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Co-infection of Phlebotomus
papatasi (Diptera: Psychodidae)
gut bacteria with Leishmania
major exacerbates the
pathological responses of
BALB/c mice

Fariba Amni1, Naseh Maleki-Ravasan2*, Mahmoud Nateghi-Rostami2*,
Ramtin Hadighi1*, Fateh Karimian2, Ahmad Reza Meamar1,
Alireza Badirzadeh1 and Parviz Parvizi2*

1Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences,
Tehran, Iran, 2Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
Clinical features and severity of the leishmaniasis is extremely intricate and depend

on several factors, especially sand fly-derived products. Bacteria in the sand fly’s

gut are a perpetual companion of Leishmania parasites. However, consequences

of the concomitance of these bacteria and Leishmania parasite outside the midgut

environment have not been investigated in the infection process. Herein, a needle

infection model was designed to mimic transmission by sand flies, to examine

differences in the onset and progression of L. major infection initiated by

inoculation with “low” or “high” doses of Enterobacter cloacae and Bacillus

subtilis bacteria. The results showed an alteration in the local expression of pro-

and anti-inflammatory cytokines in mice receiving different inoculations of

bacteria. Simultaneous injection of two bacteria with Leishmania parasites in the

low-dose group caused greater thickness of ear pinna and enhanced tissue

chronic inflammatory cells, as well as resulted in multifold increase in the

expression of IL-4 and IL-1b and a decrease in the iNOS expression, without

changing the L. major burden. Despite advances in scientific breakthroughs, scant

survey has investigated the interaction between micro and macro levels of

organization of leishmaniasis that ranges from the cellular to macro ecosystem

levels, giving rise to the spread and persistence of the disease in a region. Our

findings provide new insight into using the potential of the vector-derived

microbiota in modulating the vertebrate immune system for the benefit of the

host or recommend the use of appropriate antibiotics along with

antileishmanial medicines.

KEYWORDS

leishmaniasis, Phlebotomus papatasi, gut bacteria, sand fly bite, pro and anti-inflammatory
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Introduction

Globally, leishmaniasis is one of the most neglected tropical and

subtropical diseases, in which hosts are diseased after receiving the

infectious bite of Phlebotominae sand flies infected with protozoan

parasites of Leishmania genus (Torres-Guerrero et al., 2017). It is

estimated that 0.7-1 million new cases of leishmaniasis occur annually

(WHO, 2022). The disease is clinically characterized by a diverse

spectrum of manifestations, varying from self-limiting cutaneous

leishmaniasis (CL) to progressive and potentially fatal visceral

leishmaniasis (VL) (Murray et al., 2005). Cutaneous leishmaniasis is

the most common form of leishmaniasis worldwide, and virtually

95% of the cases occur in the Americas, the Mediterranean Basin, the

Middle East, and Central Asia (Hepburn, 2003; WHO, 2022). As the

most frequent presentation of the disease, CL causes skin lesions that

evolve from nodules to painless ulcers, which can leave long-lasting

scars and serious disability or stigma (Bilgic-Temel et al., 2019;

WHO, 2022).

Clinical features of leishmaniasis is extremely intricate and

depend on multiple factors, especially infecting parasite species

(Oshaghi et al., 2009; Thakur et al., 2018; Kato et al., 2021) and

their virulence factors such as lipophosphoglycan, metalloprotease

GP63, and elongation factor 1 alpha (Gupta et al., 2022), as well as

genetic background of the vertebrate (Sakthianandeswaren et al.,

2009; Krayem and Lipoldová, 2021), immune homeostasis of the

host, and vector-derived product (Serafim et al., 2021). However,

balance between type 1 and type 2 immune responses, along with

other regulatory mechanisms, plays an essential role in determining

the outcome of leishmaniasis (Costa-da-Silva et al., 2022). Studies

have signified that a set of cytokines are respectively involved in the

leishmaniasis progression, and host protection entails cytokines,

including TGF-b and interleukins (IL)-4, IL-5, IL-6, IL-9, IL-10, IL-

27, and IL-33 and also inducible nitric oxide synthase (iNOS),

interferon (IFN)-g, tumor necrosis factor-a, IL-2, IL-7, IL-8, IL-
12p40, IL-15, IL-22, and IL-23. However, the cytokines IL-1, IL-3,

