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Mesoporous silica nanoparticles (MSNs) hold promise as safer and more effective

medication delivery vehicles for treating oral disorders. As the drug’s delivery

system, MSNs adapt to effectively combine with a variety of medications to get

over systemic toxicity and low solubility issues. MSNs, which operate as a common

nanoplatform for the co-delivery of several compounds, increase therapy

effectiveness and show promise in the fight against antibiotic resistance. MSNs

offer a noninvasive and biocompatible platform for delivery that produces long-

acting release by responding to minute stimuli in the cellular environmen. MSN-

based drug delivery systems for the treatment of periodontitis, cancer, dentin

hypersensitivity, and dental cavities have recently been developed as a result of

recent unparalleled advancements. The applications of MSNs to be embellished by

oral therapeutic agents in stomatology are discussed in this paper.

KEYWORDS
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1 Introduction

Mesoporous silica nanoparticles (MSNs) have drawn a lot of interest as novel therapeutic

nanocarriers because of their ability to release a variety of drugs at the desired place in response

to external stimuli. MSNs are more advantageous choices for drug loading as compared to other

nanocarriers because of their tunable morphologies, mesostructures, and porosities, as well as

their superior biocompatibility and simplicity of functionalization. Furthermore, mesoporous

materials' high surface areas and large pore volumes enable them to hold more medications or

molecules (Figure 1A, B). Thanks to their advantage in functionalization, they also provide new
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2023.1124411/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1124411/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1124411/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1124411/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2023.1124411&domain=pdf&date_stamp=2023-02-14
mailto:liufeidentist@163.com
mailto:wangsupingdent@163.com
https://doi.org/10.3389/fcimb.2023.1124411
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2023.1124411
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Fang et al. 10.3389/fcimb.2023.1124411
opportunities for medicinal synthesis in combination with other drugs.

As a result, drug transfection into specific areas dramatically reduces side

effects, and higher drug loading directly enhances therapeutic benefit.

MSNs, one of the most promising nanocarriers, also have other

exceptional benefits, including easy and affordable production,

stability, dissolvability, biocompatibility, and biodegradability. With all

of these attributes, MSNs give medications the needed solubility and

stability in solution. This delivery system responds to particular micro-

circumstances (such as pH, temperature, light, andmagnetic and electric

fields), which are the foundation of innovative treatment approaches in

stomatology (Figure 1C). Targeted delivery also exhibits an effective and

safe therapeutic strategy by greatly increasing the drug concentration in

the treatment region and reducing the negative effects on adjacent

normal tissue. Highly cytocompatible MSNs make it possible to load

drugs in the following fields: 1) Combination with different drugs to

improve their poor performance and allow responsive drug delivery

simultaneously. 2) Provide the shared nanoplatform of drugs to control

biofilm and cure infectious diseases synergistically while avoiding drug

resistance. 3) Provide multiple medications with a shared nanoplatform

to address conditions such as tumors and dental hypersensitivity. 4)

MSNs with excellent surface properties and porosity have proven to be

attractive bioactive materials for bone regeneration. Targeted delivery

and biocompatibility extend the utilizing scope of MSNs. The recent

research developments on MSNs and the biological uses of MSNs in

stomatology, including antibiofilm, antitumor, reducing dentin

sensitivity, and stimulating osteogenesis for bone regeneration, are

summarized here.
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2 Mesoporous silica nanoparticles as
the vehicle for oral drugs

2.1 Mesoporous silica nanoparticle as a
vehicle for chlorhexidine
As well as Gram-positive and Gram-negative organisms,

chlorhexidine (CHX) is effective against a variety of fungi, facultative

anaerobes, and aerobes. CHX adheres to the microorganism’s cell wall

and causes a leaking of internal components, which is how it works

(Fardal and Turnbull, 1986). CHX is regarded as the “gold standard” to

assess the antibacterial effect due to its broad-spectrum antibacterial

activity, and its application has been thoroughly investigated, for

instance, in mouthwash, dentin adhesives, and repair supplies.

