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Background and Aims: Ulcerative colitis (UC) has become a global public health

concern, and is in urgent need of novel therapies. Fecal microbiota transplantation

(FMT) targeting gut microbiota has recently been applied to the treatment of UC.

Despite its recent successes, it is still largely unknown how FMT functionally

modulates the gut microbiota and improves the disease.

Methods:We prospectively collected fecal samples from the 40 mice (30 mice for

dextran sulfate sodium (DSS)-induced, 10 for controls), followed by Propidium

monoazide treatment for 16S rRNA gene sequencing. These 30 mice were divided

equally into 3 groups, which were transplanted with original donor microbiota

(DO), inactivated donor microbiota (DI) and saline, respectively. Subsequently, we

used 16S rRNA gene sequencing to analyze the viable gut bacteria of ulcerative

colitis (UC) mice and histological analysis to evaluate the effects of fecal microbiota

transplantation (FMT) with viable microbiota.

Results: We demonstrated that the community structure of viable bacteria was

significantly different from fecal bacteria based on total DNA. Furthermore, the

intestinal viable microbiota and colonic mucosal structure of mice were significantly

changed by DSS induction. The histological analysis showed that only the mice

treated with original donor microbiota group (HF) achieved a significant

improvement. Compared with inactivated donor microbiota group (IF) and saline

(NF), Lactobacillus and Halomonas were significantly enriched in the HF group.

Conclusion: We inferred that only live bacteria from human donor reversed the

histopathology and symptoms of UC in mice and altered the gut microbiota. The

activity of gut microbiota in donor samples should be considered in FMT and that

detailed analysis of viable microbiota is essential to understand the mechanisms by

which FMT produces therapeutic effects in the future.
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Introduction

Ulcerative colitis (UC) is one subtype of inflammatory bowel

disease (IBD) that has a high incidence and prevalence in the

worldwide (Lima et al., 2021). It is also thought to be intricately

caused by variable factors, including genetic (Hedin et al., 2015),

immunological and environmental aspects (Braun and Wei, 2007), of

which the gut microbiota dysbiosis may play important roles

(Sheehan et al., 2015; Kump et al., 2018; Zhang et al., 2022).

Despite available therapies, including corticosteroids, anti-tumor

necrosis factor alpha (TNF-a) agents, aminosalicylates,

immunomodulators, and surgery (Weisshof et al., 2018),

development of new therapies and investigation of alternative

strategies are in urgent need for amount of patients who are

unresponsive to these existing treatments or present secondary

failure during treatment.

Fecal microbiota transplantation (FMT) is a novel treatment

method which is to transfer the functional microbiota from normal

feces to an unbalanced gastrointestinal tract, reconstruct a new

intestinal flora, and resume the host function (Costello et al., 2017;

Liu et al., 2021) This technique has proven effective impact in many

microbiota-related metabolic (Lee et al., 2019; Que et al., 2021; Gong

et al., 2022), infectious (Smillie et al., 2018), and inflammatory

diseases (Weingarden and Vaughn, 2017; Zhang et al., 2019). In

recent research, the patients have recurrent Clostridium difficile

infection were extremely effective treated by FMT (about 90% cure

rate) (Le Bastard et al., 2018). However, the effectiveness of FMT

varied among different studies (Li et al., 2016; Smillie et al., 2018), in

which specified donors may play crucial roles. These differences not

only exist between individuals but sometimes even within a same

person (McOrist et al., 2011). For example, one study showed no

improvement in clinical and endoscopic remission at 12 weeks

following two infusions of FMT from healthy donors via a

nasogastric tube, while another study showed higher endoscopic

remission at 7 weeks in patients treated with weekly FMT enemas

(Moayyedi et al., 2015; Rossen et al., 2015). Therefore, the detailed

analysis of the composition and numbers of microbiota transplanted

is essential to understand the differences in therapeutic effectiveness

and mechanisms of FMT from donor samples.