IL-4, IL-13, IL-17, and IL-18 have a dual role not only in the disease

progression but also in host resistance (Dayakar et al., 2019). In

addition, IL-4 and IL-10 have been reported to be associated with the

visceralization of cutaneous L. major infection (Heinzel et al., 1989;

Heinzel et al., 1991).

During the last few years, research has exhibited that vector-

derived factors of sand fly (e.g. saliva and gut microbiota) and

Leishmania (e.g. the promastigote secretory gel and exosomes)

origin are actively involved in vector transmission and facilitate

parasite survival and its establishment in the host (Serafim et al.,

2021). It is well known that leishmaniasis transmission occurs in

complex biological systems, including the human host, parasite, sand

fly vector, and in some cases, one or more animal reservoirs (WHO,

2010). Efforts made so far toward the development of an efficient and

a safe drug or vaccine against leishmaniasis have been unsuccessful or

partially successful (Altamura et al., 2022; de Vries and Schallig, 2022;

Ghafari and Parvizi, 2022). Hence, to constrain and finally eliminate
Abbreviations: Bs, Basilus subtilis; CL, cutaneous leishmaniasis; dpi, day post

infection; Ec, Enterobacter cloacae; IFN-g, interferon gamma; IL, interleukin; iNOS,

inducible nitric oxide synthase; Lm, Leishmania major; PBS, phosphate buffer

saline; VL, visceral diseases.
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leishmaniasis, comprehensive research programs focusing on the role

of all components of the disease and their interaction are needed.

It has fully been accepted that microbiota, bacteria in particular,

are inextricably linked to leishmaniasis, an issue neglected in the early

theory of infectious disease causation. Interaction of microbiota with

the components of a disease cycle, starting from the vector gut and

continuing to the vertebrate host, can be unilateral, bilateral, or

multilateral and can have adverse, neutral or beneficial effects for

the partners (Maleki-Ravasan et al., 2015; Gimblet et al., 2017; Dey

et al., 2018; Karimian et al., 2018; Borbon et al., 2019; Karimian et al.,

2019; Campolina et al., 2020).

Once Leishmania parasites reach the insect’s alimentary canal,

they encounter a commensal bacterial community, where multiple

microbiota-parasite-host interactions determine the ultimate fate of

the parasite journey (Telleria et al., 2018). Microbiota play an

important role in the physiology of nutrition, digestion, and

maturation of the vector’s innate immune system (Dillon and

Dillon, 2004; Weiss and Aksoy, 2011). It has been shown that

eliminating or changing the microbiota can alter the development

of the Leishmania parasite in the vector’s gut (Kelly et al., 2017;

Louradour et al., 2017). Gut microbiota can also affect the parasite

infection by activating the innate immune pathways of the vector

(Diaz-Albiter et al., 2012). Likewise, Leishmania infection may also

lead to a prompt loss of bacterial diversity throughout the course of

infection (Kelly et al., 2017).

A large number of bacteria including the members of

Enterobacter cloacae and Bacillus subtilis complexes are commensal

bacteria in the gut of sand flies that transmit causative agents of CL

and VL in the Old and New Worlds (Oliveira et al., 2000; Hurwitz

et al., 2011; Akhoundi et al., 2012; Maleki-Ravasan et al., 2015; Fraihi

et al., 2017; Gunathilaka et al., 2020; Karimian et al., 2022). Both

bacteria have the ability to regulate insect immune responses (Eappen

et al., 2013; Heerman et al., 2015; Zhang et al., 2021) and produce

secondary metabolites that show activity against insects and their

harboring microorganisms (Eappen et al., 2013; Caulier et al., 2019;

Zhang et al., 2021). Therefore, they probably play an essential role in

sand fly vector competence for Leishmania parasites (Louradour et al.,

2017). Consequently, E. cloacae and B. subtilis can be considered as a

shuttle system to deliver, express and spread foreign inserts to be used

as promising candidates for the paratransgenic approach (Hurwitz

et al., 2011; Dehghan et al., 2017; Dehghan et al., 2022).