Previous in vitro and in vivo research has shown that MSNs have a

promising capacity as a drug delivery vehicle for antibacterial agents

(Hetrick et al., 2009; Slomberg et al., 2013). In order to enhance the

antibiofilm efficiency and lengthen the antibacterial duration, CHX was

encapsulated into MSNs. CHX@MSNs were able to penetrate the

Streptococcus mutans biofilm matrix and closely interact with

microbes to improve the antibiofilm efficiency (Li et al., 2016). CHX

released from CHX@MSNs inhibited biofilms even after 50 h.

Additionally, the bacterial resistance to CHX was overcome by

adding additional drugs to MSNs to produce synergistic antibacterial

effects (Lu et al., 2017; Lu et al., 2018). Moreover, CHX@MSNs were

modified into dentin adhesives to reduce cariogenic bacteria and
FIGURE 1

(A) Mesoporous silica nanoparticle (MSN). (B) MSN as a vehicle for drugs. (C) The agent’s release of drug-loaded MSNs.
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impede biofilm permeation because a cariogenic bacteria-created acidic

environment might cause pH-sensitive CHX@MSNs to release CHX

(De Munck et al., 2009; Akram et al., 2021). According to recent

findings, MSNs had great potential in dental restorative materials.

CHX@MSNs could carry significant CHX when added to glass

ionomer cement or composites, which boosted their antibacterial and

antibiofilm activities without sacrificing their mechanical performance

(Zhang et al., 2014; Yan et al., 2017). In contrast, directly mixing CHX

into composites resulted in a burst release over a short period of time

and produced a porous surface that encouraged bacterial adhesion and

biofilm formation. Furthermore, MSNs can also serve as a co-delivery

platform for simultaneously loading different agents to combat drug

resistance. CHX-loaded silver (Ag)-decorated MSNs (Ag-MSNs@

CHX) have been shown to exert more effective antibiofilm effects and

remarkably reduce the toxicity of CHX in oral epithelial cells (Lu et al.,

2017; Lu et al., 2018).
2.2 Mesoporous silica nanoparticle as a
vehicle for silver nanoparticles

Ag nanoparticles (AgNPs) are frequently employed in

stomatology because they can enter cells through their membranes

and cause cell lysis. The electrostatic adsorption between the bacterial

cell wall and AgNPs might kill bacteria by preventing the synthesis of

proteins and deactivating respiratory enzymes (Santos-Beneit, 2015;

Khubchandani et al., 2022). For a wider variety of applications,

AgNPs were added to denture materials or orthodontic adhesives

(Monteiro et al., 2009). For instance, Ag had been directly mixed into

polymethylmethacrylate (PMMA); however, the addition did not

confer materials with better mechanical properties and long-lasting

antibacterial effects (Mohamed Hamouda, 2012). MSNs protected

AgNPs from aggregation, and the controlled drug release lessened the

cytotoxicity of AgNPs (Lok et al., 2007; Chen et al., 2016; Jin et al.,

2018; Liu et al., 2018). Therefore, they were employed as nanocarriers

to load AgNPs (Ag-MSNs) and then incorporated with PMMA,

which showed sustained flexural strength and microbial anti-

adhesive effects for 14 days (Jo et al., 2017). AgNPs had also

worked with remineralization agents to stop dental caries (Carrouel

et al., 2020). MSNs coated with bioactive glasses (BAGs) induced

dentinal tubule occlusion and remineralization, and the addition of

AgNPs would give BAG-coated MSNs antibacterial capabilities. Ag-

MSN-based nanomaterials showed considerable promise in the

treatment of dentin hypersensitivity and caries prevention, since

Ag-BAG@MSN efficiently blocked the dentinal tubule following the

acid challenge and inhibited the growth of bacteria (Tian et al., 2014;

Jung et al., 2019). MSNs provide Ag with great stability, sustained

antibacterial efficacy, and significant safety. The antimicrobial

effectiveness of AgNPs is increased, and the utilization range is

expanded after being loaded into MSNs.
2.3 Mesoporous silica nanoparticle as a
vehicle for quaternary ammonium salts

Through electrostatic interaction, quaternary ammonium salts

(QASs) cling to the negatively charged bacterial cell membrane and
Frontiers in Cellular and Infection Microbiology 03
kill bacteria in contact by integrating a hydrophobic alkyl tail into the

lipid bilayer of the membrane (Zhang et al., 2018). They are

frequently used in dental materials including dental adhesives, pit

and fissure sealants, and dental implants. However, the contact-killing

mechanism will not work if bacteria do not come into direct contact

with materials, and the protein linked to the surface of the material

will further reduce the killing effectiveness. A way to enhance the

antibacterial activity is to exploit the synergistic effect by putting dual

drugs on the same nanovehicle. MSNs are frequently employed in

drug-loading fields because of their excellent drug-loading capacity

and biocompatibility as well as their easily functionalized surface.