The gut microbiota is a complex ecosystem with a range of

bacterial genera that perform many important functions in the

host, including maintaining gut homeostasis, intestinal epithelial

barrier, immune system development and providing essential

metabolic substrates for colon cells (Pushalkar et al., 2018), play

important roles in UC progress (Ni et al., 2017; Liu et al., 2021). Gut

microbiota manipulation by FMT has demonstrated promising

effectiveness in UC remission in experimental colitis mice model

trials. For instance, Zhang et al. evaluated the FMT effect on the

composition of the colonic microbiota to determine whether changes

in the gut microbiota were associated with the protective effect of

FMT in DSS-induced mice (Zhang et al., 2022). Lima et al. identified

the speices Odoribacter splanchnicus, which plays a key role in FMT,

by performing the immune response use omic analysis in donor and

recipient fecal samples (pre- and post-intervention), Further through

mouse experiments, they proved that Odoribacter splanchnicus is the

key bacterium (Lima et al., 2021). Similarly, Li et al. treated a mouse
Frontiers in Cellular and Infection Microbiology 02
model of DSS-induced colitis with FMT in combination with a 16S

rRNA analysis, revealing that FMT ultimately alleviates colitis by

regulating the flora (Li et al., 2021a). Generally, in all of these analyses,

the changes in metagenome-based strategy include 16S rRNA

sequencing of total bacteria DNA were observed, while changes in

the live bacteria DNA were neglected. Moreover, with the deepening

of the study, living microbiota are considered to be therapeutic agents

for FMT, because the colonization of these microbiota in the

intestines of recipients may lead to lasting changes in patients

(Khoruts et al., 2010; Seekatz et al., 2014). Therefore, it is of great

significance to focus on the viable bacteria for understanding the

mechanism of FMT and exploring the crucial gut microbiota.

In this paper, we presented a pioneer work to evaluate the living

bacteria of gut microbiota from UC patients by FMT trials. First, 40

mice were collected for analysis. Then, 30 of them were induced with

colitis by DSS and 10 were not treated with DSS served as controls.

These 30 mice were also divided equally into 3 groups. Group one was

transplanted with initial donor microbiota (HF), while group two was

transplanted with inactivated flora (IF), and group three were

transplanted with saline (NF). Subsequently, the remission rate of

FMT treatment was analysed by histopathology and symptoms in

mice. Meanwhile, PMA-treated donor samples were analysed by 16S

rRNA gene sequencing for structural changes of total and viable

bacteria DNA, as well as changes in live bacteria between DSS and

controls, pre- and post- FMT, respectively. This method can accurately

evaluate the changes in viable bacteria in the gut microbiota, establish a

methodological basis donor screening, evaluation before and after

transplantation of viable bacteria in fecal samples in the future.
Materials and methods

Preparation of donor stool sample

Samples were collected with informed consent from all

participants. All participants completed a questionnaire-based

interview and underwent a physical examination for screening of

donors (He et al., 2021). Every subject provided fresh stool samples

in a stool container on site. Fecal microbiota were extracted with an

automatic fecal microbiota extractor TG-01 Extn (Treatgut,

Guangzhou, China) in Xiamen Treatgut Biotechnology Co. Ltd. Fecal

sludge (FS) were collected by centrifugation at 5,000 g for 5 min. The

collected microbiota were then added to saline at a ratio of 1:1.1, and

half of the resulting solution were autoclaved in a 250 mL Erlenmeyer

flask at 121 °C for 30 min to prepare inactivated donor microbiota (DI),

with the remainder serving as the original donor microbiota (DO).

Total microbiota andviability were determined by flow cytometry with

LIVE/DEAD™ BacLight™ Bacterial Viability Kit (Thermo Fisher

Science). Analyses were carried out using a BD Accuri™ C6 Plus

Flow Cytometer (BD Biosciences, USA) system. Meanwhile, the PMA-

qPCR standard curve of donors were established.
Animals and experimental design

A total of 40 male C57BL/6J mice (7 weeks old, 18-20 g weight)

were purchased from the Gempharmatech Co., Ltd (China). Mice
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were allowed one week to acclimate prior to the study. For this period,

food and water were given ad libitum and the room was ventilated,

having an ambient temperature of 22 °C ± 1°C with 50% ± 10%

humidity and a 12-h diurnal light cycle (lights on 07:00–19:00). 30 of

40 mice were administered a 3% dextran sulfate sodium (DSS, MP

Biomedicals, USA) solution and 10 for controls not treated with DSS.

