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Role of gut microbiota and
bacterial metabolites in mucins
of colorectal cancer
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Xiangjun Wang*, Qing Ni*, Yunxiang Zhu* and Tuo Chen*

Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, China
Colorectal cancer (CRC) is a major health burden, accounting for approximately

10% of all new cancer cases worldwide. Accumulating evidence suggests that the

crosstalk between the host mucins and gut microbiota is associated with the

occurrence and development of CRC. Mucins secreted by goblet cells not only

protect the intestinal epithelium from microorganisms and invading pathogens

but also provide a habitat for commensal bacteria. Conversely, gut dysbiosis

results in the dysfunction of mucins, allowing other commensals and their

metabolites to pass through the intestinal epithelium, potentially triggering

host responses and the subsequent progression of CRC. In this review, we

summarize how gut microbiota and bacterial metabolites regulate the function

and expression of mucin in CRC and novel treatment strategies for CRC.

KEYWORDS
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1 Introduction

Globally, colorectal cancer (CRC) has become a major health burden due to its higher

incidence and mortality. Epidemiological data indicate that CRC ranks third in incidence

with 1.9 million new cases and is the second most common cause of cancer mortality (Sung

et al., 2021). In China, over 300,000 new cases and 191,000 deaths are reported

annually (Chen et al., 2016; Chen et al., 2018b). As with many diseases, the etiology of
Abbreviations: CRC, colorectal cancer; IBD, inflammatory bowel disease; MUC2, mucin-2; MUC5AC,

mucin-5 subtype AC; MUC5B, mucin-5B; MUC6, mucin-6; F. nucleatum, Fusobacterium nucleatum; B.

fragilis, Bacteroides fragilis; ETBF, enterotoxigenic B. fragilis; S. gallolyticus, Streptococccus gallolyticus; S.

bovis, Streptococcus bovis; E. coli, Escherichia coli; pks, polyketide synthase; E. faecalis, Enterococcus faecalis;

SCFAs, short-chain fatty acids; BAs, bile acids; DCA, deoxycholic acid; Trp, tryptophan; AhR, aryl

hydrocarbon receptor; PXR, pregnane X receptor; IPA, 3-indole-propionic acid; FMT, fecal microbiota

transplantation; FOS, fructose-oligosaccharides; GOS, galacto-oligosaccharides; CDI, clostridium

difficile infection.

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2023.1119992/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1119992/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1119992/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2023.1119992&domain=pdf&date_stamp=2023-05-17
mailto:yzyswxj@163.com
mailto:Yzniqing@163.com
mailto:yxzhu@yzu.edu.cn
mailto:chentuoysh@163.com
https://doi.org/10.3389/fcimb.2023.1119992
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2023.1119992
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Gu et al. 10.3389/fcimb.2023.1119992
CRC is multi-factors involving genetic and environmental factors

(Song and Chan, 2019). While genetic susceptibility implicated in

CRC is well-described, the incidence of CRC in genetic

predisposition syndromes, including familial adenomatous

polyposis, Peutz–Jeghers syndrome, and Lynch syndrome, only

accounts for a minority of CRC cases (Boland et al., 2018;

Hryhorowicz et al . , 2022). Thus, it is suggested that

environmental factors play a major role in the initiation and

progression of CRC (Keum and Giovannucci, 2019). Among

environmental factors, the gut microbiome has been increasingly

considered a modulator of CRC (Zou et al., 2018).

The community of bacteria, fungi, archaea, phages, and protists

is referred to as the microbiota. These microorganisms within the

gastrointestinal tract are named “gut microbiota.” There are

approximately 1013 to 1014 bacteria living in the gut, which

contain 10 times more than human cells and outnumber human

genes by a factor of 100 (Sears, 2005; Wardman et al., 2022). These

microorganisms play an important role in maintaining the

intestinal epithelium (Hill et al., 2017), harvesting energy

(Vandeputte, 2020), and maturing immunity (Shi et al., 2017).

Meanwhile, the shift in their composition has been associated with

cardiovascular diseases (Brown and Hazen, 2018), metabolic

diseases (Maruvada et al., 2017), and digestive diseases (such as

inflammatory bowel disease and CRC) (Kostic et al., 2014; O'Keefe,

2016). Accumulating evidence shows that the initiation of CRC is

triggered by the dysfunction of colonic mucosal barrier colonization

by specific gut microbiota (Sheng et al., 2012; Wong and Yu, 2019).