Altogether, bacterial components of the sand fly microbiota can

interfere with the development of Leishmania parasite inside the

midgut of the sand fly vector (Telleria et al., 2018) or outside the

midgut, in the skin of the vertebrate (Dey et al., 2018). Regarding the

first part, as mentioned above, relatively suitable studies are available,

but for the second part, one survey has suggested that eliminating the

vector gut microbiota or blocking the vertebrate host’s IL-1b before

parasite transmission abrogates neutrophils recruited to the site of

sand fly bite and declines Leishmania dissemination (Dey et al., 2018).

Given the above arguments, it is apparent that the bacteria in the

sand fly’s gut are a perpetual companion of Leishmania parasites, and

the consequences of concomitance of these bacteria and the

mentioned parasites have not been investigated in the initiation,

continuation, and termination of the infection process. Hence, a

laboratory model of Leishmania infection was developed in BALB/c

mice through needle injection of parasites with or without sand fly gut
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bacteria to determine the outcomes of accompanying bacteria, in

terms of type and number, in the Leishmania wound formation and

local immune responses. The results of the present study disclosed

that bacterial co-infection has a profound effect on the balance of pro-

and anti-inflammatory cytokine expression, thus the severity of L.

major lesions.
Materials and methods

Experimental animals

Healthy female BALB/c mice (n=192), aging 4-6 weeks, were

obtained from the Laboratory of Animal Sciences at the Pasteur

Institute of Iran (IPI), Tehran. The mice were housed under

pathogen-free and controlled conditions with 12 h light/dark cycles

at 22 ± 2°C. To acclimatize to the laboratory conditions, the animals

were maintained in distress-free condition for seven days. The study

protocol was approved by the Ethics Commission of IPI (ethical code:

IR.PII.REC.1399.027), and the use/care of animals were performed in

line with the European Community (EEC Directive of 1986; 86/609/

EEC), as well as the U.K. Animals Act 1986 (EU Directive 2010/63/

EU for animal experiments) guidelines.
Microbial culture and preparation

The reference strain of Leishmania major (MRHO/IR/75/ER) and

two bacterial species of Enterobacter cloacae and Bacillus subtilis were

selected for inoculumpreparation. Atfifth day of culture, stationary phase

promastigotes of L. major were harvested from RPMI 1640 medium

supplemented with 10% fetal bovine serum (Gibco Invitrogen, Carlsbad,

CA, USA) and 100 mg/ml of penicillin-streptomycin (Biowest, USA)

incubated at 25 ± 1°C. To count parasites, the cultures were centrifuged at

5,000 ×g at room temperature for 10 min and then re-suspended in 0.5%

formalin following three washes with PBS. The reason for choosing these

two bacterial species was their isolation from the resting, feeding and

breeding environments of P. papatasi and their significant effects on the

development of Leishmania (Maleki-Ravasan, in press; Maleki-Ravasan
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et al., 2015). Both bacteria were grown at 37°C on a Brain Heart Infusion

