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Morphological characterization
and genetic diversity of a new
microsporidium, Neoflabelliforma
dubium n. sp. from the adipose
tissue of Diaphanosoma dubium
(Crustacea: Sididae)
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Qianqian Zhang2, Aihua Li2 and Jinyong Zhang1,4*

1The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao
Agricultural University, Qingdao, China, 2Key Laboratory of Aquaculture Diseases Control, Ministry of
Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of
Hydrobiology, Chinese Academy of Sciences, Wuhan, China, 3College of Advanced Agricultural
Sciences, University of Chinese Academy of Sciences, Beijing, China, 4Laboratory for Marine Biology and
Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao,
Shandong, China
We reported a new microsporidium Neoflabelliforma dubium n. sp. from the

adipose tissue ofDiaphanosoma dubium in China. The infected daphnids generally

appeared opaque due to the presence of numerous spore aggregates located in

the adipose tissue. All developmental stages were in direct contact with the host

cell cytoplasm. Multinucleate sporogonial plasmodia developed into uninucleate

sporoblasts by rosette-like fashion. Mature spores were pyriform and

monokaryotic, measuring 4.02 ± 0.24 (3.63-4.53) µm long and 2.27 ± 0.15 (2.12-

2.57) µm wide (N = 40). The polaroplast was bipartite with a tightly packed anterior

lamellae and a loosely aligned posterior lamellae. Isofilar polar filament was coiled

9-11 turns and arranged in 2-3 rows. The phylogenetic analysis based on the

obtained SSU rDNA sequence indicated that theN. dubium n. sp. clustered with the

freshwater oligochaete-infecting N. aurantiae to form an independent

monophyletic group, positioned at the base of Clade 4. In addition, we analyzed

the genetic diversity in three N. dubium n. sp. isolates based on the rDNA (SSU

rDNA, ITS and LSU rDNA) and Rpb1 gene. The genetic variation among the rDNA

sequences was not distinct, however, high nucleotide diversity could be observed

in Rpb1 gene, and a wide variety of Rpb1 haplotypes were identified within each

isolate. Genetic recombination detected in the Rpb1 sequences presumes cryptic

sexual process occurring in N. dubium n. sp. Statistical evolutionary analyses

further indicated that the purifying selection eliminated mutations in the

Rpb1 gene.
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1 Introduction

Microsporidia are a group of ubiquitous intracellular unicellular

eukaryotic parasites that can infect most animal taxa (Cali and

Takvorian, 2014). The origin of microsporidia remained enigmatic

with a long history, but it is widely accepted that microsporidia are

either a basal branch or sister group of fungi (Keeling, 2014;

Wijayawardene et al., 2020; Corsaro, 2022). More than 1600 species

assigned to about 220 genera have been described worldwide, among

which about half genera were reported from aquatic organisms

(Stentiford et al., 2013a; Liu et al., 2020). However, the diversity of

aquatic microsporidia is still severely underestimated, especially based

on evidence from environmental DNA analysis (Dubuffet et al., 2021;

Chauvet et al., 2022). Crustaceans are the common hosts for

microsporidia, and more than 64 genera have been reported to

infect crustaceans, among which about 38 genera were described

from zooplankton crustaceans (Stentiford and Dunn, 2014; Vávra

et al., 2016; Simakova et al., 2018; Vávra et al., 2018; Vávra et al., 2019;

Bass et al., 2021). Interestingly, a recently phylogenetic analysis

indicated that Mitosporidium daphniae isolated from Daphnia

magna was positioned at the root of Microsporidia, indicating that

ancestral microsporidia probably originated from aquatic

environment (Haag et al., 2014). Elucidating the diversity of aquatic

microsporidia should facilitate the understanding of evolutionary

biology of microsporidia and explore their potential ecological roles.

The genus Daphnia represents a major group of freshwater

zooplankton that play an important role in aquatic food chains

(Marinho et al., 2018; Toyota et al., 2021) and the important host

of aquatic microcrustacean-infecting microsporidia. To date, more

than 40 microsporidia belonging to 16 genera have been reported

from daphnids (Vávra et al., 2017; Simakova et al., 2018; Vávra et al.,

2018; Vávra et al., 2019). However, most of the daphnid-infecting

microsporidia were reported solely based on morphological and

ultrastructural features (Larsson et al., 1996), with a lack of
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molecular data, which means that the accurate taxonomy of these