These 30 DSS-induced mice were divided equally into 3 groups, which

were HF, IF and NF, respectively. Mice were treated with DSS for 5

days and then gavaged for 3 days. 200 mL per dose once daily for 3

days in the HF and IF groups, and equal saline doses in the NF and

control groups. Fresh fecal (250 mg) from mice in four groups were

collected at the 7, 12 and 15 days, and resuspended in a 5 ml saline,

vigorously shaken 3 min for subsequent analyses. All animal

experiments reported in this study were approved by the Animal

Care and Ethics Committee of Fujian University of Traditional

Chinese Medicine Laboratory Animal Center.
Phenotype detection of mice

During the intervention period, the body weight and stool

consistency of mice were observed regularly. DAI scoring criteria

refers to Rangan et al. (Rangan et al., 2019). After intervention,

animals were humanely sacrificed by cervical dislocation, and the

colons were removed. Colon lengths and weights were measured

using a ruler and an electronic analytical balance respectively. To

observe detailed histopathological changes, the colons of different

mice were first stored in a 10%buffered formalin solution. These were

then embedded in paraffin, cut into 5 mm sections, stained with

hematoxylin-eosin, and then placed under a light microscope

for examination.
PMA-treated samples

Stock solution was prepared by dissolving 1 mg of PMA (US

Everbright Inc,Suzhou,China) in 1 mL of 20% dimethyl sulfoxide. For

PMA treatment, the FS samples treated as above method was diluted

100 times in normal saline solution. A 487.5 mL solution was weighed

and transferred to an aseptic EP tube, followed by the addition of 12.5

mL PMA solution. The solution was mixed, and the tubes were

incubated in dark for 10 min at room temperature. Samples were

exposed to an LED light (500W) with periodic mixing at a distance of

15 cm for 10 min. In non-PMA treated control aliquots, 12.5 mL saline
was added instead of PMA. Control samples underwent identical

incubation and light-exposure as the matching PMA treated samples

(Emerson et al., 2017). All samples was treated by PMA for

further analysis.
DNA extraction

DNA was extracted from fecal samples using the QIAamp Fast

DNA Stool Mini Kit (Qiagen, CA, USA) flowing the manufacturer’s

instructions. The concentration and purity of the isolated DNA was

assessed using spectrophotometry (Multiskan™ GO, Thermo Fisher

Scientific, USA). The DNA extracts were also evaluated for quality by
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agarose (1.5%) gel electrophoresis in 1× Tris-Acetate-EDTA buffer.

DNA samples were stored at -20˚C before being used as templates for

next-generation sequencing library preparation.
Library preparation and sequencing

Sequencing libraries were generated using TruSeq® DNA PCR-

Free Sample Preparation Kit (Illumina, USA) following

manufacturer’s recommendations and index codes were added. The

library quality was assessed on the Qubit@ 2.0 Fluorometer (Thermo

Fisher Scientific, Waltham, MA, China) and Agilent Bioanalyzer 2100

system. At last, the library was sequenced on an Illumina MiniSeq 150

bp paired-end reads were generated.
Quantitative PCR

Bacterial 16S rRNA genes in the fecal samples were quantified

using real-time qPCR on a StepOnePlus Real-Time PCR system

(Thermo Fisher Scientific, Waltham, MA, China). The V4 variable

regions of bacterial 16S rRNA gene were PCR-amplified using the

primers (515F 5’-GTGYCAGCMGCCGCGGTAA-3’,806R 5’-

GGACTACNVGGGTWTCTAAT-3’). Each reaction mixture had a

total volume of 20 µL. Itcontains 2 µL of sample DNA, 10 µL of

ChamQ Universal SYBR qPCR Master Mix (Vazyme Biotech, NJ,

China), 0.4 µL of each 10µM primer, and 7.2 µL of sterilized ultra-

pure water. The cycle conditions of the real-time PCR were as follows:

initial holding at 95 °C for 30 s, 40 cycles of denaturation at 95 °C for

10 s followed by annealing/elongation at 60 °C for 30 s. The specificity

was determined after amplification by a melting curve analysis. All

qPCR tests were performed in triplicate, and the mean values were

used for analysis.
Bioinformatics and statistical analysis

First, Fast Length Adjustment of Short Reads (FLASH) (V1.2.11)

was used to assemble paired-end reads for the V4 region, the -x 0.15

option was selected to control the maximum mismatched base pairs

ratio in the overlap area, and the -M 150 option was selected to

control the maximum length of the overlap area. Then, cutadapt

(V1.13) was used to trim and filter the sequence data processed from

FLASH, including removing adapter sequences and discarding

sequences with fewer than the specified number of bases.