These bacteria cause changes in the tumor microenvironment,

allowing for colonization by opportunistic bacteria that facilitate

disease progression.

The mucus layer acts as the first gatekeeper against environmental

and microbial insults. Among the components of the mucus layer,
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mucins, mainly secreted by goblet cells, are found throughout the

gastrointestinal epithelium (Johansson and Hansson, 2016). The

mucus layer not only creates a physical barrier between the host

and commensals but also provides an energy source for bacterial

growth (Johansson et al., 2015; Desai et al., 2016). In healthy

individuals, the gut microbiota is accompanied by a thicker mucus

layer. In contrast, thinner mucus and gut dysbiosis have been

implicated in the development of CRC through the underlying

mechanism of gut microbiota and its metabolites stimulating mucus

secretion (Petersson et al., 2011; Earle et al., 2015). In this review, we

summarize the recent studies that focus on the role of microbiota and

bacterial metabolites in mucins in CRC and offer different bacteria-

targeted therapies for mucin regulation (Figure 1).
2 Role of mucins in CRC

In contrast to the small intestine (which comprises a single

mucus layer), two distinct mucus layers are involved in the colon. It

is composed of an outer layer exposed to commensal microbiota

and an inner layer that is firmly and densely attached to the

epithelium (Pothuraju et al., 2020). The inner mucus layer is rich

in mucin-2 (MUC2), produced by specialized cells of the host called

goblet cells, and permits less bacterial penetration into the intestinal

epithelium (Desai et al., 2016). Moreover, the numerous O-linked

glycans in the outer layer cannot only provide bacterial habitats but

also serve as an energy source for bacteria (Zhang et al., 2021). The

mucus layer is constantly renewed and can be rapidly adjusted to

alternations in the intestinal microenvironment against bacterial

invasion and activation of inflammatory responses. However, the

dysfunction of the mucus layer allows the microbiota to come into
FIGURE 1

Gut microbiota bacterial metabolites associated with mucins of colorectal cancer, and potential bacteria-related therapies. The dysbiosis of the gut
microbiota and dysfunctions of bacterial metabolites, aggravated by environmental factors, contribute to mucus layer damage during colorectal
cancer. This schematic also summarizes the health benefits of prebiotics and probiotics that cause alterations to mucins of CRC.
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contact with the intestinal epithelium, affecting the initiation and

progression of CRC via initiating modifications of epithelial cells

and triggering intestinal inflammation responses (Coleman et al.,

2018; Yu, 2018). Hence, we focus on the mucins, including MUC2,

mucin-5AC (MUC5AC), mucin-5B (MUC5B), and mucin-6

(MUC6), and systematically review their composition and

function in CRC.
2.1 MUC2

MUC2 is the most abundant colonic mucin and forms the basis

of the mucus layer. It covers the surface of intestinal mucosa in the

form of gelatin (Yamashita and Melo, 2018). It is accepted that

MUC2 protein plays an important role in keeping the intestinal

tract healthy, while abnormal levels of MUC2 can be found in CRC

patients. Numerous studies have indicated that MUC2 mucin

production was reduced in patients with CRC (Bu et al., 2010; Al-

Khayal et al., 2016), and higher MUC2 expression was negatively

correlated with TNM stage, lymphatic metastasis, and prognosis of

CRC (Elzagheid et al., 2013; Li et al., 2018). Moreover, murine

models have demonstrated that MUC2−/− mice allowed bacteria to

contact with the intestinal epithelium, resulting in inflammation

and colon cancer (Wenzel et al., 2014). An absence of MUC2 mucin

expression was closely related to high methylation modification of

the MUC2 promoter and a glycosylation defect of the MUC2 gene

in CRC cells (Yonezawa and Sato, 1997; Biemer-Hüttmann

et al., 2000).
2.2 MUC5AC

MUC5AC is mainly secreted by gastric goblet cells, which

belong to gastric mucins. Concurrent with these studies, the

expression of MUC5AC was not observed in normal colorectal

epithelial cells, but its expression was significantly increasing

in CRC tissues (Krishn et al., 2016). Abnormal expression

of MUC5AC was related to microsatellite instability (MSI)

