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Tumor bacterial markers
diagnose the initiation and four
stages of colorectal cancer
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Increasing evidence has supported dysbiosis in the faecal microbiome along

control-adenoma-carcinoma sequence. In contrast, the data is lacking for in situ

tumor bacterial community over colorectal cancer (CRC) progression, resulting

in the uncertainties of identifying CRC-associated taxa and diagnosing the

sequential CRC stages. Through comprehensive collection of benign polyps

(BP, N = 45) and the tumors (N = 50) over the four CRC stages, we explored the

dynamics of bacterial communities over CRC progression using amplicons

sequencing. Canceration was the primarily factor governing the bacterial

community, followed by the CRC stages. Besides confirming known CRC-

associated taxa using differential abundance, we identified new CRC driver

species based on their keystone features in NetShift, including Porphyromonas

endodontalis, Ruminococcus torques and Odoribacter splanchnicus. Tumor

environments were less selective for stable core community, resulting in

heterogeneity in bacterial communities over CRC progression, as supported by

higher average variation degree, lower occupancy and specificity compared with

BP. Intriguingly, tumors could recruit beneficial taxa antagonizing CRC-

associated pathogens at CRC initiation, a pattern known as “cry-for-help”. By

distinguishing age- from CRC stage-associated taxa, the top 15 CRC stage-

discriminatory taxa contributed an overall 87.4% accuracy in diagnosing BP and

each CRC stage, in which no CRC patients were falsely diagnosed as BP. The

accuracy of diagnosis model was unbiased by human age and gender.

Collectively, our findings provide new CRC-associated taxa and updated

interpretations for CRC carcinogenesis from an ecological perspective. Moving

beyond stratifying case-control, the CRC-stage discriminatory taxa could add

the diagnosis of BP and the four CRC stages, especially the patients with poor

pathological feature and un-reproducibility between two observers.

KEYWORDS

colorectal cancer (CRC) stage, CRC-associated taxa, average variation degree,
occupancy and specificity, CRC-stage discriminatory taxa, diagnosis model
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Introduction

Colorectal cancer (CRC) is the third most prevalent cancer,

which ranks the second in terms of mortality globally (Arnold et al.,

2017; Cai and Liu, 2021). Although the incidence and mortality

rates of CRC are decreasing in recent years, CRC is still one of the

most life-threatening cancers and advanced CRC remains an

incurable disease at metastatic stages, 5-year survival rate of 13%

compared to 90% when diagnosed at an initial stage (Bray et al.,

2018; Montalban-Arques and Scharl, 2019). The trend in younger

patients, along with the continued burden, highlight the need for

early detection of CRC that alleviates the incidence of metastatic

CRC (Cheng et al., 2020). In particular, the clinical trials of patients

are intimately associated with the CRC stages, thus there is an

urgent requirement for accurately diagnosing the stages of CRC.

Over the past decades, the Tumour, Nodes, and Metastasis

(TNM) staging system has contributed the cornerstone for the

management of CRC patients. However, some problems have

occurred with the TNM system, such as increasing complexity of

CRC, poor clinical evidence, tumor deposits, and un-reproducibility

between different observers (Quirke et al., 2007), which in turn

confuse the accuracy of identified CRC stage and subsequent

therapy. It is now widely recognized that the microbes contribute

indispensable roles in host health and gastrointestinal tumor

progression (Marchesi et al., 2016; Xiong, 2018; Guo et al., 2022).

In accordance, intensive studies have shown dysbiosis (shift in gut

commensal microbiota toward opportunistic pathogens) in the gut

microbiota in CRC patients compared with healthy controls. Going

forward, CRC-associated taxa have been identified for

distinguishing healthy from colorectal adenomas, and CRC

individuals (Shah et al., 2018; Wu et al., 2021; Coker et al., 2022).

However, few studies have explored the dynamics of microbial

communities over CRC progression. As a result, it is uncertain

whether microbial taxa are indicative of each CRC stage, rather than

just stratify case from control cohorts. However, this information is

fundamental to establish CRC stage-dependent clinical trials.

Accumulating evidence depicts that the gut microbiota is an

important etiological element in CRC initiation, progression, and

metastasis (Kong et al., 2019; Cheng et al., 2020; Mizutani et al.,

2020; Li et al., 2022). By this logic, identification of bacteria involved

in CRC progression could provide new targets for CRC diagnosis

and prevention (Montalban-Arques and Scharl, 2019; Fong et al.,

2020). Indeed, case studies have proposed that the occurrence of

CRC is attributed to the enrichment of Fusobacterium nucleatum

(encoding FadA) (Flanagan et al., 2014), Bacteroides fragilis and

Escherichia coli hosting polyketide synthase (pks) islands (Feng

et al., 2015), Clostridium symbiosum (Xie et al., 2017), or

Parvimonas micra (Löwenmark et al., 2020), respectively. It

should be noted that the identification of “driver” taxa is

generally based on their significant enrichment in CRC patients

compared to healthy controls, which ignores the CRC stage

(Flanagan et al., 2014; Löwenmark et al., 2020). In particular, a

“driver” taxon is attributed to strong biotic interactions, rather than

its sheer abundances, though this does not rule out that some

“driver” taxa are numerically abundant (Dai et al., 2018). Recently,

NetShift approach has been developed to quantify major changes in
Frontiers in Cellular and Infection Microbiology 02
associations of each constituent taxon between healthy and diseased