microsporidia is still unclear due to the unreliability of morphological

and ultrastructural features as taxonomic criteria (Stentiford et al.,

2013b; Weng et al., 2021a; Liu et al., 2022). In China, only one species,

Agglomerata daphniae was reported from the hypoderm of Daphnia

magna (Weng et al., 2020). To further enrich the knowledge of species

diversity of aquatic microsporidia in China and figure out the

accurate taxonomy of daphnid-infecting microsporidia, we

investigated the diversity of daphnid-infecting microsporidia in the

middle and lower reaches of the Yangtze River. In present study, a

novel daphnid-infecting microsporidian species, Neoflabelliforma

dubium n. sp. was described with morphological, ultrastructural,

and molecular characteristics. The genetic diversity of this

microsporidian was also analyzed referring from the sequence

comparison of the rDNA and Rpb1 genes.
2 Materials and methods

2.1 Collection of specimens and
microscopical observation

Zooplankton samples were collected from three different locations

in the middle and lower reaches of Yangtze River (Figure 1). In detail,

the samples were collected from a eutrophic pond in Huangshi city,

Hubei province (30° 17 ′46.49′′ N, 114° 44′8.53′′ E) in June 2019,

Yanlong Lake in Yancheng city, Jiangsu province (33° 20′0.43′′ N, 120°

1′39.65′′ E) in July 2019, and Jinyin Lake inWuhan city, Hubei province

(30° 38′21.35′′ N, 114° 11′28.64′′ E) in October 2020. Specimens were

transported immediately to the local laboratory for the preliminary

parasitological examination. Daphnids were morphologically identified

and screened under Olympus SZ51 microscope. Specimens with

opaque coloration were used to make wet mount preparations.

Infected cladocerans were preserved in 95% ethanol for further
FIGURE 1

Map of partial China, showing geographical locations of sample sites.
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molecular characterization and in 2.5% glutaraldehyde in 0.1M sodium

cacodylate buffer (PH 7.4) for electron microscopic observation,

respectively. Formalin-fixed spores were used to capture spore images

using an Olympus BX 53 microscope equipped with an Olympus DP72

digital camera (Olympus, Japan). The spores were measured based on

capture images by Adobe photoshop CS6 (Adobe System, San Jose, CA,

USA), and measurements were presented as Mean ± SD.
2.2 Transmission electron microscopy (TEM)

Glutaraldehyde-fixed cladocerans were washed with sodium

cacodylate buffer twice. Cladocerans were pos-fixed with 1%

osmium tetroxide (OsO4) for 1h, samples were dehydrated in a

gradual ascending series of ethanol and propylene oxide, and

embedded in Spur resin. Ultrathin sections (70–90 nm) were

examined using a Hitachi HT-7700 TEM after being mounted on

an uncoated copper grid. Sections were stained with uranyl acetate

and lead citrate. Sections of two infected cladocerans were examined

using a Hitachi HT-7700 TEM.
2.3 DNA extraction, PCR, and sequencing

Ethanol-fixed daphnids were rinsed with distilled water 2 times to

get rid of ethanol residues. The daphnids and 400 ml ATL (Qiagen)

were added to Lysing Matrix B FastPrep® tubes, which were then

homogenized using a FastPrep cell disrupter (2 min at 6.0 m/s). The

homogenate was used for genomic DNA extraction using the Qiagen

DNeasy Blood & Tissue Kit (Qiagen, Germany) following the

manufacturer’s instructions. The primer sets used for rDNA and

Rpb1 gene amplification were shown in Table 1. PCR was carried out

in a 50 mL reaction system, containing PCR buffer, 200 mM dNTP, 2

mM MgCl2, 1.25 units Taq polymerase, 20 pmol each primer, and 2

mL DNA template. The partial SSU rDNA was amplified using the

primer pair V1f/1492r and the PCR reaction conditions consisted of

an initial denaturation step at 95°C for 4 min, followed by 35 cycles at

95°C for 1 min, 50°C for 30s, 72°C for 2 min, and a final extension at

72°C for 10 min. The 3’ terminal partial SSU rDNA, complete ITS and

the partial LSU rDNA sequence was amplified using the primer pair

HG4F/ILSUR and the PCR cycle included by an initial denaturation
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step at 95°C for 4 min, followed by 35 cycles of denaturation at 95°C

for 30s, annealing at 53°C for 30s, elongation at 72°C for 2 min, and a

final extension at 72°C for 10 min. For amplification of the largest

subunit of RNA Polymerase II (Rpb1), the primer pair RPB1-F1/

RPB1-R1 was used to obtain preliminary sequence which was then

used as the template to design specific primers using Primer Premier

5.0. Rpb1 was secondly amplified using the primer pairs NAF/NAR.

The amplification was performed under the following conditions: an

initial denaturation for 4 min at 94°C, 35 cycles of 30s at 94°C, 30s at

46°C, 1 min at 72°C, and a terminal extension of 10 min at 72°C. The

PCR products were excised from an agarose gel and purified using a

PCR purification kit (CWBiotech, Beijing, China) and cloned into a

PMD-18 T vector system (Takara, Tokyo, Japan). Five positive clones

were randomly selected to sequence in both directions with the ABI

BigDye Terminator v3.1 Cycle Sequencing Kit and an ABI 3100

Genetic Analyzer.
2.4 Molecular characterization

The obtained sequences fragments were assembled by BioEdit

(Hall, 1999) and the consensus sequences were verified as a

microsporidium by a BLAST search. Sequences with high similarity

and those of our interest were retrieved from the GenBank database.

A total of 65 sequences were aligned with Clustal X by the default

setting (Thompson et al., 1997). This alignment was corrected

manually using the alignment editor function within MEGA 6.0

(Tamura et al., 2013). Basidiobolus ranarum (D29946) and

Conidiobolus coronatus (AF296753) were used as outgroups.