MSNs decorated by Ag and QAS (Ag/QAS-MSNs) were created to

combat head and neck cancers (HNCAs) and follow-up infections

simultaneously in light of the antibiofilm and anticancer capability of

Ag and QASs (Ito et al., 2009; Meena et al., 2017; Tang and Zheng,

2018; Deshmukh et al., 2019; Ahn and Park, 2020; Eid et al., 2020;

Zhang et al., 2022). The findings showed that Ag/QAS-MSNs

prevented the formation of bacterial colonies for at least 14 h

mostly as a result of the sustained release of Ag+ and QAS from

Ag/QAS-MSNs, which directly caused membrane damage and cell

death. Comparing Ag/QAS-MSNs to QAS-MSNs, bare AgNPs, and

pure QAS, Ag/QAS-MSNs also demonstrated the greatest

antibacterial activity in a concentration-dependent manner (Zhang

et al., 2022). AgNPs@MSNs treated with quaternary ammonium

polyethyleneimine (QPEI), one of the QASs, were able to overcome

the electrostatic repulsion between AgNPs and bacteria. Results

revealed that compared to Ag@MSNs and QPEI alone, Ag@MSN-

QPEI had greater antibacterial activity and a longer bactericidal

duration (Niu et al., 2021; Zhou et al., 2021). MSNs have a

potential future in the treatment of HNCA with higher antibacterial

activity against follow-up infections as vehicles for QASs to co-deliver

other drugs.
2.4 Mesoporous silica nanoparticle as a
vehicle for curcumin

Curcumin has outstanding antibiofilm, anti-inflammatory, and

antitumor activities. It prevents S. mutans from adhering to

extracellular matrices and tooth surfaces, perturbing membrane

integrity and inducing entocyte leakage of Streptococcus (Tyagi

et al., 2015; Pamukcu et al., 2022). Curcumin was safe enough, and

oral treatment did not cause reproductive toxicity in humans even at

500 mg twice daily for 30 days (Soleimani et al., 2018). However, the

insolubility in water, limited bioavailability, and instability in the

biological environment of curcumin hampered its therapeutic use.

Recently, studies had focused on curcumin-loaded MSNs (Cur-

MSNs) due to their abilities to overcome the mentioned constraints

of curcumin with a high encapsulation efficiency, protecting

curcumin from premature leakage and providing a controlled drug

release (Ribeiro et al., 2022). Numerous studies had been conducted

to demonstrate both their effect on the infections and their use in

cancer therapy. Due to the MSNs’ capacity to penetrate the matured

biofilm matrix, curcumin can destroy the developed biofilms and

suppress the development of biofilms with lower required doses and

higher cytocompatibility after being repurposed by MSNs (Pamukcu

et al., 2022). As the shared nanocarrier, MSNs could combine several
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antimicrobial components to increase antimicrobial impact. The

compounds that AgNPs decorated and curcumin-charged MSNs

were characterized by low hemolytic action and persistent growth-

inhibiting impact on Staphylococcus aureus and Escherichia coli (Song

et al., 2020). Furthermore, curcumin reduced the proliferation of

tumor cells via targeting molecules expressed by cancer-relevant

genes and increasing the production of intracellular reactive oxygen

species (ROS) (Shanmugam et al., 2015; Hafez Ghoran et al., 2022).

MSNs easily enter cells through phagocytosis, and the numerous

silanol groups on their surface enable the controllable curcumin

release, showing greater potential in reducing tumor cell

proliferation (Liu et al., 2018; Zhou et al., 2018). Compared with

free curcumin, Cur-MSNs showed higher cytotoxicity in HNCA cells

(Sharifi et al., 2022). Additionally, targeted distribution by hyaluronic

acid (HA)-modified or -aminated MSNs had improved anticancer

efficacy in breast cancer cells and colon cancer cells (Ghosh et al.,

2021; Liu et al., 2022). These studies demonstrated that curcumin had

a stronger effect on bacteria and tumor after loading into MSNs.
3 The prospective application of
mesoporous silica nanoparticles
in stomatology

3.1 Dental caries

S. mutans is the predominant etiological pathogen that firmly

adheres to tooth surfaces and plays a critical role in generating an

acidic environment. This environment ensures the development of

biofilms, demineralization of the teeth, and the onset of dental caries.