networks, in which the importance of a single species between

health states can be calculated based on its topological features

(Kuntal et al., 2019). By this logic, taxa that increase in their

importance in the network of CRC patients could be the “driver”

taxa, moving beyond enriched abundance. Furthermore, according

to the “driver-passenger” model, the CRC driver taxa could be

superseded by “passenger” bacteria that are better adapted to the

conditions in and around carcinoma cells, thereby outcompeting

the initial driver species (Feng et al., 2015; Bridges et al., 2019). For

these reasons, a systematic analysis of CRC-associated bacteria

along CRC progression is required from an ecological prospective,

rather than case-control study.

In spite of a growing body of evidence with regard to the

dysbiosis in gut microbiota in CRC patients, data on the association

between in situ tumor microbial dynamics over CRC progression is

lacking. The gut microbiotas are significantly varied as over human

lifetime (Falony et al., 2016; Greenhalgh et al., 2016; Ghosh et al.,

2020), thus a key challenge is to distinguish the alterations in

microbial assembly over CRC progression from these as human

aged. Additionally, faecal microbiota only partially mirrors mucosal

microbiota in CRC, with low correlations between paired faecal and

mucosal samples (Flemer et al., 2017). In this regard, the

deployment of faecal microbes for mirroring tumor microbiota

could bias the identification of CRC-associated bacteria. To

overcome above obstacles, we explored the dynamics of bacterial

communities in tumor tissues along the four CRC stages, and

benign polyps as controls. We attempted to address the following

concerns: (1) exploring the dynamics of bacterial communities over

CRC progression, (2) identifying CRC-associated bacteria based on

biotic interactions, (3) screening biomarkers for diagnosing each

CRC stage, irrespective of host age.
Materials and methods

Experimental design and sample collection

Subjects underwent standard colonoscopy examinations at Hwa

Mei Hospital in Ningbo City, China, were recruited to the study.

The patients were selected based on the following criteria: no

complicating diseases (such as chronic bowel disease, diabetes,

and hypertension); no family history of CRC and recurrence in

CRC patients, no use of antibiotic in the month prior to surgery.

Written informed consent was obtained from the volunteers to

utilize their tissue samples. All volunteers were categorized into a

different group based on the histopathological features in the TNM

staging system of malignant tumors after surgery. The samples with

uncertain TNM stage (e.g., poor clinical evidence, tumor deposits,

un-reproducibility between two observers) were excluded in the

analysis. Based on these selective criterions, 95 subjects (aged 21–89

years, 70 males and 25 females) were enrolled in the analysis from

120 volunteers, in which included 45 BPs and 50 tumors over the

four CRC stages. The general information (age, gender) and clinical

data (body mass index (BMI), carcinoembryonic antigen (CEA),

TNM stage) are summarized in Table S1 and Figure S1. All tissue
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samples were stored at −80°C until further processing. We want to

point out that no tissue samples can be obtained from healthy

individuals, thus benign polyps (BPs) were served as controls.
DNA extraction, amplification, and
sequencing of the 16S rDNA genes

Tumor or BP tissue (1 gram) were homogenized with four

volumes (weight/volume) of phosphate buffer solution (PBS, pH =

7.4) and centrifuged at 4000 rpm for 5 min. To collect microbial

biomasses, the supernatant was transferred and centrifuged at 12000

rpm for 10 min at 4°C. DNA was extracted using the FAST DNA

Spin kit (MoBio Laboratories, Carlsbad, CA, USA) following the

manufacturer’s protocols. The concentration and purity of DNA

extracts were evaluated by using a NanoDrop ND-2000

spectrophotometer (NanoDrop Technologies, Wilmington, USA).

The V3–V4 regions of bacterial 16S rDNA genes were amplified by

using the primer pair: 341F (5’-CCTACGGGNGGCWGCAG-3’) and

806R (5’-GGACTACHVGGGTWT- CTAAT-3’) (Takahashi et al.,

2014). To minimize PCR induced biases, each sample was amplified

in triplicates as follows: 25 cycles of denaturation at 95°C for 30 s,

annealing at 55°C for 30 s, and extension at 72°C for 45 s, with a final

elongation step of 72°C for 10 min in 30 mL PCR reaction system.