status and poor differentiation. Moreover, MSI status was

determined by MUC5AC demethylation, indicating that

MUC5AC hypomethylation was a promising marker for MSI in

CRC (Renaud et al., 2015). Higher MUC5 expression in CRC

patients was positively associated with a high lymph node

metastasis rate, poor cell differentiation, and late-stage CRC

(Wang et al., 2017). In vitro, blocking the expression of MUC5AC

in SW620 cells by siRNA technology significantly induced cell

apoptosis and G1-phase cell cycle arrest and inhibited tumor cell

invasion and migration (Zhu et al., 2016). The above results suggest

that MUC5AC acts as a potential target for the treatment of CRC.
2.3 MUC5B

MUC5B is mainly expressed in the bronchus, gland, cervix,

gallbladder, and pancreas and less expressed in a subset of goblet

cells at the bottom of the colonic crypts in humans (Vandenhaute
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et al., 1997; van Klinken et al., 1998). Consistent with the

mechanism of MUC5AC, overexpression of MUC5B is associated

with poor outcomes in different types of gastrointestinal cancers. In

HT-29 MTX cells and LS174T cells, respectively, belonging to

gastric and intestinal cancer cell lines, the expression of MUC5B

was significantly increased (Lesuffleur et al., 1995). To better

understand the abnormal expression of the MUC5B on the

pathogenesis of cancer cells, silencing the MUC5B gene in the

colon cancer cell line LS174T and gastric cancer cell line KATO-III

efficiently restrained cell proliferation and migration by regulating

the Wnt/b-catenin pathway (Lahdaoui et al., 2017).
2.4 MUC6

MUC6, which is highly similar to MUC5AC, belongs to gastric

mucins, but it is mainly rich in glandular epithelial cells. Lower

expression of MUC6 has been reported to be associated with

increased tumor cell mobility in CRC (Tsai et al., 2015).

Moreover, overexpression of the MUC6 in patients with CRC had

long PFS and cancer-specific survival (Betge et al., 2016). Although

current studies indicate that MUC6 plays a protective in the

occurrence and development of CRC, the specific mechanism

needs to be verified in future experiments.
3 Role of gut microbiota in
mucins of CRC

Despite several studies emphasizing the role of mucins in CRC,

the modulating effects of gut microbiota on mucins are often

ignored. Some species of pathogenic and commensal bacteria

could degrade mucins or use them as attachment sites, promoting

their colonization and replication. These invasive strains blinding

the intestinal epithelium drive the transition to a pro-inflammatory

microenvironment that accelerates colorectal tumorigenesis.

Several pathogenic and commensal bacteria have been associated

with CRC, including Fusobacterium nucleatum, Bacteroides fragilis,

Streptococcus gallolyticus, Escherichia coli, and Enterococcus faecalis.

Moreover, it has been shown that the influence of gut microbiota on

the mucus layer of CRC requires the formation of bacterial biofilms.

Here, we highlight the potential role of gut microbiota and their

biofilms in regulating the mucins of CRC.
3.1 Fusobacterium nucleatum

The obligate anaerobic, Gram-negative bacterial species

Fusobacterium nucleatum (F. nucleatum) is a normal inhabitant

of the human gut and mouth. It has been recognized as an

opportunistic pathogen implicated in CRC (Tahara et al., 2014;

Chen et al., 2017). Recent studies have demonstrated that an

abundance of F. nucleatum is enriched in CRC tissue in

comparison to normal tissue (Kostic et al., 2012; Warren et al.,

2013; Ye et al., 2017; King and Hurley, 2020). The increasing
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1119992
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Gu et al. 10.3389/fcimb.2023.1119992
number of F. nucleatum in CRC patients is associated with poor

survival (Mima et al., 2016). Pro-tumorigenic effects of F. nucleatum

on CRC were associated with dysfunction of the intestinal mucosal

barrier and the secretion of pro-inflammatory factors. Invasive

strains of F. nucleatum accelerated mucin secretion, which

resulted in the rapid depletion of mucin stores from goblet cells

and subsequently breached the mucus layer (Dharmani et al., 2011).