Pairwise genetic distances/similarities were calculated using the

Kimura-2 parameter model distance matrix for transitions and

transversions. Phylogenetic analysis was conducted using the

Bayesian inference (BI) in MrBayes 3.2.4. The optimal evolutionary

model was determined to be GTR + I + G by ModelTest 3.7 using

Akaike information criteria. Two independent runs were conducted

with four chains for one million generations. Phylogenetic trees were

sampled every 100 generations. The first 25% of the samples were

discarded from the cold chain (burninfrac = 0.25). Tree was initially

examined in Figtree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/),

edited, and annotated in Adobe Illustrator (Adobe System, San Jose,

CA, USA).

Nucleotide diversity at synonymous and nonsynonymous sites

was estimated by means of the p (Nei, 1987) and qW (Watterson,

1975), applying the Jukes and Cantor correction (Jukes and Cantor,

1969) as implemented in DnaSP 6.0 (Rozas et al., 2017). Tajima’s D

(Tajima, 1989) and Fu’s Fs (Fu, 1997) statistics were calculated in

DnaSP 6.0 and Arlequin 3.5 (Excoffier and Lischer, 2010),

respectively. Genetic differentiation index (Fst) and the

corresponding gene flow (Nm) were estimated with DnaSP 6.0. The

analysis of molecular variance (AMOVA) (Excoffier et al., 1992) was

conducted with Arlequin 3.5. Haplotype networks were performed

with Network 10 (https://www.fluxus-engineering.com/sharenet.

htm) using the Median Joining (MJ) method.

The recombination events were analyzed with RDP4 (Martin

et al., 2015) and SimPlot (Lole et al., 1999). First, the recombination

analysis was implemented in the RDP4 by using the available 7

methods (RDP, 3Seq, GENECONV, BoostScan, MaxChi, Chimaera,
TABLE 1 The primers used for amplifying and sequencing microsporidia
rDNA and Rpb1.

Primer Sequcence (5’-3’) References

V1F CACCAGGTTGATTCTGCCTGAC (Nilsen, 2000)

1492r GGTTACCTTGTTACGACTT (Nilsen, 2000)

HG4F GCGGCTTAATTTGACTCAAC (Gatehouse and
Malone, 1998)

ILSUR ACCTGTCTCACGACGGTCTAAAC (Tsai et al., 2002)

NaRPB1_1F CG(A/G)AAGTGTGTGTTTTTATTG (Ironside, 2007)

NaRPB1_3R GTTTCTGCAGTTTTAATAGCTGTATC (Ironside, 2007)

NAF CACCACCAGCAGTGCGACC Herein

NAR TCTCCCCAACCAACCTC Herein
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and SiScan). Default parameters were used. Detected events

supported by at least three of the 7 methods were considered as

recombination. The recombination events detected by RDP4 were

further analyzed in SimPlot. The final recombination events were

determined after considering both the SimPlot and RDP4 results.
3 Results

3.1 Light microscopy

During sampling, four cladocerans including Diaphanosoma

dubium, Daphnia magna, Daphnia carinata, and Moina micrura

were collected. Among them, microsporidian infection was only

found in the adipose tissue of Diaphanosoma dubium. Under light

microscopy, the infected D. dubium generally appeared opaque due to

numerous microsporidian spore aggregates distributed in the

adipocytes of the host (Figure 2A). The prevalence of infection was

1.1% (20/1835) in Huangshi, 2.3% (8/350) in Yancheng and 2.7% (25/

925) in Wuhan, respectively. Fresh spores isolated from different

locations were oval and the dimension of the spore is identical with

4.02 ± 0.24 (3.63-4.53) µm long and 2.27 ± 0.15 (2.12-2.57) µm wide

(N = 40) (Figure 2B).
3.2 Electron microscopy

Transmission electron microscopy showed that the developmental

stages of this microsporidium isolated from different locations were

similar. The earliest stages observed were multinucleate sporogonial
Frontiers in Cellular and Infection Microbiology 04
plasmodia which resided in direct contact with the host cell cytoplasm

(Figure 2C). Multinucleate sporogonial plasmodia developed into 4-8

uninucleate sporoblasts by rosette-like fission (Figure 2C). At this stage,

electron-dense tubular projections were visible on the surface of

multinucleate sporogonial plasmodia (Figure 2D). Early sporoblasts

were of irregular shape and possessed a large nucleus and some free

ribosomes (Figure 2E). Electron-dense tubular projections could be

observed on the surface of sporoblasts (Figures 3A, 3Ai). In late

sporoblast, the cytoplasm was denser, and the precursor of polar

filament and exospore were seen (Figures 3B, C). Typical spore

organelles were observed within the spores, including anchoring disk,

polar filaments, polaroplast, the trilaminar spore wall, and posterior

vacuole. Mature spores were pyriform and resided in direct contact

with the host cell cytoplasm (Figures 3D, G). The bipartite polaroplast

consisted of a tightly packed anterior lamellae and a loosely aligned

posterior lamellae (Figure 3E). Isofilar polar filament coiled 9-11 turns

and arranged in 2-3 rows. The polar filament measured 112–153 nm in

diameter, and exhibited six discontinuous density concentric circles

(Figure 3F). The spore wall consisted of a 50-59 nm wide layered

exospore, and electron-lucent endospore 97-132 nm wide (Figure 3F).