CHX@MSNs that were synthesized by loading CHX in functionalized

MSNs showed a long-term and stimuli-responsive release of agents,

meaning that the lactic acid produced by S. mutans might burst the

release of CHX from MSNs (Zhang et al., 2014; Lu et al., 2018).

Secondary caries is the primary cause of dental composite repair

failure. Dental composites releasing antibacterial agents effectively

reduced secondary caries and inhibited cariogenic biofilms, which

could extend the service life of composite restorations. Therefore,

incorporating CHX@MSNs into experimental resin-based dentin

adhesives and dental composite showed potent inhibition of

planktonic growth and biofilm formation with excellent bonding

strength and least nanoleakage. Compared with directly mixing

CHX into composites, composites containing CHX@MSNs largely

kept their mechanical properties and smooth surfaces, resulting in the

accumulation of very few planktonic bacteria with deformed

membranes on the surface of composite resin (Zhang et al., 2014;

Akram et al., 2021). Adding zinc (Zn) to dental resin composites has

attracted more and more attention, since it has no adverse effects on

the esthetic performance of the resins. However, the release of Zn

from zinc oxide (ZnO) might lead to the destruction of the ZnO fillers

and impair the composition’s mechanical properties, and the

difficulty in releasing Zn sustainably may have an impact on the

composition’s long-term antibacterial performance (Wang et al.,

2019). The prepared Zn-MSNs effectively address the mentioned

problems with improved the mechanical and antibacterial

properties of the dental resin composites (Alvarez et al., 2021). In
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addition, the presence of Zn-MSNs has no detrimental effect on the

conversion, shrinkage, curing depth, and biocompatibility of dental

resins, indicating the potential of MSNs in dental compositions that

transport agents (Bai et al., 2020).
3.2 Dentin hypersensitivity

Dentin hypersensitivity is characterized by rapid acute pain in

response to thermal, chemical, and physical stimulation. Dentin

exposure from abrasion, acid erosion, and gingival recession results

in dentin hypersensitivity. According to the most widely recognized

theory—hydrodynamic theory—obturating the exposed dentinal

tubules with biomaterials to lessen the flux will be effective in

treating dentin hypersensitivity.

Acid resistance is necessary for biomaterials to maintain their

stability over time in the face of everyday acid erosion, which may be

impacted by the depth of ions deposited in tubules. The biomedical

fields have extensively used small and well-dispersed MSNs that were

packed with remineralization agents and deeply infiltrated into

dentinal tubules without compromising dentin bond strength

(Zhang et al., 2018). Nano-hydroxyapatite (nHAp) acted as the Ca2

+ and PO4
3− reservoir that can facilitate crystal deposition and

formation in demineralized portions of teeth. The dentinal tubules

were blocked by the nHAp@MSN, which also prevented nHAp from

dissolving without impairing the microtensile bond strength (MTBS)

(Yu et al., 2016). However, applying remineralization agents alone

would not be sufficient to manage the dentin surface, since exposed

dentin was more prone to dental cavities. A natural extract derived

from green tea called epigallocatechin-3-gallate (EGCG), which has

versatile uses as an antibiofilm and anti-inflammatory agent, could be

encapsulated into nHAp@MSNs to prevent caries by eradicating S.

mutans biofilm. EGCG@nHAp@MSN was a multifunctional

biomaterial for dentin hypersensitivity and caries by occluding

dentinal tubules, reducing biofilm formation, and maintaining

favorable acid-resistant stability (Yu et al., 2017). Bioactive

glass nanoparticles (BGNs) relieved the discomfort of dentin

hypersensitivity by occluding dentinal tubules and soft tissue

regeneration (Jung et al., 2019). It was confirmed that the synthetic

biocomposite material Ag-BGNs@MSN, which has a greater surface

area, successfully induces remineralization, exerts antibacterial

capability, and is a useful substance for the treatment of dentin

hypersensitivity (Jung et al., 2019). Since tooth flaws frequently

accompanied dentin discomfort, resin-based repair was required.