Meanwhile, the FadA adhesion protein secreted by F. nucleatum

provoked the b-catenin signaling pathway in intestinal epithelial

cells by interacting with E-cadherin, leading to upregulation of pro-

inflammatory responses and pro-oncogenic pathways in colorectal

cancer cases (Rubinstein et al., 2013; Rubinstein et al., 2019).

Additionally, supplementation with F. nucleatum isolated from a

patient with inflammatory bowel disease (IBD) in ApcMin/+ mice

promoted tumor progression (Hooper and Macpherson, 2010;

Kostic et al., 2013). Therefore, F. nucleatum could serve as a

potential bacterial marker for the diagnosis and treatment of CRC.
3.2 Bacteroides fragilis

Bacteroides fragilis (B. fragilis), belonging to the Bacteroidetes

phylum, is a common obligate anaerobic, Gram-negative gut

bacterium. Although B. fragilis acted as a common colonic

symbiote with an affinity for mucosal colonization, enterotoxigenic

B. fragilis (ETBF), a subset of B. fragilis secreting a specific

enterotoxin, had been shown to promote the development of CRC

(Wu et al., 2009). ETBF exhibited more stable colonization in the

colonic epithelial crypts of CRC and rapidly damaged the structure

and function of colonic epithelial cells, such as by cleaving the tumor

suppressor protein E-cadherin (Dai et al., 2019). The accumulation of

ETBF strains in crypts has been shown to be essential for tumor

formation via activator of transcription 3 (STAT-3) and an IL-17-

dependent pro-carcinogenic inflammatory response (Wu et al., 2009;

DeStefano Shields et al., 2016). Thus, ETBF has a role in triggering

mucosal inflammation and promoting the carcinogenesis of

colorectal cancer. Further research is needed to ascertain how the

production of toxic metabolites from B. fragilis influences

carcinogenesis by regulating the mucosal barrier.
3.3 Streptococcus gallolyticus

Streptococcus gallolyticus (S. gallolyticus), formerly known as

Streptococcus bovis (S. bovis) biotype I, is a Gram-positive bacterium

of humans belonging to the Firmicutes family. It acted as one of the few

opportunistic pathogens that was a reported risk factor for CRC

(Corredoira-Sánchez et al., 2012; Boleij and Tjalsma, 2013). Previous

studies showed that an abundance of S. gallolyticus was enriched in

CRC-mucosal tissues as compared to healthy tissue (Abdulamir et al.,

2010). Another study published in 2018 found that tumor-bearing

mice had an increased level (up to 1,000-fold) of S. gallolyticus in the

gut (Aymeric et al., 2018). S. gallolyticus was mainly found entrapped

in themucus layer through the Pil3 pilus. Overexpression ofMUC5AC

in CRC could favor the adhesion of S. gallolyticus through Pil3 pili and

thereby promotes colonization of S. gallolyticus (Martins et al., 2015;
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Martins et al., 2016). However, the role of S. gallolyticus in the

occurrence and development of CRC is still controversial. One study

within CRC patients showed that S. gallolyticus was more prevalent in

pre-malignant tissue and drove carcinogenesis (Pasquereau-Kotula

et al., 2018). On the contrary, another study revealed that S.

gallolyticus probably only promoted tumor development after CRC

had already begun (Butt et al., 2018). It should be noted that S.

gallolyticus contributing to mucins before or after initiation of CRC

certainly needs further experimental exploration.
3.4 Escherichia coli

Escherichia. coli (E. coli) is a Gram-negative, facultative anaerobic

bacteria of the Enterobacteriaceae family. While E. coli is a gut

commensal bacterium, more studies have shown that higher levels

of E. coli were colonized in the colonic mucosa of CRC patients

compared with that in healthy people (Denizot et al., 2015; Veziant

et al., 2016). E. coli binding to the host intestinal epithelium damages

the mucus layer and promotes colitis, which eventually leads to

dysplasia and CRC (Martin et al., 2004; Elliott et al., 2013). E. coli can

reduce the mucus layer and promote tumor growth due to the

production of enterotoxins. In vitro, incubation of E. coli with HT-

29 colon carcinoma cells resulted in reduced MUC2 glycoprotein

levels via the secretion of Shiga toxins (Xue et al., 2014). Moreover,

polyketide synthase (pks) island harbored by E. coli codes for the

production of colibactin, which had been found in CRC patients and

promoted colonic carcinogenesis (Cougnoux et al., 2014).