The exospore contained two layers, including the electron-moderate

layer and electron-dense coat of tubular projections (Figure 3H). Spore

organelles were surrounded by a plasma membrane of 8-12 nm wide.
3.3 Molecular characterization

The SSU rDNA sequences of the microsporidia infecting D.

dubium collected from 3 different locations were deposited in

GenBank under accession numbers OP859151-OP859153. Their
FIGURE 2

Microscopic observation of Neoflabelliforma dubium n. sp. (A) Infected Diaphanosoma dubium appears opaque, scale bar = 100 mm. (B) Fresh spores
liberated from infected D dubium, scale bar = 10 mm. (C) Multinucleate sporogonial plasmodia developed into sporoblasts by rosette-like budding, scale
bar = 2 mm. (D) The magnification of the electron-dense tubular projections on the cell plasma membrane, scale bar = 1 mm. (E) Five irregular
sporoblasts were direct contact with the host cell cytoplasm, scale bar = 100 mm.
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concatenated partial SSU, complete ITS and partial LSU was assigned

with accession numbers OP881373-OP881375. Sequence analysis

showed that SSU sequences obtained from the daphnids collected

from different locations were of high identity (with 99.41%-99.85%

identity) (Table 2). Therefore, based on the morphological and high

SSU sequence identity, these microsporidia belong to the same

species. BLAST searches using the obtained SSU rDNA sequences

indicated that the closest relative to our finding was Neoflabelliforma

aurantiae, a freshwater oligochaete-infecting microsporidium (with

96.42%-96.79% identity). The pairwise distances/similarities

calculated by Kimura 2-parameter model between SSU rDNA
Frontiers in Cellular and Infection Microbiology 05
sequences of this novel and 9 other related microsporidia ranged

from 0.0038/99.62% (between the new microsporidium collected

from Huangshi OP859151 and the novel microsporidium collected

from Wuhan OP859152) to 0.4371/56.29% (between N. aurantiae

GQ206147 and Anncaliia meligethi AY894423) (Table 3). To further

explore the possible genetic variation among 3 isolates of the novel

microsporidium, their full ITS and partial LSU rDNA sequences

comparison analysis were performed. Results indicated that the

between-isolates genetic variation among the ITS and LSU

sequences was not distinct (Table 2). The phylogenetic analysis

based on the obtained SSU rDNA sequence indicated that these 3

isolates of the novel microsporidium clustered firstly with N.

aurantiae, and then formed a sister group with an unidentified

microsporidium from the soil, which collectively formed a solitary

basal branch of the clade 4 (Figure 4).
3.4 Genetic diversity

To further explore the genetic diversity of the present species,

Rpb1 gene sequences were successfully amplified for all 3 isolates, and

the obtained sequences were deposited in GenBank under accession

numbers OP852430-OP852444. Five sequences per isolate were
FIGURE 3

Electron microscopy of Neoflabelliforma dubium n. sp. (A) An early sporoblasts contained a large nucleus, scale bar = 1 mm. (Ai) The magnification of the
electron-dense tubular projections on the surface of sporoblasts, scale bar = 500 nm. (B) A sporoblasts with denser cytoplasm, scale bar = 500 nm.
(C) A late sporoblasts showed the polar filaments and an oval nucleus, scale bar = 1 mm. (D) Mature spores contained a mushroom-shaped anchoring
disc, isofilar polar filament, a vacuole, a bipartite polaroplast, a large nucleus, and a trilaminar spore wall, scale bar = 1 mm. (E) The magnification of
bipartite polaroplast showing narrow lamellae and wide lamellae, scale bar = 500 nm. (F) Magnification of transverse section of polar filaments showing
six discontinuous concentric circles, spore wall including an electron-dense exospore and an electron-translucent endospore, scale bar = 100 nm.
(G) Mature spores residing in direct contact with the host cell cytoplasm, scale bar = 5 mm. (H) Magnification of the exospore showing two distinct layers,
scale bar = 100 nm.
TABLE 2 Percentage of sequence similarity of the rDNA of the
Neoflabelliforma dubium n. sp. isolated from different geographical
locations.

Locations Gene

SSU ITS LSU

HS vs WH 99.85 97.83 99.31

HS vs YC 99.41 97.83 99.27

WH vs YC 99.56 100 99.44
HS, Huangshi, WH, Wuhan, YC, Yancheng.
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obtained, with 15 sequences totally. The alignment of the 15

sequences revealed 89 polymorphic sites, among which included 88

transitions and 10 deletions (Figure 5). To explore the relationship

between sequences and isolates, a haplotype network was constructed.