Ag-BGNs@MSNs did not inhibit MTBS in in vitro research, but

additional in vivo investigations are still needed to determine whether

or not the material’s characteristics alter.
3.3 Periodontitis

Dental plaque plays a role in the etiology of periodontitis, which

finally results in tooth loss by destroying the tissues supporting the

teeth. However, due to the intricate tooth anatomy, mechanical

debridement by scaling and root planing (SRP) to remove the

subgingival plaque does not entirely eradicate germs, especially in

deep pockets (Warinner et al., 2014; Zupancic et al., 2019). The
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unique therapeutic approach for periodontitis was made possible by

MSNs, which enhanced medication concentration in the targeted

tissue for the stimuli-responsive release and made it easier to kill

bacteria in periodontal pockets (Hayes et al., 2018; Lin et al., 2020). In

earlier research, MSNs were mechanically applied to prevent

infections while being loaded with various chemicals, including

CHX and antibiotics to eliminate biofilms (RR et al., 2019; AL

et al., 2021). The host inflammatory response elicited by the

subgingival dental biofilm also needs to be treated for the resultant

irreversible destruction of the periodontium. Resveratrol (RSV; 3,5,4’-

trihydroxy-trans-stilbene) has strong anti-inflammatory and

antimicrobial effects, but its application is severely constrained by

the poor water solubility, rapid decomposition, and short serum half-

life (Bhattarai et al., 2016). The RSV-grafted MSN drug carrier could

successfully extend its bioavailability in the local periodontal region,

resulting in sustained pharmacological activity and removing RSV’s

inherent cytotoxicity (Tan et al., 2022). For RSV’s anti-inflammatory

effects and the ability to modulate glucose metabolism, MSN-RSV

may also be able to alleviate diabetic periodontitis (DP) (El-Makaky

and Shalaby, 2020). Diabetes mellitus (DM) impairs bone repair by

increasing ROS production, which speeds up periodontal bone loss

and makes bone regeneration in DP difficult (Hajishengallis et al.,

2012; Mysak et al., 2014; Wang et al., 2023). Recent research used

MSN-incorporated poly (D, L-lactide)-block-poly (ethylene glycol)-

block-poly (D, L-lactide) (PPP) to achieve stepwise cargo release and

emulate the cascade for diabetic periodontal bone regeneration, which

can scavenge the overproduced ROS, regulate the diabetic

microenvironment, and facilitate osteogenesis (Wang et al., 2023).

In conclusion, MSNs offer flexible treatment plans for periodontitis

that include elimination of the pathogens, reduction of inflammatory

effects, and facilitation of osteogenesis.
3.4 Endodontic treatment failure

Endodontic treatment failure can be caused by a variety of factors,

including the persistence of microorganisms, improperly cleaned root

canals, and untreated canals (missing canals) (Alghamdi and Shakir,

2020). Enterococcus faecalis is the most common isolate from

endodontic infections and is strongly linked to failed endodontic

treatments because of its capacity to survive in extremely challenging

conditions with limited nutrient availability and a high alkaline pH

that can reach 11.5 (Stuart et al., 2006; Ozbek et al., 2009).

Additionally, the mono-infection of E. faecalis in treated canals

without synergistic assistance from other bacteria results in

significant resistance to antimicrobial treatments. Incomplete

removal of E. faecalis from the root canal by sodium hypochlorite

(NaClO) and CHX highlights the need for more sophisticated

strategies for thorough disinfection in endodontic treatments

(Vianna et al., 2004; Eddy et al., 2005; Estrela et al., 2008).