Colonization with pks+ E. coli induced carcinogenesis via mucus

damage and thereby promoted more pks+ E. coli binding to the

intestinal epithelium, which increased colonic epithelial cell double-

strand DNA breaks (Lasry et al., 2016; Dziubańska-Kusibab and

Berger, 2020). Thus, genotoxic compounds from E. coli play a major

role in promoting colorectal tumorigenesis.
3.5 Enterococcus faecalis

Enterococcus faecalis (E. faecalis) belongs to the Firmicutes and is

a Gram-positive, facultatively anaerobic bacteria in humans of the gut

commensal bacterium. Despite E. faecalis being part of normal gut

flora, accumulating evidence suggests that systemic infection and

CRC are closely related to the colonization of E. faecalis. Some studies

have shown that higher E. faecalis levels were detected in patients

with CRC compared with healthy controls (Balamurugan et al., 2008;

Zhou et al., 2016). Supplementation of E. faecalis in the IL-10

knockout mice promoted colitis and resulted in CRC (Lucas et al.,

2017). E. faecalis contributed to CRC pathogenesis due to its reactive

oxygen species (ROS) production, which induces DNA damage and

chromosomal instability in the colonic epithelium (Huycke et al.,

2002). Moreover, E. faecalis binding mucin layers via biofilm or pilus

promoted intestinal colonization and translocated through the

intestine, causing systemic infection (Khan et al., 2018; Banla et al.,

2019). According to evidence, E. faecalismay serve as biomarkers for

the diagnosis and treatment of CRC with infection.
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3.6 Bacterial biofilms

Biofilms are formed on the surface of gastric or intestinal

epithelia and interact with the secreted or membrane-bound

mucin, which affects mucin production. It has been reported that

mucus-invasive biofilms are present in the colon of over 50% of

CRC patients, whereas they are found in only 13% of healthy

individuals (Dejea and Sears, 2016). Biofilms tend to invade the

colonic mucus layer and present an important factor in CRC.

E. coli formed biofilms and used mucus as a source of energy

through its digestion, which harbored its virulence genes associated

with CRC (Sicard et al., 2018). F. nucleatum is considered to be a

central player in the formation of biofilms. A clinical study has

found that F. nucleatum and its biofilms were enriched in CRC

tissues, which indicated that these bacterial species had a propensity

for biofilm formation (Nakatsu et al., 2015). The increased presence

of B. fragilis and Enterobacteriaceae and their ability to form

biofilms could play a role in the development of CRC. Once these

biofilm-positive bacteria invaded the colonic mucosal layer and

came into direct contact with mucosal epithelial cells, they could

cause CRC development in this population (Dejea et al., 2018).

Hence, the mechanism driving the presence of tumor-associated

biofilms in the mucus layer of CRC requires further investigation.
4 Role of bacterial metabolites in
mucins of CRC

Dietary components in the large intestine are fermented by the

microbial community to produce a wide range of metabolites. The

major fermentation products are short-chain fatty acids, bile acids,

and tryptophan, which are crucial for gut homeostasis (Feng et al.,

2018). More evidence has become increasingly clear that the

microbiota’s metabolic products strongly influence the intestinal

mucus layer formation and development of CRC (Gill and

Rowland, 2002; Schwabe and Jobin, 2013). Below, we describe the

role of bacterial metabolites in regulating the mucin of CRC.
4.1 Short-chain fatty acids

In the metabolites of the gut microbiota, short-chain fatty acids

(SCFAs) are considered the most important bacterial products. The

nonabsorbable dietary fibers and resistant starches are selectively

fermented by microorganisms, resulting in the production of SCFAs

(butyrate, propionate, and acetate) (Koh et al., 2016). SCFAs could

create a barrier between the lumen and the near-gut epithelium,

leading to the activation of the MUC2 expression in the intestinal

barrier and showing anti-inflammatory effects by regulating G

protein-coupled receptors (Maslowski et al., 2009). Various studies

have demonstrated that SCFAs also aid in improving epithelial barrier

function by maintaining a good balance between intestinal immunity

and inflammation (Schulthess et al., 2019; Markowiak-Kopeć and

Śliżewska, 2020). In addition, SCFAs inhibited the colonization of F.

nucleatum in patients with CRC due to shortening intestinal transit
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time and a change in the PH of the gut (Mehta et al., 2017). Among