Subsequently, sequences were quality filtered by Usearch with the

-fastq_maxee 1.0 option. After quality control, unique sequences were

obtained by eliminating redundancy, and they were sorted in

descending order according to sequence abundance. Meanwhile,

singletons in the sequence data were removed. To assign denovo

OTUs, we removed chimeric sequences and clustered sequences with

97% similarity and using Usearch (Edgar, 2013) for individual study.

The representative sequences of OTUs were aligned to the SILVA 132

database for taxonomic classification by RDP Classifier (Wang, 2007)

and aggregate to various taxonomic levels.

Based on the OTU tables derived from each sample, alpha-

diversity indices between every sample were calculated, including
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bacterial richness (observed OTUs), shannon index, and evenness (J).

Significance tests of alpha-diversity indices were conducted by the

Wilcoxon test method. Then, Principal coordinates analysis (PCoA)

based on Bray-Curtis distance at the OTU level was utilized for beta-

diversity to visualize the differences in microbial community structure

across samples. Significance tests of beta-diversity indices were

determined using permutational multivariate analysis of variance

(PERMANOVA) with 104 permutations in vegan. Linear

discriminant analysis (LDA) effect size (LEfSe) was employed to

identify the taxa most likely to explain the differences between

groups. LEfSe uses a nonparametric Kruskal–Wallis rank sum test

to assess different features with significantly different abundance

between assigned taxa and performs LDA to estimate the effect size

of each sequence variant, as reported by (Segata et al., 2011). Finally,

the results were visualizing using the custom R script based on ggplot2

(Wickham et al., 2016). These analyses were performed using R

v3.4.1, GraphPad Prism and SPSS software. A p value < 0.05 was

considered statistically significant. In addition, all obtained data are

expressed as the mean ± standard deviation (SD).
Results

Therapeutic effect of live microbiota in mice
with DSS colitis by FMT

To investigate the alleviating effect of live FMT bacteria on colitis,

we induced experimental colitis in mice (n=30) by administering 3%

DSS in water for 5 consecutive days and then started FMT

intervention in mice on the sixth day for 3 consecutive days

(Figure 1A). The control (CON) group of mice (n=10) were in

good mental condition, without diarrhoea and soft stools. The DSS

mice had loose stools from day 3 of the moulding, followed by severe

soft stools, bloody stools and depression on day 4. The DSS-induced

mice were divided equally into three groups for FMT of DO, DI feces

and saline treatment. From the Figure 1B, we could see that there was

no significant difference among the HF, IF and NF groups, all of

which showed a decreasing trend in body weight. Colonic length were

significantly decreased compared to CON group, while there was no

significant difference among the HF, IF and NF groups (Figure 1C).

The DAI scores of DSS-induced mice increased on day 3, with the

mice in the HF group had significantly lower DAI scores than NF

group (Figure 1D). In terms of histological scores, the HF group was

significantly lower than both the IF and NF groups, while there was

no significant difference between the IF and NF groups (Figure 1E).

Meanwhile, the histological analysis further revealed that the

histopathological status of the observed colonic specimens was as

shown in the Figure 1F, with normal colonic tissue morphology in the

CON and HF groups, with a clear hierarchy of tissue structures, with

the mucosal, submucosal and muscular layers clearly visible and the

crypt and cupped cells well arranged. A variable number of

inflammatory cells were seen, and the crypt was dilated near the

ulcer foci. In summary, these results demonstrate that live bacteria in

FMT are able to participate in and improve clinical colonic

inflammatory conditions and colonic damage, whereas dead

bacteria do not.
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Differences between bacterial communities
from total fecal DNA and PMA-treated DNA

Flow cytometric analysis showed that the original donor

microbiota retained roughly 66.7% of viable bacteria, while almost

all of the viable bacteria were removed after the heat-killed treatment,

which is less than 0.7% (Figure 2A). Due to the low viability of the

flow cytometric assay after inactivation, the dead bacteria DNA was

interfered after PMA treatment and could not be amplified.