Sonodynamic therapy (SDT) relies on ultrasound (US) to activate

the sonosensitizers and generate the ROS to obliterate bacterial

infection (Serpe and Giuntini, 2015; Xu et al., 2017). MSNs are

synthesized as the platform for conjugation with sonosensitizer

protoporphyrin IX (PpIX) (MSNs@P) and Fe ions (MSNs@P-Fe) to
Frontiers in Cellular and Infection Microbiology 05
initiate a Fenton action in order to destroy bacteria without having to

worry about resistance (Pang et al., 2019; Guo et al., 2021; Wang et al.,

2021). Compared with the commonly used NaClO irrigant, this new

strategy (MSNs@P-Fe + 0.01% H2O2 + US) is highly efficient in

eliminating E. faecalis infection by exploiting low-concentration

H2O2 to generate highly toxic ROS without inducing notable cell

toxicity. This technique with excellent tissue penetrability is

noninvasive and site-confined, showing the MSN platform’s

potential in the elimination of deeply ingrained infection. In

addition, MSNs are selected as scaffolds in combination with

hydrogel for the proliferation of human dental pulp stem cells

(HDPSCs), and this new biopolymer scaffold improves the

immigration and regeneration of HDPSCs to repair pulpitis (Wang

et al., 2022).
3.5 Maxillofacial space infection

Fascial space infections are the common sequelae of odontogenic

infections including periapical infection and pericoronitis (Singh et al.,

2021). Patients with superficial dental infections typically experience

localized pain and cellulitis, while those with deep infections or

abscesses may experience swallowing and breathing issues. S. aureus

is the dominating pathogenic bacterium of mouth floor cellulitis, a

multispace infection that affects the sublingual, submental, and

submandibular spaces with potentially life-threatening effects (Ogle,

2017). Selenium (Se) nanoparticles (SeNPs) are considered to be

healthier and less toxic to healthy cells and have antibacterial effects.

Incorporating Se into MSNs exhibits better antibacterial activity

against S. aureus, and dispersibility is improved by preventing SeNP

agglomeration (Chen et al., 2020). Methicillin-resistant Staphylococcus

aureus (MRSA) biofilms pose a unique challenge in space infections

due to the tolerance to various antibiotics. Proteins and environmental

DNA (eDNA) make up the majority of the MRSA biofilm matrix,

which makes it difficult for antibiotics to reach the deepest parts of the

biofilm and precisely target cells (McCarthy et al., 2015). Meanwhile,

immunosuppression increased the incidence of MRSA infection in

patients with head and neck squamous cell carcinoma (HNSCC)

following chemotherapy. Antibiotics delivered by nanoparticle-based

carriers penetrate the biofilm better. In order to eliminate MRSA

biofilms and target S. aureus, enzyme-functionalized MSNs are

created. Results of cell viability and crystal violet staining

demonstrate that the enzyme’s efficiency against S. mutans was

further enhanced after immobilizing into MSNs (Devlin et al., 2021).

Sortase A (SrtA), a membrane-bound cysteine transpeptidase, binds

virulence-associated proteins to the bacterial cell wall (Nitulescu et al.,

2017). Naturally derived compounds with poor water solubility are

classified as sortase A inhibitors (SrtAIs), including quercetin (QC) and

berberine chloride (BR). With the help of MSNs, SrtAI’s solubility can

be increased, opening up new therapy options for superbugs with less

hazardous side effects (Alharthi et al., 2022). When drugs are

combined with MSNs, the antibacterial effect may be enhanced, the

drug’s release time may be prolonged, the inherent cytotoxicity may be

eliminated, and bacterial resistance may be addressed with great

physiochemical performance.
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3.6 Oral squamous cell carcinoma

Oral squamous cell carcinoma (OSCC) has great probability of

metastasis that may lead to poor prognosis or even death. The main

medications used in OSCC treatment include paclitaxel (PTX), 5-

fluorouracil (5-FU), methotrexate, and cisplatin (Molin and Fayette,

2011). With a lower pH and higher temperature than normal tissue,

the tumor has different properties. MSNs are the prospective carriers

to treat malignancies because of their perceptive response to pH and

temperature (Lu et al., 2010; Meng et al., 2010). It is possible to

destroy tumor cells by inhibiting the supply of glucose and causing a

redox reaction because tumor cells have higher glucose requirements

and endogenous reducing agents than normal cells (Chen et al., 2020).

The combination of starving therapy with MSNs is prospective to

increase the effectiveness in treating tumors. Glucose oxidase (GOx)

and PTX can interrupt the intracellular energy supply and elevate the

endogenous H2O2 level of tumor cells, exhibiting an amplified effect.