SCFAs, butyrate played an important role in colonic inflammation

and was mainly produced by Firmicutes , Eubacterium ,

Ruminococcaceae, and Clostridia (Ohira et al., 2017). In clinical

trials, fecal butyrate levels and butyrate-producing bacterial species

were significantly decreased in patients with advanced colorectal

adenoma (Chen et al., 2013). Furthermore, butyrate is thought to

have a preventative impact on CRC by regulatingmucin expression. A

study of the effect of butyrate on mucin secretion in LS174T CRC cells

indicated that butyrate could increase MUC2 levels by acetylation and

methylation of histones of the MUC2 promoter (Burger-van Paassen

et al., 2009). Also, treatment with butyrate in LS174T cells significantly

increased mucin protein content and improved probiotic strains,

thereby inhibiting the attachment of pathogenic E. coli (Jung et al.,

2015). Above all, SCFAs, especially butyrate, are important to

maintain intestinal mucus layer homeostasis and prevent CRC.
4.2 Bile acids

In the context of lipid metabolism, bile acids (BAs) and their

derivative molecules play an important role in human metabolism.

BAs are synthesized in the host liver and subsequently translated by

the gut microbiota to secondary BAs (lithocholic acids and

deoxycholic) in the colon (Sayin et al., 2013). A diet containing

saturated fats increased the production of BAs and risk of CRC by

inducing gut dysbiosis (Liu et al., 2020). In Apcmin/+ mice,

supplementation with BAs could enhance the relative abundance

of Akkermansia and Bacteroides and decrease SCFAs and MUC2

expression, leading to cancer progression via activating STAT3

signaling (Wang et al., 2019). Among secondary BAs, deoxycholic

acid (DCA) was considered a tumor promoter in CRC. Fecal

concentrations of DCA increased the risk of CRC (Ocvirk et al.,

2020), and enhanced DCAs were also found in patients with intra-

mucosal carcinomas and numerous polypoid adenomas (Yachida

and Mizutani, 2019). Interestingly, treatment of HM3 colon cancer

cells with DCA resulted in abnormal expression of MUC2 by

positive multiple pathways (Lee et al., 2010). Furthermore,

pseudo-germ-free Apcmin/+ mice induced by antibiotic

streptomycin received fecal microbiota from DCA-fed animals,

leading to low-grade inflammation and promoting intestinal

carcinogenesis (Cao et al., 2017). Thus, BAs are positively

correlated with the incidence of CRC, and understanding

interactions between BAs and mucins is helpful for CRC therapy.
4.3 Tryptophan

Among the metabolism of amino acids supplied through food

high in protein, tryptophan (Trp), which acts as a vital amino acid,

plays an important role in the maintenance of inflammatory

response and intestinal permeability. Some of Trp is catalyzed by

host tryptophanase into kynurenine, while others are catabolized by

bacteria (Lactobacillus, Clostridium sporogenes, etc.) to serotonin,

tryptamine, and indole derivatives (indole-3-ethanol-IEt, indole-3-

pyruvate-IPyA, and indole-3-aldehyde-I3A and 3-indole-propionic
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acid (IPA)) (Devlin et al., 2016). These indole derivatives could

strengthen the mucosal layer and enhance MUC2 expression by

regulating aryl hydrocarbon receptor (AhR) and pregnane X

receptor (PXR) (Venkatesh et al., 2014; Gheorghe et al., 2019;

Scott et al., 2020). Indole derivatives activating AhR facilitate the

proliferation of epithelial cells and the expression of antimicrobial

peptide and mucin production while reducing LPS-mediated

inflammation (Venkatesh et al., 2014; Lanis et al., 2017; Taleb,

2019). Trp metabolites also enhanced intestinal integrity through

the activation of PXR (Venkatesh et al., 2014). Moreover,

supplementation with IPA in rats with a high-fat diet could repair

the intestinal mucosal barrier via increased MUC2 expression (Li

et al., 2021). Therefore, Trp is considered a potential target for CRC

treatment, and more research is needed to fully comprehend its role

in modulating mucus layer synthesis during carcinogenesis.
5 The potential therapy for
mucins of CRC