Results clearly indicated that haplotypes isolated from the same

isolates did not cluster together (Figure 6). The Rpb1 gene

displayed high level of synonymous variation. The pooled pairwise

nucleotide diversity at synonymous sites (ps) was 8.94 (Table 4).

Differences among different populations were small, indicating that

there are no differences of genetic variation among N. dubium n. sp.

populations. The pooled pA value was 0.47, twenty times lower than

that observed at synonymous sites.

The pooled D at synonymous sites (DS) was 0.14. The estimates of

D at synonymous sites (DS) of different isolates were different, but no

significant difference was observed among different populations. The

pooled D at non-synonymous sites (DA) was -1.85 (p < 0.05),

suggesting an excess of low frequency mutations (Table 4). D values

at nonsynonymous sites of different isolates were also negative, but no

statistically significant differences were observed. Fu’s F neutrality test

was positive for the different isolates, indicating that the population

expansion may not occur (Table 4). In order to further explore the

possible population expansion, we performed a mismatch analysis.

Result indicated that the population showed a multi-peak model

rather than a single peak, demonstrating that there is no population

expansion for N. dubium n. sp. (Figure 7).

The overall Fst and Nm of all isolates were 0.06974 and 6.67,

respectively, suggesting low genetic differentiation and high gene flow

of Neoflabelliforma dubium n. sp. among different populations.

Hangshi isolates and Yancheng isolates had the highest Fst

(0.14781), while Hangshi isolates and Wuhan isolates had the

lowest Fst (-0.00553) (Table 5). The gene flow was the largest

among Wuhan and Yancheng isolates (9.93) and the smallest

among Wuhan and Huangshi isolates (-90.96) (Table 5).

The analysis of molecular variance showed that the major

variance occurred within isolates, up to 93% of the variance.
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Whilst, the difference among isolates was not significant, which

accounted for 7% of the total variance (Table 6).

Only one recombination event supported by the SiScan and

Chimaera as well as 3Seq methods was detected with RDP4. A

recombination event that occurred between OP852434 and

OP852444 led to the generation of recombinant OP852439. A

SimPlot of this recombination event is presented in Figure 8, in

which the sequences OP852444 and OP852434 were used as the

major and minor parental sequences, respectively.

Taxonomic summary

Name: Neoflabelliforma dubium n. sp.

Genus: Neoflabelliforma

Type host species: Diaphanosoma dubium (Crustacea: Sididae)

Type locality: Eutrophic ponds of Huangshi city, Hubei province,

China (30° 17′46.49′′ N, 114° 44′8.53′′ E), Jinyin Lake of Wuhan city,

Hubei province (30° 38′21.35′′ N, 114° 11′28.64′′ E), and Yanlong

Lake of Yancheng city, Jiangsu province, China (33° 20′0.43′′ N, 120°

1′39.65′′ E).

Site of infection: Adipose tissue.

Sporogony: Uninucleate sporont was not observed, multinucleate

sporogonial plasmodia with isolated nuclei. Sporoblasts are formed by

rosette-like budding of sporogonial plasmodia.

Spore: Oval spores are uninucleate, 4.02 ± 0.24 (3.63-4.53) µm

long and 2.27 ± 0.15 (2.12-2.57) µm wide. Isofilar polar filaments coil

13-17 turns and arrange in 2-3 rows. The polaroplast is bipartite with

narrow anterior lamellae and loose posterior lamellae. The spore wall

consists of a 50-59 nm thick electron-dense exospore and a 97-132

nm thick electron-lucent endospore. The exospore consisted of two

layers, including the electron-moderate layer and electron-dense layer

of tubular projections.

Type material: Syntype specimens of TEM resin blocks were

deposited in the Museum of Hydrobiological Sciences, Institute of

Hydrobiology, Chinese Academy of Sciences with accession number

of MTR20221001.

Etymology: The species name relates to host species name.
TABLE 3 Pairwise nucleotide sequence identity (upper right) values and evolutionary distances (left bottom) among Neoflabelliforma dubium n. sp.
isolates and 9 other microsporidium species with high sequence similarity by Kimura-2 Parameter analysis based on SSU rDNA sequences.