(BHI) agarmediumplate overnight. The single-grown colonies were then

subcultured in BHI broth at 100 rpm at 37°C overnight. Bacterial cells

were adjusted to 1.5×108 CFU/ml (optical density at 600 nm, ∼0.25)
according to Kaplan et al., 2012 protocol. The stock solution was serially

diluted up to 1:100 and 1:10,000 to obtain 1.5×106 and 1.5×103CFU/ml of

each bacterial cell for high and low doses groups, respectively.
Mice infection

Briefly, the low (1.5×103 CFU/mL) and high (1.5×106 CFU/mL)

doses of each bacterium were suspended in 10 mL of PBS either with

or without L. major (1.5×106/ml). Leishmania major alone and PBS

were set as controls. The suspensions were injected intradermally into

the right ear pinna of mice following anesthetizing with xylazine (10

mg/kg) and ketamine (80 mg/kg) (Table 1).
Measurement of lesion thickness

One week after inoculation, the thickness of ear pinna was weekly

measured with a digital collis for three months. The data were

represented as mean ± SD of 10-12 mice/group.
Determination of parasite burden

The number of viable parasites in the spleens and lymphnodes of the

L. major-infected mice with or without bacteria was determined by

limiting dilution assay as described previously (Titus et al., 1985). In brief,

three mice in each group were killed on 31th and 90th days post infection

(dpi). The tissues were aseptically removed and washed with PBS and

then homogenized together in 1 ml of Schneider’s Drosophila Medium

(Gibco). The homogenate was diluted in eight serial 10-fold dilutions

with the same medium. In this regard, dilutions were prepared from 1:1

to 1:10,000,000 in a total volume of 1.8 ml. About 100 ml of each
suspension were distributed to 96-well microtiter plates, which were

covered to prevent medium evaporation and external contamination.
TABLE 1 Details of bacteria (low/high doses) and Leishmania parasite used for inoculum preparation.

Groups (no. of mice) Inoculum(s) Low-dose infection High-dose infection

Bacteria
(CFU/mL)

Parasite
(cell/mL)

Bacteria
(CFU/mL)

Parasite
(cell/mL)

G1 (n=12)* Lm+Bs 1.5 × 103 1.5 × 106 1.5 × 106 1.5 × 106

G2 (n=12) Lm+Ec 1.5 × 103 1.5 × 106 1.5 × 106 1.5 × 106

G3 (n=12) Lm+(Bs+Ec) 1.5 × 103 1.5 × 106 1.5 × 106 1.5 × 106

G4 (n=12) Lm — 1.5 × 106 — 1.5 × 106

G5 (n=12) Bs+Ec 1.5 × 103 — 1.5 × 106 —

G6 (n=12) Ec 1.5 × 103 — 1.5 × 106 —

G7 (n=12) Bs 1.5 × 103 — 1.5 × 106 —

G8 (n=12) PBS — — — —
fro
*Injection volume in all groups were 10 ml.
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The plates were then incubated at 25 ± 1°C for 10 days. Positive (the

presence of motile parasite) and negative (the absence of motile parasite)

wells were specified using an invertedmicroscope (Zeiss, Germany). The

parasite burden was determined after logarithmic calculation of the

microscopic results by ELIDA software (Taswell, 1987).
Evaluation of cytokine expression profiles

The local expression of pro- and anti-inflammatory cytokines in

mice receiving different inoculums, as stated in Table 1, was investigated

at the beginning, middle, and end of the infection period. Three mice

from each group were randomly sacrificed, and the biopsies were

prepared from the inoculation sites on the right ear pinna on days 1,

31, and 90 dpi. After homogenizing the tissues of the mice, their total

RNA was extracted using the TRIZOL reagent (Invitrogen) following the

manufacturer’s instructions. The RNA concentrations and its purity were

determined by reading A260 and A280 on a Biotek PowerWave XS

Microplate Reader (Thermo Fisher Scientific, Wilmington, DE, USA).

The synthesis of cDNA was accomplished with 1 mg of total RNA using

iScript cDNA Synthesis kit (Pars Tous, Iran), according to the

manufacturer’s recommendations. Quantitative polymerase chain

reactions (qPCR) were performed on cDNAs synthesized using

primers introduced in the literature (Mizobuchi et al., 2018) (Table 2).