Therefore, GOx and PTX were co-delivered via the MSNs as a

nanoplatform to induce better therapeutic effects against cancer

(Du et al., 2019). In addition, 5-FU, which is frequently used to

treat OSCC, has hematologic and digestive side effects, including

anemia, thrombocytopenia, and leukopenia (Bui et al., 2020). This

nanoplatform of MSNs could preferentially accumulate 5-FU in

tumors to suppress tumor growth and avoid side effects (Lee et al.,

2010; Lu et al., 2010). The outer membrane vesicle (OMV)-MSN-5-

FU overcomes the mentioned drawbacks by reducing the cumulative

drug release and prolongs the targeted action time to inhibit tumor

proliferation and metastasis (Huang et al., 2022). Consequently,

MSNs can circumvent the challenges associated with administering

anticancer medications by delivering them to specific tissues to

improve biocompatibility.
3.7 Bone regeneration in the
oromaxillofacial region

Periodontitis, maxillofacial infections, and tumors cause varying

degrees of bone abnormalities. The main treatments for jaw

abnormalities mainly include autologous bone graft, allogeneic bone

graft, and artificial substitute implantation. Opening up the second

surgical area is invasive, although clinical vascularized autologous bone

graft is mature in repairing maxillofacial defects. Artificial

replacements with a microporous structure, a particular hardness,

and the ability to induce cell differentiation can be used to heal bone

abnormalities. MSNs conveying biological cues in a targeted and

regulated manner can improve the behavior of osteoclasts and the

mechanical qualities of the biomaterial by attaching MSNs to the

titanium substrate’s surface (Rosenholm et al., 2016). MSNs are

modified with a bone-forming peptide (BFP) to provide a slow-

release mechanism for delivering osteogenic factors. Experiments

demonstrate that BFP-laden MSNs (p-MSNs) with a sustained

peptide release rate and better bioactivity could promote the

osteogenic differentiation of mesenchymal stem cells (MSCs) and the

spread of human osteoblast-like MG-63 for bone repair and

regeneration (Luo et al., 2015). The MSNs were used to transmit

genes and promote osteogenic differentiation. Bone morphogenetic

protein-2 (BMP-2) plasmid DNA (pDNA) was combined with
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aminated MSNs (MSN–NH2), and the BMP-2 protein was produced

by transfected MSCs, which demonstrated the potential of MSNs as a

gene delivery system in bone regeneration (Kim et al., 2013). The in

vitro cell cytotoxicity tests indicated that BMP-2 peptide-

functionalized MSNs (MSNs-pep) is highly cytocompatible, and the

osteoblast differentiation and bone regeneration of MSCs could be

further enhanced after dexamethasone (DEX) was incorporated (Zhou

et al., 2015). These systems also offer a nanoplatform on which to load

various medications for efficient osteoblast development.
4 Conclusions and perspectives

MSNs offer interesting characteristics that can be used in

combination with one another to enhance stomatology drug

delivery. They also have significant potential for antibiofilm, tumor

therapy, and combined therapy. Recent studies demonstrate that

MSNs can improve the dissolution rate and bioavailability of the

water-insoluble drugs by entrapping them in the mesopores and

dispersing them with a large surface area. Moreover, MSNs

functioning as nanoplatforms improve the antimicrobial

effectiveness through combining various antimicrobial components.

This co-delivery nanoplatform with several stimuli-responsive

confers final compounds the abilities of antibacteria, antitumor, and

bone regeneration of maxillofacial defects. The drug released from

MSNs to targeted locations lowers the dosage with a longer half-life

and improves the therapeutic effect (Esfahani et al., 2022). To help

them evolve further, some important difficulties, such as the potential

cytotoxicity and MSN excretion, must be resolved. Firstly, by raising

the quantity of ROS, MSNs cause oxidative stress and apoptosis.

Secondly, the therapeutic action will be limited by the residuals in the

MSNs because only a portion of the medications will be released.

Thirdly, due to the striking differences in the multistep MSN synthesis

process, scaling up synthesis will face significant difficulties. The long-

term therapeutic effect of MSN-based systems in vivo should be

rigorously and extensively proven before the clinical translation of

MSNs. Given the satisfactory resolution of these issues, MSN-based

formulations may achieve exciting breakthroughs in the treatment of

a variety of significant diseases and disorders.
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