Every triplicate amplicons from each sample were pooled and

purified using a PCR fragment purification kit. The concentrations

of purified products were detected using a PicoGreen-iT dsDNA

Assay Kit (Invitrogen, Carlsbad, USA). Equimolar amounts of

amplicons for each sample were pooled, and sequenced on a single

run using an Illumina MiSeq platform (Illumina, San Diego, USA),

producing 2 × 300 bp paired-end reads.
Processing of Illumina sequencing data

The FASTQ format data were analyzed by the Quantitative

Insights into Microbial Ecology 2 (QIIME 2) pipeline (Bolyen et al.,

2019). In short, the raw sequences were processed using the Divisive

Amplicon Denoising Algorithm 2 (DADA2) that could obtain reads

with a single-nucleotide difference (Callahan et al., 2016), known as

amplicon sequence variants (ASVs). Primers were screened and

removed. Filtered reads were then de-replicated and de-noised

using DADA2 with default parameters. Then, paired-end

sequences were merged, and chimeras were identified and

removed using Usearch (version 11.0.667) and the “uchime2_ref”

command. Reads were truncated at the quality control score of 20.

Taxonomic assignment of ASVs was performed based on the

SILVA v138 16S database (Quast et al., 2012). ASVs classified as

Mitochondria, Chloroplast, Archaea, and Eukaryota in origin were

removed from the bacterial community. Only ASVs detected with a

minimum of three samples were included. Finally, to adjust unequal

sequencing depth, all samples were rarefied to the same sequencing

depth in downstream analysis. After filtering and rarefaction to
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14,221 reads per sample, a total of 3601 ASVs were included in the

final analyses.
Diagnosis model of CRC stages

To identify bio-indicators for quantitatively diagnosing the

stages of CRC, we created a classification model using random

forests (RF), a robust machine-learning algorithm for classification

and regression that is suitable for microbial population data (Liaw

and Wiener, 2002). Given that the structures of bacterial

community were highly temporal dynamics over human

ontogeny, we first determined host age-discriminatory lineages

(when bacterial taxonomic level is undefined, namely, bacterial

phylum, class, order, family, genus, or ASV) across the BP controls.

The relative abundances of all lineages in BP were regressed against

corresponding host age using default parameters. The 10-fold cross-

validation function was implemented to identify the minimal

number of top-ranking age-discriminatory lineages, which only

contained the most important variables based on the cross-

validation curve (Fushiki, 2011). To rule out the ontogenic effects

on bacterial community, the age-discriminatory lineages were

excluded from the dataset. Then, the relative abundances of all

lineages were classified into corresponding stages, that is, BPs and

the four CRC stages (Table 1). The RF model was repeated to

identify the top CRC stage-discriminatory lineages. After this

optimization, the identified CRC stage-discriminatory lineages

were employed as dependent variables for diagnosing BP and

CRC stages. A consistency between observed and diagnosed

category was termed a correct diagnosis; otherwise, the

classification was termed as a false diagnosis. To acquire finer

taxonomic information for the CRC stage-discriminatory ASVs,

we manually identified their species classification by aligning their

representative sequences in the basic local alignment searching tool

(BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi).
Statistical analysis

The following analyses were performed in R 3.6.3, unless

otherwise stated (http://www.R-project.org/). Alpha diversity of

bacterial community was compared among CRC stages using

one-way analysis of variance (ANOVA). Canonical analysis of

principal coordinates (CAP) and non-parametric multivariate

analysis of variance (NPMANOVA) were used to assess the

differences in bacterial communities along CRC stages based on

Bray-Curtis distances (Anderson and Willis, 2003). Statistical

differences in beta-diversity between health status, age, and

gender were calculated using perMANOVA with the adonis2

function in vegan package (Oksanen et al., 2018). Bacterial

community stability was evaluated by average variation degree

(AVD). A lower AVD value indicates higher stability (Xun et al.,

2021). An UpSet plot was used to display the number of shared and
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unique bacterial ASVs among groups (Lex et al., 2014). The 500

most abundant ASVs were selected from the bacterial communities

in each group, specificity and occupancy were calculated as

described previously (Gweon et al., 2021). Specificity is the mean

abundance of species (S) in the samples within a group; and
Frontiers in Cellular and Infection Microbiology 04
occupancy is the relative frequency of occurrence of S in the

samples within a group. The two metrics (specificity and

occupancy) were used as the axes in SPEC-OCCU biplot

(Dufrêne and Legendre, 1997; Gweon et al., 2021). CRC driver

taxa were screened based on their “Neighbor Shift (NESH) Score”
TABLE 1 The predicted accuracy based on profiles of colorectal cancer (CRC) stage-discriminatory lineages at bacterial phylum, class, order, family,
genus or ASV level, respectively.