Therefore, we evaluated the structure of DO and the PMA-treated

original donor microbiota (DP) by 16S rRNA sequencing analysis. As

shown in Figure 2C, the Observed, Shannon and evenness (J) indices

were slightly reduced after PMA-treated, although the differences

were not statistically significant. PCoA ordination based on Bray-

Curtis distances between OTU abundance profiles shows that fecal

samples after PMA were distinctly separated from the DO group

(Figure 2B). At the genus level, a slightly increased abundance of

Prevotella_7, CAG-352, and Prevotella_2 and a slightly decreased

abundance of Faecalibacterium and Veillonella were observed after

PMA-treated in comparison to the DO group (Figure 2D). Notably, at

the family level, a distinct decrease in the abundance of

Ruminococcaceae, Lachnospiraceae and Veillonellaceae and an

increase in the abundance of Prevotellaceae and Bacteroidaceae

were observed after eradication compared to before eradication or

confirmation (Figure S1). Also, we collected 11 donor stool samples to

explore the correlation between bacterial load and CT values using

PMA-qPCR technique (Supplementary Material). As shown in Figure

S2, the activity and total bacterial load were verified by fitting

standard curves based on the CT values of qPCR and flow

cytometry bacterial counts. The CT values gradually decreased as

the total bacterial load increased, and the correlation coefficient

between their total bacterial load and CT values was close to 1

(R2 = 0.90), indicating that the correlation between bacterial load

and CT values was significant.
The histological and viable gut community
differences between DSS and the controls

Histological analysis showed that compared with normal mice,

DSS-induced mice formed ulcerative foci in the mucosal layer of the

colon, with necrosis spreading to the entire mucosa resulting in loss of

lamina propria and proliferation of connective tissue, with varying

numbers of inflammatory cells infiltrating between them and dilated

crypt foci near the ulcerative foci (Figure 3A). In addition, 16S rRNA

gene high-throughput sequencing analysis showed that the alpha

diversity indices Observe, Shannon and J were significantly decreased

in UC mice compared to CON group (p<0.05, Figure 3C). We

observed clear the clustering of microbial communities between

colitis mice and normal group by the PCoA plot (p<0.05,

Figure 3B). Further, the microbiota composition in the DSS-

induced colitis mice displayed a significantly different profile at

genus level from that in the controls. Sixteen taxa including

Massilia, Rikenella, Butyricicoccus, and Enterococcus were decreased

in cases compared to CON group, while 19 genera including

Akkermansia, Blautia and Odoribacter were significantly increased
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in DSS group (p<0.05, Figure 3D). These results indicate that the

intestinal microbiota and colonic mucosal structure of mice were

significantly changed by DSS induction.
Effect of FMT on the composition of the
gut microbiome

Acute colitis was induced in mice with 3.0% DSS and transplanted

with DO, DI group and saline respectively. Subsequently, changes in

the gut microbiota of the HF, NF and IF groups were analyzed by 16S

rRNA gene high-throughput sequencing. Due to the failure of library

construction for one sample, only 9 mice in NF group were included

in the microbiota analysis. The Observed index of the HF group was

significantly lower than that of the IF and NF group, but the Shannon

and evenness indices were not significantly different (Figure 4A). We

also found 70 genera specific to the IF group such as Coprobacter,

Eggerthella and Erysipelatoclostridium, which may have contributed
Frontiers in Cellular and Infection Microbiology 05
to the elevated IF group diversity (Table S1). Pre- and post-