The investigated cytokines were consisted of IL-4, IL-10, iNOS, IL-1b,
IFN-g, and IL-12p40. All assays were carried out using 1 ml of cDNA as

the template, 10 ml of SYBR SelectMasterMix (Thermo Fisher Scientific),

and 0.5 ml of each forward/reverse primer on the StepOnePlus Real-Time

PCR System (Thermo Fisher Scientific). The qPCR results were analyzed

by 2-DDCt methods and normalized by GAPDH. The thermal cycling

conditions for the PCR included an initial denaturation of 95°C for

5min, followed by 45 cycles of 95°C for 15 s, 60°C for 1min, and 95°C for

15 s. Melting curve was performed at the end of the reactions.
Histological investigations

At 90 dpi, the inoculated ear tissues from three mice in each group

were cut and embedded in paraffin. Next, 5-mm tissue sections were

prepared and stained with hematoxylin and eosin and examined

under a light microscope (Zeiss, 40× objective). The presence of

chronic inflammatory cells, including neutrophils, lymphocyte, and

histiocytes, was imaged and analyzed using a semi-quantitative

histological scoring method (Klopfleisch, 2013).
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Statistical analyses

All experiments were repeated three times. Data analyses and

graph plotting were performed using GraphPad Prism software (v.

6.07). To compare multiple groups, a two-way ANOVA analysis was

applied, followed by a post hoc test adjusted by the Tukey’s method.

The Student’s t-test was also used to compare the means between two

groups. A value of P<0.05 was considered statistically significant.
Results

Lesion thickness change

Alterations in the thickness of the ear pinna of BALB/c mice were

initiated with redness and swelling one week after inoculation and

peaked on the 7th week so that the lesions became ulcerated

(Figures 1, 2). The changes were positively correlated with

inoculum content. The highest thickness in low- and high-dose

groups was respectively related to the groups receiving the parasite

with both bacteria (Figure 1A; significant with the L. major plus E.

cloacae or L. major plus B. subtilis bacteria, P<0.001) and the parasite

alone (Figure 1B; significant with all groups). No changes in ear pinna

thickness were observed in mice receiving only bacteria or PBS.
Parasite burden measurement

Measuring the parasite load of the spleen and lymph nodes at 31

and 90 dpi showed that in all (low/high doses) groups, the number of

live parasites at 90 dpi was significantly higher than the 31 dpi

(P<0.001); however, no significant difference was observed between

the groups in both point times (Figure 3).
Cytokine expression profiles

Low-dose group
Pro- and anti-inflammatory cytokines generally showed increased

expression at the beginning and end of the infection period compared

to the middle of the period (Figure 4). Coinfection of bacteria and

parasite caused more expression of IL-4 anti-inflammatory cytokines

than the group received bacteria alone (P<0.0001). The expression of
TABLE 2 List of primers used in this study.

Gene Forward (5′➔3′) Reverse (5′➔3′)

IL-4 GGCATTTTGAACGAGGTCAC AAATATGCGAAGCACCTTGG

IL-10 GCTGGACAACATACTGCTAACC CCCAAGTAACCCTTAAAGTCCTG

iNOS GTTCTCAGCCCAACAATACAAGA GTGGACGGGTCGATGTCAC

IL-1b GAAAGACGGCACACCCACCCT GCTCTGCTTGTGAGGTGCTGATGTA

IFN-g GGCCATCAGCAACAACATAAGCG TGGGTTGTTGACCTCAAACTTGG

IL-12p40 ACAGCACCAGCTTCTTCATCAG TCTTCAAAGGCTTCATCTGCAA

GAPDH CGACTTCAACAGCAACTCCCACTCTTCC TGGGTGGTCCAGGGTTTCTTACTCCTT
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B
B

A

FIGURE 2

Macroscopic (A) and microscopic (B) changes in the ear pinna of BALB/c mice infected with different inoculums content at 90 dpi. The paraffin-
embedded hematoxylin and eosin-stained sections of ears are illustrated by low-powered (100×) and high-powered (400×) images.
BA