Taxonomy Observed
Predicted

Overall accuracy
T1 T2 T3 T4 BP

Phylum

T1 3 1 2 3 0

(59/95) 62.1%

T2 0 1 8 0 4

T3 1 3 12 1 5

T4 1 3 2 0 0

BP 0 0 2 0 43

Class

T1 2 2 1 0 4

(61/95) 64.2%

T2 1 2 6 0 4

T3 2 4 11 1 4

T4 0 2 3 1 0

BP 0 0 0 0 45

Order

T1 1 3 2 0 3

(61/95) 64.2%

T2 0 0 10 0 3

T3 1 2 14 0 5

T4 2 0 2 1 1

BP 0 0 0 0 45

Family

T1 0 1 2 4 2

(63/95) 66.3%

T2 0 2 8 0 3

T3 1 2 14 0 5

T4 0 4 0 2 0

BP 0 0 0 0 45

Genus

T1 1 0 2 5 1

(60/95) 70.6%

T2 0 0 11 0 2

T3 1 3 16 0 2

T4 0 0 2 0 4

BP 0 0 2 0 43

ASV

T1 8 0 1 0 0

(83/95) 87.4%

T2 1 8 4 0 0

T3 0 2 17 3 0

T4 0 0 0 6 0

BP 0 0 1 0 44
BP, Benign polyps, T1, T2, T3 and T4 were the four CRC stages.
For a given sample, the consistency between observed and diagnosed category was termed as a correct diagnosis, otherwise it was termed as a false diagnosis. Bold values represent the numbers of
correct diagnoses.
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and node size using NetShift. NESH is a neighbor shift score, which

represents directional changes in individual node associations

(Kuntal et al., 2019).
Results

General and clinical information

Ages of the 50 CRC patients ranged from 30 to 89 years, in which

7 patients (2 individuals were T2, and 5 patients were T3 stage) were

younger than 40 years. This pattern reinforced the trend to younger

CRC patients. The numbers of male patients were consistently higher

(P = 0.0105, paired t test fixed CRC stage) than female patients over

each CRC stage (Table S1). As expected, CEA values linearly

increased along CRC severity (Figure S1A), while no significant

differences in BMI among the four CRC stages (Figure S1B).
Differed microbiotas along CRC
stages and BPs
Sequencing yielded a total of 12,128,782 (mean ± standard

deviation, 81710 ± 47466) raw reads from the enrolled 95 samples.

Rarefaction curves indicated sufficient sequencing depth was

achieved (Figure S2), thus enabled us to compare diversity among

groups. The Firmicutes, Bacteroidota, and Proteobacteria were the

dominant bacterial phyla in BPs and tumor tissues, albeit difference

in their relative abundances (Figure S3A). This composition was

analogous to the composition of human gut microbiota. At the finer

bacterial genus level, genera of Collinsella, Parvimonas,

Ruminococcus, and Bifidobacterium significantly enriched in the

tumors compared with BP, while the relative abundance of

Faecalibacterium exhibited the opposing trend (Figure S3B).

There were no significant differences in the diversity of bacterial

communities among BP and the tumors, as supported by both the

Shannon diversity and Phylogenetic diversity (Figure S4). However,

the CAP biplot demonstrated clear separation of bacterial

communities between BP and along the four CRC stages (T1, T2,

T3 and T4), in which CRC stage was imposed as a conditional

factor. Overall, the bacterial communities were more dissimilar

between BP and tumors than along the four CRC stages (Figure 1).

These patterns were further corroborated by a comparison of the

similarity between groups; the structures of bacterial community

differed significantly (P < 0.05) between each paired groups, with

the exception of T1 vs. T3 (Table S2). Furthermore, parametric

permutational multivariate analysis of variance (perMANOVA)

revealed that CRC stage and human age respectively constrained

8.4% (P < 0.001) and 2.1% (P = 0.002) variation in bacterial

community, whereas the effect of host gender was insignificant

(P = 0.103). The averaged AVD of bacterial communities in T1

(0.744 ± 0.016) was markedly increased (P < 0.05) compare with

that in BP (0.752 ± 0.012). However, AVD values tended to be

decreased over CRC progression (Figure 2).
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Distribution of core taxa

In total, 1071 ASVs were uniquely detected in BP. Intriguingly,

the numbers of unique ASVs linearly decreased along CRC

progression, with 318, 243, 175 and 38 ASVs in T1, T2, T3 and

T4 tumors, respectively. Similarly, there were gradual decreases in

shared ASVs between adjacent stages. For example, the groups with

the highest number of shared ASVs were BP and T1 (220 ASVs),

followed by 90 shared ASVs between T1 and T2, 45 shared ASVs

between T2 and T3, with the least shared ASVs between T3 and T4

(8 ASVs) (Figure 3A). In addition, only 153 ASVs (accounting for

4.25% of all ASVs) were shared across the five groups, while 19 ASVs

were consistently detected among the four CRC stages (Figure 3A).

In addition, there was no significant difference in diversity among
FIGURE 1

Constrained analysis of principal coordinates (CAP) depicting the
effects of CRC stage on the bacterial communities derived from the
distance matrix. Samples were coded by benign polyps (BP, here is
controls) and along the four colorectal cancer (CRC) stages, T1, T2,
T3 and T4.
FIGURE 2

Average variation degree (AVD) for the bacterial communities in BP
and along the four CRC stages. Different lowercase letters indicate
significant differences among groups using one-way analysis of
variance (ANOVA) with significant level of P < 0.05. Refer to Figure 1
for abbreviations.
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the five groups (Figure S4). These results indicated an increasing

distinctness in bacterial communities over CRC progression.