transplantation analysis of the three groups showed no obvious

change in the observed index in the HF group compared with

DSSHF group, while the index was markedly change in either IF vs

DSSIF or NF vs DSSNF group (Figures S1A–3A). PCoA plots analysis

showed distinct differences in the gut microbiota of the three groups

after treatment (p<0.05, Figure 4B). As shown in Figures S3B–5B, the

gut microbiota community structure of DSS-induced mice was

changed after FMT (HF, IF and NF). In addition, SPEC-OCCU

plots were analyzed for microbiota in the HF, IF and NF groups

(Figure 4C). Five specific genera, Bacteroides, Lactobacillus,

Halomonas, Bifidobacterium and Fusobacterium, were identified by

analyzing specificity and occupancy (≥0.7) in the HF group compared

to the NF and IF groups. The relative abundance of Fusobacterium

was significantly higher in the IF group than in the NF group

(p<0.05), and the HF group was not significantly different from the

other two groups. However, the relative abundance ofHalomonas and

Lactobacillus were significantly higher in the HF group than in the IF
A B

D E

F

C

FIGURE 1

(A) The animal experimental protocol. (B) Daily body weight changes throughout the entire duration of the study. (C) the lengths of colon from each
group. (D) Kinetics of DAI scores throughout the entire duration of the study. (E) Histological scores of colons. (F) H&E stained colon sections. Data are
presented as mean ± SD. ***p < 0.001, **p < 0.01 and *p < 0.05 vs the NF group.
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group (Figure 4D). The distinct differences in taxa were observed after

FMT compared to before FMT. A similar trend of Bacteroides,

Lactobacillus, Halomonas, Bifidobacterium and Fusobacterium

abundance was also observed in the before and after FMT group

(Figures S3C-5C).
Discussion

In this study, we conducted a FMT trial to evaluate the

importance and shifts of viable gut microbiota in DSS-induced UC

mice treated by FMT from a donor sample. A total of 30 mice were

divided equally into 3 groups according to the different treatments,

and another 10 mice without DSS inducement were set as control. By

16S rRNA gene sequencing analysis of fecal samples treated by PMA,

we found that the structure of viable bacteria DNA is different from

total bacteria DNA. The intestinal viable bacteria and colonic mucosal

structure of mice were significantly changed by DSS induction. The

histological analysis showed that FMT with live microbiota (HF) were

able to improve colonic inflammatory conditions and colonic

damage, whereas effect of dead microbiota was similar with the

placebo with saline. Meanwhile, we identified key genera that

changed after transplantation with HF, including Bacteroides,

Lactobacillus, Halomonas, Bifidobacterium and Fusobacterium,

which provides a reference for the treatment of UC.

We found that the bacterial structure of total DNA in donor fecal

sample differed from the microbial community structure after PMA.

As known, most of the microorganisms in the intestinal tract are

difficult to be cultured by conventional methods (Costello et al., 2015).
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For general molecular methods, total DNA of a sample was used as a

template for PCR amplification, which is difficult to distinguish viable

and dead microorganisms, resulting in false negative results. With the

development of powerful and convenient high-throughput

sequencing technology, 16s rRNA gene or metagenomic sequencing

is a common tool for measuring the relative abundance of specific

microorganisms in microbial ecology (Reuter et al., 2015; Zemb et al.,

2020). Therefore,the activity and profile of gut microbiota in donor

samples can be thought as an important evaluation indicator in donor

screening in the future.

The changes of viable microbiota were explored in the intestine of

DSS-induced and normal mice. After DSS induction, HE staining

showed that the intestinal tissues were damaged, accompanied by

structural changes in the intestinal flora. Alpha diversity analysis and

PCoA plots indicated that the composition of the intestinal live

microbiota in colitis mice changed along with the altered intestinal

tissue structure, and DSS induction disrupts the stable

microenvironment of the intestine. Some live bacteria may play a

central role. LEfSe confirmed our hypothesis by finding a total of 19

bacterial genera with large differences in DSS group, including

Akkermansia, Blautia and Odoribacter et al. Akkermansia is known

as a mucin-degrading bacterium with regulatory and inflammatory

properties. DSS induced disruption of the mucosal layer in the

hindgut and increased infiltration of acute inflammatory immune

cells (Rinaldi et al., 2019). Meanwhile, the hypothesis of Akkermansia

as an opportunistic bacterium that may flourish after ecosystem

disruption (Machiels et al., 2020), which explained the increase of

live Akkermansia. in the intestine of mice after DSS induction in

normal mice. Odoribacter were also increased in DSS group. Li et al.
A B

DC

FIGURE 2

Composition of donor gut microbiota before and after PMA treatment turned out. (A) Flow cytometry counts of DO and DI groups. DO, DI and DP
samples were analyzed based on 16S rRNA gene sequencing. (B) PCoA analysis; (C) Taxonomic profiles at the top 20 genus levels in terms of overall
mean relative abundance; (D) microbial alpha diversity as estimated by species richness, the Shannon diversity index, and the Inverse Simpson diversity
index(J) based on OTU abundance data.
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found that Odoribacter showed a state of inhibition by other bacteria

in healthy subjects, but were “unrestrained” and significantly more

abundant in UC patients (Li et al., 2021b). The researchers also found

a relationship between this opportunistic pathogen and

pathophysiological mechanisms such as reduced SCFAs and

increased inflammatory response. With a larger number of

influential live bacteria identified through LEfSe method that may

have potential significance for the diagnosis and treatment of UC and

deserve to be further explored.