As described previously, the gut microbiota and its metabolites

play a crucial role in the intestinal mucus layer of CRC. Therefore,

obtaining favorable modulations of the gut microbiome and

metabolic activities to protect gut barrier function is a promising

strategy for CRC prevention and treatment. The various strategies,

such as probiotics, prebiotics, and fecal microbiota transplantation,

are considered below.
5.1 Probiotics

Probiotics are live microorganisms that, when administered in

adequate amounts, confer a health benefit on the host. The

probiotics exert a protective effect against CRC by competing

with pro-carcinogenic microbiota, modulating host immunity,

and enhancing the intestinal barrier (Fong et al., 2020). On an

ecological level, some probiotics could suppress the proliferation of

pathogenic bacteria by secreting antimicrobial peptides. The

consumption of probiotics like Lactobacillus and Bifidobacterium

could reduce the abundance of Clostridium, Bifidobacterium,

Roseburia, and Faecalibacterium bacteria enriched in CRC

patients and inhibit the colonization of commensal bacteria such

as E. coli, E. faecalis, F. nucleatum, and S. gallolyticus (Chen et al.,

2019). Other probiotics may function in CRC prevention by

modifying the immune response. A chemical-induced animal

model study revealed that orally administered VSL#3 probiotic

cocktail meliorated colitis-associated tumor development through

the reduction of STAT-3 expression (Do et al., 2016). Moreover,

probiotic administration could strengthen the mucosal barrier in

CRC treatment. One clinical trial indicated that a combination of

prebiotic inulin and two probiotic strains, B. lactis Bb12 and L.

rhamnosus GG, improved epithelial barrier function and reduced

colorectal proliferation in patients with adenomatous or cancerous

lesions (Rafter et al., 2007). Additionally, several studies have

reported that probiotics reduced the frequency of severe diarrhea
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and abdominal discomfort in CRC patients induced by

immunotherapy and chemotherapy by repairing the gut barrier

(Liu et al., 2011; Demers et al., 2014). Therefore, probiotics confer

health benefits to the gut barrier function of CRC.
5.2 Prebiotics

Prebiotics are derived from nondigestible carbohydrates in the

diet, which are defined as “composition selectively fermented by

microorganisms conferring host health benefits” (Gibson et al.,

2017). Prebiotics are selectively utilized by host microorganisms,

prompting the production of beneficial metabolites to restore

intestinal homeostasis and barrier integrity (Nagpal and Yadav,

2017). Thus, consuming prebiotic-rich dietary foods that are high in

fiber and low in fat and processed meat have been suggested to

protect against CRC. A high-fiber diet showed a better response to

prebiotics, which resulted in longer transit time in the intestine and

greater immune surveillance to inhibit the mucosal colonization of

invasive-adherent bacteria (Mehta et al., 2017). A recent meta-

analysis study demonstrated that a high-fiber intake, particularly of

whole grains and dairy products, was associated with a decreased

risk of CRC (Aune et al., 2011). By contrast, western diets that were

rich in red and processed meat influenced the integrity of the

intestinal mucus layer, altered gut microbiota, and increased the

risk of CRC (Tan and Chen, 2016).