To inspect how ASVs from each group are spread from BP to

advanced CRC and also how specific they are to their stage,

specificity and occupancy were calculated for each ASV, which

were then projected onto a SPEC-OCCU biplot (Figure 3B). As

indicated by the distribution of ASVs along the x-axis (occupancy),

ASVs from BP displayed remarkably homogenous occupancy. To

identify specialist taxa attributable to each group, we selected ASVs

with specificity and occupancy higher or equal to 0.5 (dotted boxes

in Figure 3B), that is, these ASVs are specific to a stage and common

in their groups in most individuals. The number of these specialist

ASVs substantially varied among groups. There was a decreasing

trend in terms of observed richness from BP (33 ASVs represent),

T1 (20 ASVs), T2 (9 ASVs) to T3 (3 ASVs) (Table S3), representing

1.7%, 1.5%, 0.95% and 0.37% of their total richness, respectively.

Conversely, 19 specialist ASVs (representing 5.0%) were detected

among the T4 tumors. Firmicutes species were the specialists across

the all five groups (Figure 3C, Table S3).
Frontiers in Cellular and Infection Microbiology 06
Identification of CRC driver taxa

Comparison of the gut networks between BP and CRC stage 1

(T1), an important step to tumorigenesis, 13 taxa drove the network

shift from BP to initial CRC (Figure 4A, Table S4). Specifically,

ASV2473 Phascolarctobacterium succinatutens, ASV3703

Muribaculum intestinale, ASV853 Neglectibacter timonensis,

ASV3538 Porphyromonas endodontalis among others were the

driver nodes (ASVs) with higher NESH scores (red color and

bigger nodes) (Figure 4A, Table S4). Of the 13 driver taxa, the

relative abundances of six taxa significantly enriched, and only

ASV1014 Faecalibacterium prausnitzii depressed in T1 compared

with BP (Figure 4B). In particular, the six enriched driver taxa were

also the most abundant over CRC progression (Figure 4C).

However, abundances of the remaining seven driver taxa

insignificantly changed between BP and T1, such as ASV3538

Porphyromonas endodontalis, ASV2131 Ruminococcus torques and

ASV78 Odoribacter splanchnicus (Figure 4, Table S4), while case

studies have reported their enrichments in CRC patients (Flemer
A

B

C

FIGURE 3

Upset plot displays the number of detected ASVs in each group (horizontal bars) and unique or shared ASVs (individual or connected points,
respectively), in and among groups (A). The SPEC-OCCU plots show 500 most abundant ASVs in each group; the x-axis represents occupancy, e.g.,
how well an ASV is distributed across biological replicates within each group; and the y-axis represents specificity, e.g., whether they are also found
in other groups (B). Pie charts showing the number of ASVs representing specialists in each group (See Table S3 for the list of these specialists) (C).
Refer to Figure 1 for abbreviations.
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et al., 2017; Wolf et al., 2020). Based on the differential distribution

across groups, 19 ASVs were spurted in CRC T1 tumors, which

were substantially decreased in BP and along progressed CRC,

including previously reported as CRC associated taxa, e.g.,

Fusobacterium nucleatum (Figure S5A). In addition, several

potential pathogens, such as Bacteroides fragilis, Clostridium

perfringens among others, were enriched and the most abundant

in the advanced CRC stage 4 (T4) (Figure S5B).
Establishment of diagnosis model for
diagnosing CRC stages

We randomly selected 67 samples (training data, 32 BPs and 35

CRC patients) for constructing the diagnosis model. The remained 28

samples (test data, 13 BPs and 15 patients) were used for validation. In

order to distinguish the CRC stage effect from the confounded roles of

host age in governing the bacterial community, we firstly identified the

top age-discriminatory lineages (Figure S6). In addition, to evaluate

whether the diagnosis accuracy was influenced by taxonomic level, we

screened the discriminatory lineages at the bacterial phylum, class,

order, family, genus, or ASV level, respectively. To this end, we found

that the CRC stage-discriminatory ASVs contributed the highest

accuracy of classification after excluding host age effect (Table 1). For

this reason, CRC stage-discriminatory ASVs were applied as dependent

variables for diagnosing the BP and CRC stages in the final

diagnosis model.
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We screened nine age-discriminatory ASVs from the BP that

contributed an overall 92.4% diagnosis accuracy (Figure S6). After

excluding the nine age-discriminatory taxa, we identified 15

common CRC stage-discriminatory ASVs. To visualize these

biomarkers, we constructed a phylogenetic tree to identify their

closest species (Figure S7). For example, the most predictive taxon

belonged to the Campylobacter genus based on decrease in “Mean

Decrease Accuracy” coefficient (Figure 5A), which was

phylogenetically affiliated with Campylobacter hominis with 99%

similarity (Figure S7). In general, the relative abundances of the

CRC stage-discriminatory ASVs were varied significantly (11 out of

15 ASVs) among the five groups (Figure 5B). Importantly, using the

profiles of the 15 CRC stage-discriminatory ASVs as dependent

variable, the diagnosis model contributed an overall 87.4% accuracy

(Table 1). In BP, 44 samples (accounting for 97.8% of the controls)