FIGURE 1

Changes in the thickness of the ear pinna of BALB/c mice in different groups (up) during infectious course (down). (A) Low-dose group: significance in different
groups (*P<0.0001 vs. Lm; **P<0.0001 vs. Lm+(Ec+Bs) and during infectious course (*P<0.0001 vs. all; **P<0.0001 vs. all; ***P<0/0001 vs. all; #P<0.0001 vs. 1-4
and 6-10; ##P<0.0001 vs. 1-4 and 12); (B) High-dose group: significance in different groups (*P<0.0001 vs. Lm+(Ec+Bs), Lm+Ec, and Lm+Bs; **P<0.0001 vs. Lm
+(Ec+Bs), Lm+Bs; ***P<0/0001 vs. Lm+(Ec+Bs) and during infectious course (*P<0.0001 vs. all; **P<0.0001 vs. all; ***P<0/0001 vs. all; #P<0.0001 vs. all;
##P<0.0001 vs. all; ###P<0.0001 vs. all; ^P<0.0001 vs. 1-6 and 10-12; ^^P<0.0001 vs. 1-7 and 11, 12; ^^^P<0.0001 vs. 1-6 and 11, 12).
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IL-10 on the first day compared to the 31st and 90th dpi significantly

increased in all the groups (P<0.0001), except for EC/BS+EC groups.

Among the mentioned cytokines, the expression level of IL-4

compared to IL-10 was significantly higher at the end of the

infection period than at the beginning (P<0.0001; Figure 4; Table S1).

In case of pro-inflammatory cytokines, the simultaneous injection

of two bacteria and parasites on the first day led to a significant decrease

in the expression of iNOS compared to Lm+Bs, Bs+Ec, and Ec

inoculums (P<0.0001). Instead, the expression of IL-1b and IFN-g at
1 dpi in the same group was similar to other inoculums. The expression

level of IL-1b was higher in the group receiving two bacteria plus

parasite, as compared to the group receiving two bacteria alone at the

beginning and middle of the infection period, but not significantly. In

groups receiving a bacterium plus parasite, the expression level of IL-1b
was significantly higher at the end of the infection period than at the

middle (P<0.0001). In groups receiving two bacteria with or without

parasites, the expression level of IFN-g was significantly lower at the

end of the infection period than at the beginning (P<0.0001). The

expression of IL-12p40 with the injection of two bacteria alone or

together with the parasite on the first dpi was significantly lower than
Frontiers in Cellular and Infection Microbiology 06
other inoculums. The expression of iNOS and IL-12p40 showed a

significant decrease at the end of the infection period compared to the

beginning in Lm+Bs, Bs+Ec, and Ec groups and Lm+Bs, Lm+Ec, Bs,

and Ec groups, respectively (P<0.0001; Figure 4).

The analysis of the mean expression of cytokines during the

infection process showed that the simultaneous injection of two

bacteria along with the parasite led to a significant increase in the

expression of IFN-g and IL-10, as well as a significant decrease in

iNOS expression compared to the control group (P<0.0001;

Figure S1).

High-dose group
The expression of pro- and anti-inflammatory cytokines mostly

showed fluctuations during the infection course. The anti-

inflammatory cytokine IL-4 showed increased expression level at

the beginning and at the end of the infection period compared to

the middle; however, this variation was significant only in the Lm+Bs

and Ec inoculums (P<0.0001). On the contrary, the level of Il-10

expression indicated fewer changes in all three periods. The lowest

level of expression on the first day in all pro-inflammatory cytokines
FIGURE 4

Local expression profiles of pro- and anti-inflammatory cytokines BALB/c mice infected with different inoculums in low-dose group. Symbols on the
columns indicate the significant difference (P<0.0001) of the mentioned group in comparison to groups received other inoculums, as specified in the
attached Table S1.
FIGURE 3