In general, the main prebiotics included fructose-oligosaccharides

(FOS) and galacto-oligosaccharides (GOS). Several studies have

shown the protective effects of FOS and GOS against CRC

progression via modulating gut microbiota and mucus layer

function (Valcheva and Dieleman, 2016; Davani-Davari et al.,

2019). FOS from nondigestible carbohydrates is absorbed by the

small intestine and transferred to the colon, where they contribute to

the specific stimulation of endogenous probiotics (lactobacilli species

and bifidobacteria) (Tuohy et al., 2001). A study of the effects of FOS

on the gut microbiotas of healthy humans revealed that FOS

supplementation could increase the concentration of bifidobacteria

in the feces, along with stabilizing neutral sterols and host bile acid

content, which were involved in CRC progression (Bouhnik et al.,

1996). Furthermore, feeding with FOS showed a promising increase

in the relative abundance of Lactobacillus and Bifidobacterium and

the intestinal mucosal barrier in rats (Lima et al., 2018). In the

ApcMin/+ mouse model, feeding of FOS effectively inhibited the

development of tumors in the colon by activating the antitumor

immunity (Pierre et al., 1997). Besides influencing the microbiota,

another prebiotic, GOS, is selectively degraded by the gut microbiota,

leading to the production of SCFAs, which can, in turn, reduce the

risk of CRC development via regulating mucus barrier functions

(Ohtsuka et al., 1991; Rowland et al., 1998). In vitro, GOS induced

increased expression of MUC2 at the transcript levels and its co-

secreted molecule trefoil factor-3 in LS174T cells (Figueroa-Lozano

et al., 2020). In vivo, GOS supplementation for 4 days resulted in

higher expression of MUC2 at the transcript level in BALB/c mice

(Leforestier et al., 2009). Moreover, oral administration of GOS

(derived from lactulose) for 20 weeks inhibited colon tumors in the

CRC rat model (Fernández et al., 2018). Overall, although the diet
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containing FOS and GOS provides beneficial effects on gut

homeostasis, the mechanism of prebiotics on the mucus layers of

CRC needs further exploration.
5.3 Fecal microbiota transplantation

Based on the crucial role of the intestinal microbiome in the

pathogenesis of CRC, fecal microbiota transplantation (FMT)

involved in bacteria-related therapies is gaining more attention. FMT

refers to fecal stools from healthy donors transferred to patients via a

nasoenteric tube or endoscope (Brandt and Aroniadis, 2013). The aim

of FMT is to normalize gut dysbiosis and treat various gastrointestinal

diseases, including IBD, Clostridium difficile infection (CDI), and

irritable bowel syndrome (Smits et al., 2013; Choi and Cho, 2016).

Currently, FMT is an established therapy for recurrent and refractory

CDI with an over 90% success rate in clinical studies (Quraishi et al.,

2017; Chen et al., 2018a). Although its application in the treatment of

CRC patients is unexplored, some studies have been conducted on the

use of FMT in murine models with CRC. Wild-type and germ-free

mice fed with fecal samples from CRC patients prompted tumor cell

proliferation compared to healthy stool-fed mice under dextran sulfate

sodium salt/azoxymethane-induced colorectal tumorigenesis (Wong

et al., 2017). Furthermore, fecal transplants from wild mice to

laboratory mice also resisted chemically induced CRC (Rosshart

et al., 2017). Thus, FMT may be a novel macrobiotic therapy for

CRC, and further clinical studies are required to explore the safety and

mechanisms of FMT in mucins of CRC.
6 Conclusion

The gut microbiota, bacterial metabolites, and host mucus layer

are key players in protecting and maintaining the colon. In this

review, we have outlined the profound effects of colonic microbiota
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and their ability to produce metabolites on the intestinal mucus

layer that support colonic health and prevent CRC development

(Table 1). Thus, studies on bacteria-targeted therapies for mucin

provided many new ideas for CRC prevention and treatment. The

interventions involved in prebiotics, probiotics, and FMT improve

the mucus layer as a strategy for the prevention or treatment of

CRC. In conclusion, a better understanding of the interplay between

gut microbiota, bacterial metabolites, and the mucus barrier will

shed light on novel therapeutic approaches to intestinal diseases,

especially CRC.
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TABLE 1 Impact of gut microbiota and bacterial metabolisms on mucins of CRC.

Impact of gut microbiota on mucins of CRC

Gut microbiota Pathogen or commensal
organism

Target Known effect on mucin Model Reference

Fusobacterium nucleatum Pathogen MUC2 Decrease MUC2 Human Rubinstein et al. (2019)

Bacteroides fragilis Commensal Mucin Degrade and adhere to mucin Cell culture Wu et al. (2009)

Streptococcus gallolyticus Pathogen MUC5AC Increase MUC5AC Mouse Martins et al. (2015)

Escherichia coli Commensal MUC2 Decrease MUC2 Cell culture Xue et al. (2014)

Enterococcus faecalis Commensal Mucin Adhere to mucin Cell culture Banla et al. (2019)

Impact of bacterial metabolisms on mucins of CRC

Bacterial metabolisms Dietary sources Target Known effect on mucin Model Reference

Short-chain fatty acids Nondigestible carbohydrates Mucin Promote mucin expression Cell culture Burger-van Paassen et al. (2009)

Bile acids Fat MUC2 Decrease MUC2 Mouse Wang et al. (2019)

Tryptophan Protein MUC2 Increase MUC2 Mouse Scott et al. (2020)
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