were correctly diagnosed as BP individuals. Among the CRC

patients, 44 individuals (80.0% of patients) were predicted

accurately as corresponding CRC stage (Figure 5C). Of note, no

CRC patients were falsely diagnosed as BPs by using the 15 CRC

stage-discriminatory ASVs, namely, no false-negative (Table 1). It is

worthy to emphasize that the diagnosis model could accurately

diagnose the initiation of CRC (T1 stage, 8 out of 9 cases, 88.9%). In

addition, the falsely diagnosed samples were not related to host

gender (Figure S8A), though the numbers of male patients were

consistently higher than female individuals along the fours CRC

stages (Table S1). Also, the diagnosis model were unbiased by host

age (Figure S8B), while ages were markedly varied among patients.
A B

C

FIGURE 4

Identification of “driver” taxa from benign BP to CRC T1 tumor (A), changes between T1 and BP (B), distributions in BP and along the four CRC stages
(C). The nodes of the common sub-network were placed around a circle that was sorted by their identified community membership (in the CRC T1
network). All nodes belonging to the same community are assigned similar colors. Black nodes represent nodes that exist in both but interact
directly with the common sub-network in either T1 tumor or BP. The size of the node is proportional to the NESH fraction of its scale, and the node
is colored red if the intermediation of the node increases from BP to T1 tumor status. Thus, large red nodes are particularly important “driver” taxa.
Refer to Figure 1 for abbreviations.
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We also screened the CRC stage-discriminatory taxa without

exclusion of the age-discriminatory taxa. We found that the

model performance was unsatisfactory, with a marked decrease in

diagnosis accuracy (71.6% vs. 87.4%, Table S5). In this regard, our

optimization procedure was imperative and valuable, which

substantially improved the accuracy of diagnosis model.
Discussion

Currently there has been increased interest in the adenoma-

specific markers that detect early CRC, partly due to the recognition

that the bacterial communities are distinct along the control-

adenoma-carcinoma sequence (Mizutani et al., 2020; Wu et al.,
Frontiers in Cellular and Infection Microbiology 08
2021). By contrast, few studies have explored the bacterial

communities over CRC progression, resulting in the uncertainty

whether biomarkers could diagnose the four stages of CRC, rather

than case-control. Additionally, as microbes are implicated in

colorectal carcinogenesis, development and treatment outcome

(Jin et al., 2019; Montalban-Arques and Scharl, 2019; Mizutani

et al., 2020; Ting et al., 2022), understanding the dynamics in CRC

development is a necessary initial step to developing a more

complete understanding of both the ecology and etiology.

Increasingly evidence has shown that faecal bacterial communities

are distinguishable from individuals with CRC or adenomas to controls

(Wang et al., 2012; Flemer et al., 2018; Wu et al., 2021). In contrast,

there is still lack of data about the bacterial profiles over CRC

progression, especially these at cancerous tissue. Considering the
A B

C

FIGURE 5

CRC diagnosis model using the CRC stage-discriminatory taxa. The top 15 CRC stage-discriminatory ASVs are ranked in descending order of
importance to the accuracy of the diagnose model (A). The diameters of the circles are proportional to the relative abundances of the 15 biomarkers
(B). The diagnosed CRC stages using profiles of the 15 CRC stage-discriminatory ASVs. The consistency between observed and diagnosed stage was
termed a correct diagnosis with a cutoff of 50% (C). Refer to Figure 1 for abbreviations.
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functional importance of microbes in promoting CRC tumorigenesis

(Cheng et al., 2020; Mizutani et al., 2020), and given that faecal

microbiota only partially reflects mucosal counterpart in CRC

(Flemer et al., 2017), this ignorance could bias the identification of

CRC associated taxa. Trying to comprehensively collect the tumors

comprising the four CRC stages, our results depicted that there were

distinct segregations in bacterial community structure between polyps

and tumors, and along the four CRC stages (Figure 1, Table S2). These

patterns suggest that, despite the extensive physical variances among

individuals (e.g., age, gender, and CEA level, Table S1 and Figure S1),

each stage exerts sufficiently unique conditions to assemble

communities that are consistent in structure according to BP or

CRC stage.

As the stability of the microbiota could be affected by host

disease (Xiong, 2018; Aho et al., 2019), we compared with the

stability of bacterial communities over CRC progression. CRC

initiation (T1 stage) sharply disrupted the stability of bacterial

community compared with BPs (Figure 2). There are several

possible explanations for this pattern. First, the bloom of

pathogenic taxa outcompete resident commensals, as supported

by increased abundances of known pathogens in T1 tumors, such as

Fusobacterium nucleatum, Bacteroides fragilis, and Escherichia

fergusonii (Figure S6). Second, pathogen invasion could attenuate

host filtering on the colonization of external taxa, leading to a

dominance of stochastic processes (e.g., random birth and death)

governing community assembly (Mallon et al., 2015; Adair and

Douglas, 2017). Accordingly, there was a heterogeneous bacterial

community (higher AVD value) in T1 tumors (Figure 2). However,

as disease severity increased, inflammatory microenvironment

could exert the dominant role of homogeneous selection,

resulting in a convergent, disease-like microbial community

(Subramanian et al., 2014; Xiong et al., 2017). Consistent with

this assertion, the AVD values linearly decreased along CRC

progression (Figure 2), whereas phylogenetic diversity exhibited

an opposing trend (Figure S4B). Given that microbes are implicated

in the outcome of CRC therapy (Montalban-Arques and Scharl,

2019; Mizutani et al., 2020; Ting et al., 2022), the convergence in

tumor bacterial community may partially explain why advanced

CRC is difficult to be curative.