Species 1 2 3 4 5 6 7 8 9 10 11 12

1. Neoflabelliforma dubium n. sp. OP859151 99.62 99.31 96.40 72.53 69.25 68.12 65.81 64.50 62.32 57.18 56.70

2. Neoflabelliforma dubium n. sp. OP859152 0.0038 99.54 96.72 72.66 69.14 68.01 65.97 64.65 62.48 57.58 57.06

3. Neoflabelliforma dubium n. sp. OP859153 0.0069 0.0046 96.32 72.66 69.01 67.88 65.97 64.54 62.34 57.16 56.87

4. Neoflabelliforma aurantiae GQ206147 0.0360 0.0328 0.0368 72.31 69.35 68.22 66.66 64.12 62.53 56.57 56.29

5. Naidispora caidianensis OL583677 0.2747 0.2734 0.2734 0.2769 69.69 68.83 69.80 71.34 70.28 60.08 59.06

6. Hamiltosporidium tvaerminnensis GQ843833 0.3075 0.3086 0.3099 0.3065 0.3031 99.01 63.20 63.73 63.96 60.28 59.19

7. Hamiltosporidium magnivora AJ302319 0.3188 0.3199 0.3212 0.3178 0.3117 0.0099 62.07 62.77 62.74 59.26 57.80

8. Bryonosema plumatellae AF484692 0.3419 0.3403 0.3403 0.3334 0.3020 0.3680 0.3793 79.59 82.02 64.86 62.05

9. Bacillidium branchilis ON054959 0.3550 0.3535 0.3546 0.3588 0.2866 0.3627 0.3723 0.2041 84.30 64.75 59.06

10. Bacillidium vesiculoformis AJ581995 0.3768 0.3752 0.3766 0.3747 0.2972 0.3604 0.3726 0.1798 0.1570 62.96 62.92

11. Tubulinosema acridophagus AF024658 0.4282 0.4242 0.4284 0.4343 0.3992 0.3972 0.4074 0.3514 0.3525 0.3704 73.90

12. Anncaliia meligethi AY894423 0.4330 0.4294 0.4313 0.4371 0.4094 0.4081 0.4220 0.3795 0.4094 0.3708 0.2610
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Gene sequences: Depositing in GenBank under accession

numbers of OP859151-OP859153, OP881373-OP881375 and

OP852430-OP852444.
4 Discussion

The morphological features of the novel microsporidium are

s imilar to the diagnost ic character is t ics of the genus

Neoflabelliforma, isolated nuclei in life stages, isofilar polar filament

arranging in several rows in the middle of the spore and one row at

posterior, multilayered exospore, lamellar polaroplast, and the

precursor of exospore associating with the dense tubular secretions

on the surface of sporogonial plasmodia (Morris and Freeman, 2010).

Only one Neoflabelliforma species has been reported previously, i.e.
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N. aurantiae infecting the Tubifex tubifex and hyperparasitising the

concurrent Aurantiactinomyxon-type myxosporean released from

Tubifex tubifex (Morris and Freeman, 2010). The morphological

comparison between the present species with N. aurantiae is

summarized in Table 7. N. dubium n. sp. can be easily

differentiated from N. aurantiae by its greater size (4.02 × 2.26 vs.

3.4 × 1.9), different number of polar filament coils (9-11 vs. 15), and

different number of exospores layers (2 vs. 3). Moreover,N. dubium n.

sp. possesses a bipartite polaroplast with tightly packed anterior

lamellae and a loosely aligned posterior lamellae, rather than

packed lamellar polaroplast, as in the case of N. aurantiae. In

addition, the development of N. dubium n. sp. was in direct contact

with the host cell cytoplasm, rather than within sporophorous vesicles

which was the one of the diagnostic characteristics of the genus

Neoflabelliforma. Similar phenomenon has been found in the genus
FIGURE 4

The SSU rDNA-inferred phylogenetic tree of Neoflabelliforma dubium n. sp. and the other aligned microsporidian species by Bayesian Inference method.
Posterior probabilities were shown on branch nodes. The present species was indicated in bold.
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Liebermannia (Sokolova et al., 2009), Neoperezia (Issi et al., 2012) and

Ovipleistophora (Weng et al., 2021b), suggesting that presence of

sporophorous vesicles referred from the type species maybe not be the

re l i ab l e taxonomic cr i t e r ion o f these genera due to

morphological plasticity.

The average levels of synonymous diversity (ps) of N. dubium n.

sp. were about 8% at the Rpb1 gene, which was much higher than all

previously reported species, such as Vairimorpha apis (1.68%) and V.

ceranae (1.58%) (Maside et al., 2015; Tokarev et al., 2020), suggesting

that N. dubium n. sp. possesses substantial variation at this locus.

Compared to high level diversity at synonymous sites, non-

synonymous variation was much lower. The similar findings were

previously reported in some invertebrates-infecting species based on
Frontiers in Cellular and Infection Microbiology 08
the same molecular marker, such as V. apis, V. ceranae (Maside et al.,

2015; Tokarev et al., 2020), and N. bombycis (Ironside, 2013). These

results demonstrated that amino acid mutations can be removed in

these species, revealing that Rpb1 gene is maintained by

purifying selection.

Though the DS values among different populations were not

significantly negative, the pooled DS value reached a statistically

significant negative, reflecting that N. dubium n. sp. may have

undergone recent population expansion, as previously reported in

V. ceranae (Maside et al., 2015; Tokarev et al., 2020). However, Fu’s FS
test produced a positive value, which means that N. dubium n. sp. has

not experienced population expansion. The lack of population

expansion is also demonstrated by the multi-peak model of the
FIGURE 6

Median-joining haplotype network of Rpb1 sequences from Neoflabelliforma dubium n. sp. isolates. Yellow, blue and green circles represent haplotypes
obtained from different locations (Huangshi, Wuhan and Yancheng, respectively). Red circle indicates median vectors.
FIGURE 5

Haplotypes of the Rpb1 fragment of Neoflabelliforma dubium n. sp. showing only the polymorphic sites.
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Mismatch analysis. Taken together, it can be concluded that no

population expansion occurred in N. dubium n. sp. Based on the

present result, we found that Fu’s FS is a more sensitive indicator of

population expansion than Tajima’s D, which is consistent with

previous report in V. ceranae based on the multi-loci sequences

analysis (Roudel et al., 2013; Tokarev et al., 2020).