The result of DAI scores and histological examination indicated

that live bacteria can participate in maintaining intestinal

homeostasis, whereas dead bacteria often fail to play a role. The

Observe index was significantly lower in the HF group than that in the

IF and NF groups. This may be due to some dead bacteria from donor

faeces, which interfered with the analysis of the live microbiota

and caused differences in Observed index. 70 specific-genera was

belong to the IF group such as Coprobacter, Eggerthella and

Erysipelatoclostridium, which may have contributed to the elevated

IF group diversity. The genus Erysipelatoclostridium is a pro-

inflammatory microorganism with high potential to induce TH1

cells and high potential for intestinal inflammation (Nagayama

et al., 2020). Bo Yang et al. found that Eggerthella may be

associated with clinical symptoms of diarrhoea in a study on
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diarrhoeal irritable bowel syndrome and functional diarrhoea (Yang

et al., 2021). Chen et al. found elevated relative abundance of

Escherichia-Shigella in a study of the intestinal microbiota during

acute necrotizing pancreatitis in rats (Chen et al., 2017). Furthermore,

the PCoA plots showed that there were significant differences in the

living microbiota of mice after different treatments. The differences of

the intestinal structure tells that both live and dead bacteria were able

to alter the intestinal structure of mice compared to the saline group.

Combined with the HE staining results, the live bacteria was able to

restore the intestinal health of mice, while the dead bacteria could not,

probably because the dead bacteria could act as postbiotics to allow

the growth of harmful bacteria.

Specificity and occupancy (≥0.7) were identified by SPEC-OCCU

plots analysis of five specific genera in the HF group compared to the

NF and IF groups, including Bacteroides, Lactobacillus, Halomonas,

Bifidobacterium and Fusobacterium. In line with the He et al. study

(He et al., 2013), Bacteroides was also substantially elevated in this

trial. Bacteroides has good function on the improvement of

endotoxaemia, reducing gut microbial lipopolysaccharide

production and effectively inhibit pro-inflammatory immune

responses, and low anthropoid bacteria can lead to inflammatory

bowel disease (Althouse et al., 2019). Similarly, an increase in

Lactobacillus was observed in UC mice after FMT treatment. Most
A B

D

C

FIGURE 3

(A) HE dyeing experiment pictures. (B) Bacterial beta diversity. Principal Coordinates Analysis based on Bray-Curtis distances between the gut microbiota
profiles of mice from the two groups. (C) Alpha diversity based on species richness, the Shannon diversity index, and the Inverse Simpson diversity index
(J) in DSS and CON. (D) Significantly enriched bacterial taxa in the different groups as determined by LEfSe analysis (LDA sore >2).
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of the current results prove that Lactobacillus is also the main genus

used for the treatment of UC (Yun et al., 2020). For example, Liu et al.

reduced intestinal lining inflammation by rectal enemas of

Lactobacillus. It is inferred that Lactobacillus inhibits the onset of

colitis in mice and may reduce the onset of stress-induced colitis (Liu

et al., 2018). Liu et al. reported that Halomonas is the predominant

genus associated with the jejunal and ileal mucosa of goats and

speculated, and Halomonas may play a role in promoting immune

development in the gut (Liu et al., 2019). Consistent with the present

experiment, there was a substantial increase in live bacteria of the

genusHalomonas. For Bifidobacterium, it has been used extensively in

the treatment of inflammatory bowel diseases, such as UC (Xie et al.,

2022). Bifidobacterium in human intestine can synthesise many

vitamins such as vitamin B1/B2/B6, nikonic acid, pantothenic acid,

folic acid and biotin. Once synthesised, these vitamins are then

absorbed by the mucosal cells and contribute to the body’s
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metabolism and health maintenance (Huang et al., 2019). For