It has proposed a stratification of individuals into three distinct

enterotypes (Arumugam et al., 2011), while others supported a

concept of stratification based on bacterial abundance gradients

(Flemer et al., 2017). We detected a stratification of individuals

between distinct enterotypes and abundance gradients, as

supported by distinct structures of bacterial communities when

integrated the abundance of ASVs, e.g., abundance gradients

(Figure 1, Table S2). However, we also found rapid replacement

of ASVs over CRC progression, because there were linearly

deceased numbers and low proportions of overlapped ASVs

between BP and advanced CRC, as well as shuffling between

adjacent two stages, e.g., distinct enterotypes (Figure 3A). This is

apparent in the SPEC-OCCU plots (Figure 3B), where the majority

of the ASVs exhibited low occupancy, indicating that few of them

are consistently detected among individuals. In accordance, the

tumor communities harbored significantly lower homogeneity

among individuals in CRC T1, T2 and T3 stages, compared with
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these in BP (Figure 2). These findings indicate that the tumor

environments are less selective for a stable core community,

resulting in heterogeneity in bacterial communities among

patients. Considering that microbes determine the therapeutic

efficiency of CRC, the heterogeneity in bacterial communities may

guide the design of personalized medicine (Kong et al., 2019; Shi

et al., 2020; Ting et al., 2022). Although this study was not designed

to evaluate treatment outcome, clearly, there is a pressing need for

longitudinal study exploring the associations between the tumor

microbiota and treatment response in CRC patients.

Given that the gut microbiome is an important etiological element

in the initiation and progression of CRC (Montalban-Arques and

Scharl, 2019; Cheng et al., 2020; Mizutani et al., 2020; Guo et al., 2022),

sufficient and accurate identification of CRC associated taxa could

facilitate the targets for diagnosis and therapy. We identified the well

known promoters in colorectal carcinogenesis, Fusobacterium

nucleatum (Rubinstein et al., 2013), based on its sharply increased

abundance in T1 stage tumors (Figure 5A). Similarly, three well known

CRC-associated taxa, F. nucleatum, Bacteroides fragilis, and

Campylobacter concisus (Guo et al., 2022), were enriched in the

advanced T4 stage tumors (Figure 5B). Thus, there is a lack of

consistency in the bacterial taxa associated with CRC progression, in

accordance with studies conducted previously (Feng et al., 2015;

Mizutani et al., 2020). This pattern supports the so-called “driver-

passenger” model, which proposes that different bacteria sequentially

implicate in CRC tumor initiation and progression. The “driver”

bacteria are replaced by “passenger” bacteria that are better adapted

to the conditions in and around cancerous cells (Tjalsma et al., 2012;

Tilg et al., 2018). Of note, other bloomed ASVs have not been reported

to be associated with CRC, instead, a few ASVs could be potential

probiotics, such as Corynebacterium vitaeruminis (Colombo et al.,

2017), and Streptococcus alactolyticus (Zhang et al., 2021). In this

regard, it is cautious to identify CRC-associated taxa by increased

abundance in the tumors. Going forward, we identified 13 “driver”

bacterial ASVs by the NetShift model, moving beyond differential

abundance, of which 6 ASVs were significantly enriched and the most

abundant in T1 tumors (Figure 4). Among the 6 ASVs, ASV1839

Clostridium saudiense is recently identified as an opportunistic

pathogen with the potential to cause hepatocellular carcinoma, which

translocates from the gastrointestinal system to biliary system (Yoon

et al., 2022). Unexpectedly, ASV1414 Bifidobacterium stercoris and

ASV2467 Parabacteroides distasonis were significantly enriched in T1

tumors (Figure 4B). B. stercoris is able to produce acetic acid and lactic

acid, and promote antitumor immunity (Sivan et al., 2015), while the

later could attenuate toll-like receptor 4 signaling and thus blocks colon

tumor formation (Koh et al., 2018). One possible explanation for this

counterintuitive pattern is that the hosts release specific chemicals that

favor the recruitment of beneficial microbes or of antagonists able to

suppress the growth of pathogens, according to the “cry-for-help”

hypothesis (Rolfe et al., 2019), although further study is needed to

validate its applicability in human diseases. Conversely, the butyrate-

producing AVS1014 Faecalibacterium prausnitzii is an anti-

inflammatory commensal bacterium (Miquel et al., 2013), thus its

reduction is expected to be associated with CRC. Consistent with the

above, the ratio of Fusobacterium nucleatum to Faecalibacterium

prausnitzii has been identified as a valuable biomarker for screening
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early CRC (Guo et al., 2018). The beneficial ASVs decreased rapidly

along advanced CRC (Figures 4, S5), which raises the intriguing

possibility that tumors could recruit beneficial taxa to antagonize

CRC-associated pathogens at the initial stage. Collectively, the taxa

that trigger protumorigenic environments could be attributed to the

enrichment of pathogenic strains, and also the depletion of

probiotic species.