Parasite burden in the spleen and lymph nodes of BALB/c mice infected with different inoculums content at the 31/90 dpi. In all groups, P value was less
than 0.001 (31 dpi vs. 90 dpi).
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1115542
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Amni et al. 10.3389/fcimb.2023.1115542
was found in the group receiving two bacteria with parasites. The

lowest and the highest levels of IFN-g expressions at the beginning of
the infection period were observed in the groups receiving two

bacteria plus parasites and in the group receiving two bacteria

alone, respectively. The expression of IL-12p40 significantly

decreased with the injection of two bacteria plus parasite on the

first dpi compared to Lm+Bs, and Ec inoculums (P<0.0001). At the

beginning of the infection period, the highest and lowest expression

levels of IL-12p40 were found in groups receiving Ec and Lm+Ec+Bs,

respectively (Figure 5).

The analysis of the mean expression of cytokines during the

infection process showed that the simultaneous injection of two

bacteria together with the Leishmania led to a significant decrease

in the expression of IFN-g, IL-1b and IL-10 compared to the control

group (P<0.0001; Figure S2).
Histopathological studies

Coinfection of L. major with E. cloacae and B. subtilis increased

the number of tissue chronic inflammatory cells at 90 dpi. The highest

numbers of neutrophils in low- and high-dose groups were found in

mice receiving L. major plus two bacteria and receiving the parasite

alone, respectively. Semi-quantitative histologic scores in low-dose

group showed that lymphocytes and histiocytes were predominated in

both the group infected with L. major alone and the group infected

with L. major plus E. cloacae and B. subtilis (Figure 6). Increasing the

dose of bacteria did not lead to an elevation in the number of

inflammatory cells in mice receiving the parasite accompanied by

the bacteria.
Discussion

The findings of the present study demonstrated that E. cloacae

and B. subtilis bacteria significantly influence the infection process
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caused by L. major parasite, and the results can be used in the

interpretation of the natural infection transmission through sand fly

bites. Bacterial co-infection had a profound impact on the expression

balance of pro- and anti-inflammatory cytokines at the beginning,

middle, and end of infection course. These effects varied based on the

type and dose of bacteria inoculum. From the microscopic and

macroscopic point of view, the worst type of wound was observed

in the group receiving low-dose E. cloacae and B. subtilis bacteria plus

L. major parasite, leading to a decrease in the expression of iNOS and

an increase in the expression of other cytokines together with raising

inflammatory cells. However, the same treatment with increasing

dose of bacteria showed different results in terms of wound

morphology and the expression of cytokines and inflammatory cells.

There is sufficient evidence suggesting that studies of the

evolutionary course of leishmaniasis, as an ancient disease, are

consistent with the development of infectious disease modeling

theories. At the beginning of the 20th century, early studies had

focused on the identification of Leishmania parasites as an etiological

agent and also sand flies as the transmission vectors of leishmaniasis

(Steverding, 2017). Later, factors other than the main partners of the

disease were identified, which described the other mechanisms involved

in the transmission of the disease in more detail (Serafim et al., 2021).

Recently, a new multiscale model of infectious disease systems, namely

the replication-transmission relativity theory, has been developed. This

theory denotes that at each level of organization of an infectious disease

system, pathogensmust succeed at both the microscale (where pathogen

replication often occurs) and the macroscale (where pathogen

transmission often occurs) if they are going to spread and persist at a

special level of organization of an infectious disease system (Garira,

2019). However, due to the neglect of the dynamics of the disease and the

interaction betweenmicro andmacro scales, leishmaniasis still remains a

major health problem in many countries, including Iran. Hence, the

present study was designed and carried out in line with the multiscale

replication-transmission relativity theory to show that the microbiota of

the sand fly gut may affect the survival, reproduction, pathogenesis, and

spread of the Leishmania parasite.
FIGURE 5

Local expression profiles of pro- and anti-inflammatory cytokines BALB/c mice infected with different inoculums in high-dose group. Symbols on the
columns indicate the significant difference (P<0.0001) of the desired group with other treatments specified in the attached Table S2.
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Lately, it has been suggested that the relationship between