Fusobacterium, it is a recognized pro-inflammatory bacterium that

does not act in a simple one-way relationship with other bacteria, but

may form mutually beneficial relationships that promote dysbiosis

(microbial imbalance) in the community (Agarwal et al., 2020). From

this we can infer that the live intestinal microbiota increased in

beneficial bacteria, thus reducing the pro-inflammatory effect of

Fusobacterium. In terms of relative abundance, the difference in

Bacteroides and Lactobacillus between the groups was not

significant, probably because the acute UC model was used for this

modeling and the mice recovered naturally. That means live bacteria

accelerate the healing of intestinal losses. So, higher levels of

Bacteroides, Lactobacillus, Halomonas and Bifidobacterium in the

live intestinal microbiota may be associated with the recovery of

UC intestinal tissues, with the surviving live flora playing a major role.

In addition to the vital importance of viable microbiota for the
A B

D

C

FIGURE 4

(A) Alpha diversity based on species richness, the Shannon diversity index, and J in HF, IF and NF. (B) Diagram of the Bray–Curtis distance principal
coordinate analysis. (C) The SPEC-OCCU plots show the most abundant OTUs corresponding genera in HF; the x-axis represents occupancy; and the y-
axis represents specificity. (D) The relative abundance of 5 specific genera among three groups. **p < 0.01 and *p < 0.05.
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treatment of UC mice with FMT, SCFA produced by these microbiota

may also play a key role in inhibiting intestinal inflammation, anti-

tumor effects and regulating immune response (Mirsepasi-Lauridsen,

2022). For example, Bifidobacterium was known to produce the

acetate that can protect against enteric infection in mice (Rabbani

et al., 1999; Fukuda et al., 2011; Sepúlveda et al., 2018); Bacteroides

was also the main bacteria involved in producing SCFA and play an

important role (Kaakoush et al., 2014; Comstock, 2009). Lactobacillus

produced butyrate by altering the intestinal microbiota, which

maintains homeostasis in the gut, reduces inflammatory responses

and serves as a source of energy for the renewal of intestinal epithelial

cells (Jhun et al., 2021; Tian et al., 2019; Jena et al., 2020). As shown in

Figure S6, it was found that SCFA-producing genera in the donor,

such as Bifidobacterium and Bacteroides that colonized mice, may

play a key role in the treatment of UC mice.

However, the current dose of FMT is based on the weight of the

bacterial sludge (Zhang et al., 2020). The number of live organisms in

the slurry is a key factor in judging the merit of the FMT product as

well as its effectiveness in improving efficacy while reducing the

number of doses taken by the patient and making it less difficult for

the patient to take the medicine. Therefore, high bacterial level is the

key to the efficacy of FMT. The usual analysis of total bacteria

indicates is inaccuracy and can result in false positive results, so the

live microbiota analysis its biological significance is greater compared

to the total microbiota analysis. What’s more, many UC-associated

inflammatory factors have been reported and it is important to

explore the mechanisms of inflammation by detecting and

observing changes in these inflammatory factors (Rubin et al.,

2019). As most of the signaling pathways are significantly affected

by the disease, further exploration to detect the expression of key

factors in the signaling pathways can follow. The interrelationship

between inflammatory factors and signaling pathways merits further

investigation, which may provide further insights into targeting the

microbial groups as a therapeutic strategy for UC and other diseases

associated with the gut microbiota.

In summary, by H&E stained and 16S rRNA gene sequencing

analysis of 30 DSS-induced mice and 10 controls with PMA

treatment, we observed the significantly difference and identified

UC-related viable genera in groups. After treatment of UC mice

with DO, DI and raw saline group transplants, it was found that live

bacteria played a key role in the treatment of UC mice. Most

importantly, it would be useful to assess the composition of donor

transplant material by viability assays to ensure that the microbiota

composition includes a broad range of live bacteria, some of which

may be important in mediating the therapeutic efficacy of FMT for

microbiome-related disease. Therefore, we recommend that the

activity of donor microbiota should be considered in FMT, and that

detailed analysis of the types and numbers of live bacteria

transplanted is essential to understanding the mechanisms of which

FMT produces or fails to produce therapeutic effects.
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