The establishment of gut microbiota—host health relationship

and modeling algorithms facilitates the identification of bio-

indicators diagnosing disease severity, which is a key goal of

microbiome research. Multiple studies have extensively shown

human age to be a strong covariate of the gut microbiota (Falony

et al., 2016; Greenhalgh et al., 2016), thus host age may overshadow

changes in commensals associated with CRC. For this reason, we

teased apart the effect of ageing-related and CRC-related changes in

the bacterial community. To achieve this, we identified age-

discriminatory ASVs that featured the age of BP controls. The top

nine age-discriminatory ASVs contributed a high consistency (r =

0.924, P < 0.001) between diagnosed and chronologic ages (Figure

S6). After removal of the nine age-discriminatory ASVs, we further

identified CRC stage-discriminatory taxa for diagnosing BPs and

the four CRC stages, with an overall 87.4% accuracy. It is worthy to

emphasize that this optimization substantially improves the

performance of our diagnosis model compared with the model

neglecting age effect (71.6% accuracy, Table S5). As a result, the

diagnosis accuracy was not affected by host age (Figure S8). Our

diagnosis model could add the designation of CRC stage-dependent

clinical trials, especially the patients with poor pathological feature

and un-reproducibility between two doctors (Quirke et al., 2007).

Similarly and more importantly, no CRC patients were falsely

diagnosed as BPs (Table 1), illustrating that there was no false-

negative in diagnosing CRC when ignored the CRC stage. In this

regard, our diagnosis model is reliable to warn the cancerization of

CRC with 100% accuracy, which in turn alerts patients to further

treatment. One might argue that the low sampling sizes at the T1 (N

= 9) and T4 (N = 6) stages (Table S1), which could weaken statistics

power. Here we collected unique and comprehensive tumors (four

CRC stages), instead of fecal samples. We want to point out the CRC

tend to be inspected at later stages, while T4 patients generally

refuse surgery. Consequently, we collected limited tumors from T1

and T4 patients. However, the highly diagnosed accuracy of patients

at the two stages indicated that our diagnosis model was not

strongly affected by the sampling sizes (Table 1). Despite high

heterogeneity of bacterial communities among patients at each CRC

stage (Figure 1), we are surprised that, given the high number of

ASVs (N = 3,601) identified across the 95 individuals, only 15 ASVs

(accounting for 0.4%) accurately discriminated human BPs and

CRC stages. This small subset affords unique experimental

opportunities that could be prioritized based on their feature

importances to the diagnosis model (Figure 5). For example, it

has been shown that levels of Parvimonas micra in faecal samples

from CRC patients are significantly higher compared to healthy

individuals (Löwenmark et al., 2020), as also observed in the present

study (Figures 5A, B). Thus, P. micra is proposed as non-invasive

biomarkers for CRC (Löwenmark et al., 2020). Similarly, a

metagenomic analysis of faecal microbiome reveals that P. micra
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and Solobacterium moreii are positively associated with CRC (Yu

et al., 2017). Besides confirming known associations of ASV3221 P.

micra, ASV2618 S. moreii, ASV3540 Fusobacterium nucleatum and

ASV3132 Peptostreptococcus stomatis with CRC, we found

significant associations with several species, including ASV640

Campylobacter hominis, ASV740 Collinsella aerofaciens among

others (Figure 5). Clearly, the pressing steps would be to isolate

representatives of these CRC stage-discriminatory ASVs and to

explore their roles in CRC carcinogenesis.
Conclusion

This is the few attempts to explore CRC-associated taxa and

underlying mechanisms in CRC progression from an ecological

perspective. Tumor microenvironments are less selective for stable

core community, leading to heterogeneity in bacterial communities

among patients, as supported by higher AVD, lower occupancy and

specificity. However, tumors could recruit beneficial taxa to antagonize

CRC-associated pathogens at the initial stage, in accordance with the

“cry-for-help” pattern that has not been recognized before. Based on

the “driver-passenger” distribution of CRC-associated ASVs, CRC

initiation could be attributed to the enrichment of pathogenic strains,

and also the depletion of probiotic species. By distinguishing age- from

CRC stage-associated taxa, the diagnosis model for accurately

diagnoses (an overall 87.4% accuracy) BPs and the four CRC stages,

especially without false-negative for CRC patients. The diagnosis model

could add CRC stage stratification, especially the patients with poor

pathological feature and un-reproducibility between doctors.

Additional works will be imperative to eventually validate them in

much larger cohorts before clinical deployment.
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