neurons during encystment and of mature

cysts, to be addressed. Additionally, this in vitro human neuron

culture model facilitates cyst development up through 2 weeks and

would facilitate longitudinal studies of individual cysts in neurons

in which dynamic aspects of bradyzoites and cysts could be studied,

and could yield new information and insights into life histories of

cysts in neurons. Other advantages of 2D human neuronal

monolayers are summarized in Table 2.

3.3.2 Use of 3D neuronal models to study
T. gondii interactions in the CNS

Cerebral organoids would allow study of fully mature cysts as

one of the limitations of the 2D human neuron monolayer for the

study of T. gondii infection in neurons is the inability to maintain

cysts for longer than 14 days post-infection, while 3D cerebral

organoids allowed for cysts to persist for at least 4 weeks post-

infection (Figure 2B). Thus, cerebral organoids may allow studies

addressing behavior of bradyzoites in mature cysts, such as

bradyzoite replication and patterns of cyst growth, to be studied.

Cerebral organoids would also allow more complex questions of

neuropathogenesis of T. gondii in the brain to be addressed such as

the effects of infection on neuronal networks and the interactions

between infected neurons and astrocytes. As neuron-astrocyte

interactions have been shown to be involved in the impact of the

parasite on neurotransmission, the ability to address the role of

astrocytes on neuropathogenesis of T. gondii is an attractive aspect

of 3D cerebral organoid models (David et al., 2016). Advantages of

3D cerebral organoids to address questions of T. gondii interactions

in human CNS is summarized in Table 2.

3.3.3 Limitations of 2D and 3D human neuronal
models

While 2D and 3D neuronal models have the potential to create in

vitro human neuronal models to address outstanding questions of host-

parasite interactions of T. gondii in neurons and neuronal tissues, there

are distinct limitations of each model, especially as applies to T. gondii

studies, which need to be considered, as stipulated below.

3.3.3.1 Conversion efficiency of 2D neuronal models

Low conversion efficiencies often occur with differentiation

protocols for hiPSC-neurons and iNs. For hiPSC-human neurons,

standardization of protocols and reagents have greatly improved

protocol efficiencies and batch-to-batch consistency. Human iPSCs

and NSCs for example are available from commercial sources such

as ATCC and WiCell, with expansion and differentiation medias
Frontiers in Cellular and Infection Microbiology 07
available and/or easy to make with the addition of defined

supplements, making these protocols feasible for most

Toxoplasma labs with established tissue culture. In evidence of

this is the recent paper in which human iPSC-derived glutamatergic

neurons were used to investigate molecular mechanisms of IFN-

stimulated cyst formation in human neurons (Bando et al., 2021).

iN protocols are not as well developed as hiPSCs, with iN protocols

not standardized or reagents commercially available, and low

conversion efficiencies and high variability in efficiency between

reprogramming experiments, still a problem of most neural

reprogramming protocols (D'Souza et al., 2021; Legault et al.,

2022). Improved iN protocols are continually being developed

and improved as for example, the recent induced dopaminergic

neuron (iDANs) protocol which reports 90% conversion efficiency

(Powell et al., 2021). These iDANs may provide a good in vitro

model for midbrain dopaminergic neurons and addressing

questions of association T. gondii and Schizophrenia. Thus, while

iN protocols have improved in recent years, low conversion

efficiencies are still common and need to be considered in context

of the experimental question, if this method of generating in vitro

human neurons is used.

3.3.3.2 Issues of complexity of 3D organoids

As 3D cerebral organoids are generated from iPSCs they have

many of the same limitations of hiPSC-derived neuronal 2D

monolayers including differentiation efficiency and batch-to-batch

variability. However, as with hiPSCs, in recent years 3D organoid

protocols have progressed such that there are now simple brain

organoid protocols and multiple specific brain-region protocols,

that can be done in a reproducible and predictable manner (Sidhaye

and Knoblich, 2021). Limitations however still exist. For one, 3D

organoids have mixed populations of cells which complicate studies

using bulk RNASeq, as cell identities of transcripts cannot be

identified and thus these types of studies with 3D organoids

would require more complex methods for analysis. However

single-cell transcriptomics and a variety of other assays including

live-cell imaging, electrophysiology, calcium dynamics and

immunohistochemistry studies can be done, albeit they require

more effort (Sloan et al., 2018).

3.3.3.3 Lack of immune system components

Both 2D and 3D neuronal models lack an immune system

component and thus do not fully recapitulate the in vivo

environment of the CNS. Microglia, for example which play a

crucial role in neuronal maturation and functioning and are

implicated in neurodegeneration and psychiatric disorders such as

Schizophrenia, are absent. Microglia can be generated from hiPSCs

as diagrammed in Figure 1A, and some co-cultures of 3D hiPSC-

organoids with hiPSC-derived microglia that infiltrate the organoid

when added, have been used successfully in a few Alzheimer’s

Disease studies (Abud et al., 2017; Song et al., 2019). As microglia

have important roles in the biology of T. gondii in the brain, such as

contributing to the loss of perisomatic inhibitory synapses following

T. gondii infection (Carrillo et al., 2020), incorporation of microglia

into 2D and 3D neurological models could be important for some
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studies. However, this would entail a complicated tissue culture

process and the time and cost, needs to be carefully considered and

balanced with the experimental question, in consideration of

incorporation of microglia into these 2D and 3D human

neuronal models.
4 Conclusions

The advent of stem cell technologies to generate human neuronal

in vitromodels has revolutionized the study of neurological disorders

such as Parkinson’s Disease, Alzheimer’s Disease and Schizophrenia.

The use of these human neuronal in vitro methods has a similar

potential to advance the understanding of T. gondii in human

neurons and of neuropathogenesis of the parasite in the CNS.
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