The low Fst indices and high Nm suggested the lack of population

divergence among N. dubium n. sp. isolates from different locations.

Moreover, the analysis of molecular variance revealed that the major

variance occurred within isolates, rather than among isolates, which

further reinforced this finding on population relatedness. A similar

finding was previously reported in V. ceranae based on multiple

molecular markers, such as PTP2, PTP3 and RPB1 (Gomez-Moracho

et al., 2015; Maside et al., 2015; Tokarev et al., 2020). The recent

worldwide expansion is the reason to explain the lack of genetic

divergence of N. ceranae. Frequent gene flow among there studied

isolates of the novel species from the same watershed can partially

explain why there is no population divergence among N. dubium n.

sp. isolates.

Interestingly, the genetic recombination was detected in N.

dubium n. sp., suggesting that N. dubium n. sp. may undergo a

meiotic phase in the life cycle. However, ultrastructural observations

showed that isolated nuclei were found throughout the sporogony of
Frontiers in Cellular and Infection Microbiology 09
N. dubium n. sp., and no diplokaryotic cells were observed, indicating

that the meiotic process was not proven by cytological observations.

Similar results have also been reported in some daphnia-infecting

microsporidian species, such as Berwaldia schaefernai (Gonzalez-

Tortuero et al., 2016) and Hamiltosporidium magnivora (Haag

et al., 2013). The presence of meiotic spores in the secondary host

may be the possible reason for the lack of the meiotic stage in daphnia

hosts. The presence of meiosis and sexual reproduction has been

reported in the definitive hosts of microsporidian species with multi-

host lifecycles, such as Amblyospora spp. (Sweeney et al., 1990) and

Hyalinocysta spp. (Andreadis and Vossbrinck, 2002). N. aurantiae,

the type species of the genus Neoflabelliforma, which infects the

oligochaete Tubifex tubifex and Aurantiactinomyxon-type

myxosporean (Morris and Freeman, 2010). Thus the infection of N.

dubium n. sp. in the daphnid Diaphanosoma dubium extended the

host range of Neoflabel li forma species , suggesting that

Neoflabelliforma spp. possibly have a multi-host lifecycle. Therefore,

further studies are required to disclose the lifecycle of the

Neoflabelliforma species. Studying the genetic diversity of

populations is essential for understanding how species evolve.

Although high genetic diversity has been reported in Microsporidia,

especially for some insect-infecting species (Gomez-Moracho et al.,

2015; Hassan et al., 2020), little is known about the genetic diversity in
FIGURE 7

Mismatch distributions of Neoflabelliforma dubium n. sp. population based on the Rpb1 gene.
TABLE 4 Nucleotide diversity, Tajima’s D, and Fu’s Fs based on Rpb1 of Neoflabelliforma dubium n. sp.

Origin N Synonymous Non-synonymous Fu’s Fs

ps qWS DS pA qWA DA

HS 5 9.28 9.19 -0.38 0.51 0.58 -0.89 0.78

WH 5 8.89 NA 0.03 0.51 NA -1.16 0.65

YC 5 7.42 NA -0.18 0.63 NA -0.95 0.53

Total 15 8.94 NA 0.14 0.47 NA -1.85* 0.65
fron
N, number of sequences; HS, Huangshi, WH, Wuhan, YC, Yancheng; ps and pA, pairwise nucleotide diversity at synonymous and nonsynonymous sites expressed as percentage, respectively; qWS and
qWA, nucleotide site variability based on the number of synonymous and nonsynonymous segregating sites expressed as percentage, respectively; DS and DA, Tajima’s D at synonymous and
nonsynonymous sites, respectively; NA, not available; statistical significance of Tajima´s D, *P<0.05.
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aquatic microsporidian species. In the present study, we proved the

high level of genetic diversity of Rpb1 sequences of N. dubium n. sp.

isolates, which is coincident with previously reported species, such as

Vairimorpha apis (Maside et al., 2015), V. ceranae (Gomez-Moracho

et al., 2014; Tokarev et al., 2020) and N. bombycis (Ironside, 2013).

However, the mechanisms underlying the presence of high genetic

diversity of the single copy gene within isolates remain unknown. The

presence of diploidy or polyploidy in these species was one of the

possible factors to explain it. Pelin et al. (2015) found that the high

genetic diversity within isolates resulted from the presence of

polyploidy in V. ceranae. In addition, Watson et al. (2015) found

that high level of single nucleotide polymorphism is because

Trachipleistophora hominis is diploid at some stage of its lifecycle.

Though the developmental stages of N. dubium n. sp. are uninucleate,

several unikaryotic microsporidia has been proved to be diploid, such

as Hamiltosporidium tvaerminnensis (Haag et al., 2013), Nematocida

parisii (Cuomo et al., 2012), and Encephalitozoon cuniculi (Selman et

al., 2013). The occurrence of recombination in N. dubium n. sp.

further proves its possible diploidy or polyploidy. Therefore, the high

genetic diversity in N. dubium n. sp. isolates could be due to the

presence of diploid nuclei and recombination events.

In terms of the phylogenetic position of the genus

Neoflabel l i forma , the previous analys i s indicated that

Neoflabelliforma aurantiae formed a solitary branch between the

identified clades (Dubuffet et al., 2021; Park and Poulin, 2021).
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Recent phylogenetic analysis showed that N. aurantiae clustered

firstly with Hamiltosporidium magnivora, and then formed a sister

group with a late evolutionary branch consisting of Astathelohania

contejeani and Areospora rohanae, which collectively formed an

independent branch (Bojko et al., 2022). So, the natural

phylogenetic position of Neoflabelliforma spp. remains unresolved.

The present phylogenetic analysis indicated that two available

Neoflabelliforma species clustered with Microsporidium sp. isolated

from the soil to form a solitary basal branch of clade 4 defined by

Vossbrinck and Debrunner-Vossbrinck (2005), which was consistent

with the previous report (Ardila-Garcia et al., 2013). So, our result

supports that that the genus Neoflabelliforma is monophyletic. Given

the low sequence similarity (less than 80%) between Neoflabelliforma

spp. and the reported microsporidian species, and the closest

sequence of Neoflabelliforma spp. isolated from the soil sampled in

the Pacific Northwest, it can be suspected that high diversity of

microsporidian species in this branch waits to be uncovered. Taken

together, considering the special phylogenetic position of the genus

Neoflabelliforma in the microsporidian systematics and high diversity

of aquatic microsporidia, it can be supposed that Neoflabelliforma

spp. could represent an independent clade among the

microsporidian taxonomy.

Ribosomal DNA genes have been widely used for species

identification and phylogenetic reconstruction of the Microsporidia

for it is highly conserved. However, recent research showed that the
TABLE 6 Analysis of molecular variance (AMOVA) of Neoflabelliforma
dubium n. sp. based on Rpb1 gene.

Source of variation d.f. SS VC % var P

Among isolates 2 30.93 0.84 6.97 ns

Within isolates 12 135.00 11.25 93.03 ns

Total 14 165.93 12.09
frontiersin
d.f., degrees of freedom; SS, sum of squares; VC, variance components; % var, percentage of
variation; P, probability of a random variance component value ≤ observed value; ns, non-
significant.
TABLE 5 Pairwise genetic differentiation (Fst: left bottom) and gene flow
(Nm: upper right) among Neoflabelliforma dubium n. sp. isolates based on
Rpb1 gene.

Region HS WH YC

HS – -90.96 2.88

WH -0.00553 – 9.93

YC 0.14781 0.05639 –
HS, Huangshi, WH, Wuhan, YC, Yancheng.
FIGURE 8

Simplot evidence for recombination event. Recombination analysis of the OP852439. The recombinant breakpoints were located at 601 bp and 681 bp.
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ribosomal DNA genes are highly variable in some microsporidian

species (O'Mahony et al., 2007; Sagastume et al., 2011; Liu et al.,

2013). In the present study, we found that the rDNA (including SSU,

ITS and LSU) sequences are highly conserved in all three N. dubium

n. sp. isolates, which are similar to some daphnid-infecting

microsporidian species (Vávra et al., 2018), rather than some

insect-infecting microsporidian species (Sagastume et al., 2011; Liu

et al., 2013). The conservative rDNA may be the result of the

concerted evolution for these microsporidia species (Ironside,

2013). These results indicate that SSU, ITS and LSU rDNA are

suitable molecular markers for the identification of N. dubium n. sp.

In summary, we characterized a novel microsporidian species,

nominated as Neoflabelliforma dubium n. sp. from the adipose tissue

of Diaphanosoma dubium in the middle and lower reaches of the

Yangtze River. Genetic analysis referring from Rpb1 sequences

indicated that sexual reproduction possibly occurred in N. dubium

n. sp., and its life cycle possible involve several hosts.
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TABLE 7 Morphological comparison of Neoflabelliforma dubium n. sp. with Neoflabelliforma aurantiae.

Characters Neoflabelliforma dubium n. sp. Neoflabelliforma aurantiae

Host Diaphanosoma dubium Tubifex tubifex Aurantiactinomyxon-type myxosporean

Infected site Adipose tissue Various tissue of oligochaete, binucleate cells of myxosporean

Spore shape Ovoid Ovoid

Spore size (µm) 4.02 × 2.26 3.4 × 1.9

Polar filament type, number Isofilar, 9-11 coils Isofilar, 15 coils

Polaroplast Closely packed anterior and wider posterior lamellae Closely packed lamellae

Exospore Two-layered Three-layered

Parasite-host interface Direct contact with host cell cytoplasm Presence of sporophorous vesicle

References (Herein) (Morris and Freeman, 2010)
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