Leishmania and the microbiota may extend beyond the vector

midgut. During sand fly feeding, bacteria from the insect’s gut or in

the skin of the vertebrate host can enter the bite site. It has been

proven that the gut microbiota of sand flies are transferred while

sugar feeding (Maleki-Ravasan, in press) or are co-egested with the

Leishmania parasite (Dey et al., 2018). Using a murine VL model of

vector-transmitted L. donovani parasite, Dey and colleagues

demonstrated that the gut microbes of the Lutzomyia longipalpis

are entered the host skin, where they induce inflammation and IL-1b
production by neutrophils. IL-1b then acts as a primary autocrine

signal to attract neutrophils to the bite site. The same authors have

also displayed that the microbe-induced immune response controls

the downstream events governing L. donovani dissemination (Dey

et al., 2018). Regarding the simultaneous infection of the microbiota

of vertebrate skin with the Leishmania parasite, it has been found that

this type of inoculation aggravates the disease both by promoting

more inflammation and neutrophil recruitment and by increasing

neutrophil apoptosis and delaying the resolution of the inflammatory

response (Borbon et al., 2019).

The present research is the first study investigating the role of

bacteria isolated from sand fly gut in the wound formation and local

immune responses in BALB/c mice infected with L. major. While this

study was a laboratory model, without inclusion of saliva or

unculturable bacteria found in microbiota from the sand fly, its

results can be used to deduce the key role of bacteria in the

infectious bite of sand flies. The most important issue in our

investigation was the type and the number of bacteria transmitted

during the sand fly bite. Our previous study uncovered that culturable

bacteria constitute a small portion of microbiota transmitted during

bites (Maleki-Ravasan, in press), which should be taken into account

in future studies. Therefore, tactically, the consequences of the

association of a Gram-positive bacterium with a Gram-negative

bacterium alongside the Leishmania parasite were investigated in

the present study. On the one hand, the average number of parasites

and bacteria egested by a sand fly is estimated to be about 1,000 and

45,000 (Maleki-Ravasan, in press; Rogers et al., 2004), respectively,

and on the other hand, the number of 102–107 Leishmania parasites

has been indicated to cause ulcers in an animal model (Kimblin et al.,
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2008; Loeuillet et al., 2016). Considering these data, the number of

parasites was selected as 1.5×106 and that of bacteria as 1.5×103 and

1.5×106 in low and high doses, respectively (Table 1).

The gut of insects, compared to mammals’ gut, harbors relatively

fewer microbial species, but the gut of most of them contains specialized

bacteria (Engel and Moran, 2013). Insects such as sand flies have a

symbiotic relationship with their gut microbiota, which has become a

necessary evolutionary consequence of their survival in extreme

environmental conditions (Gupta and Nair, 2020). Various

evolutionary processes in the insect body have led to different types of

symbiotic relationships, from free living to an obligate or facultative

symbiosis (Gupta and Nair, 2020). There is insufficient information on

the type of symbiosis between B. subtilis and E. cloacae together and with

the host insect, but evidence of their co-occurrence in the gut of eight

sand fly species (Maleki-Ravasan et al., 2015; Karimian et al., 2019;

Karimian et al., 2022) and their transmission while biting (Maleki-

Ravasan, in press) have been provided. While these two bacteria were

pre-coexisted in sand fly gut, in the present study, they first were isolated,

then sub-cultured separately and finally combined while injecting into

the mice, which resulted in relatively severe symptoms of L. major,

though it may not be the case in natural settings. All these issues require

more detailed and accurate investigations.

In the current study, the thickness of the ear pinna lesion in

BALB/c mice was found to be bacteria dose-dependent. Thus, the

highest thickness in low- and high-dose groups was related to the

groups receiving the parasite plus two bacteria and the parasite alone,

respectively (Figure 1). The results of ear lesion thickness and the

abundance of tissue chronic inflammatory cells (Figure 6) are

consistent with the findings of a recent study (Dey et al., 2018).

However, the contradictory performance of high doses of bacteria in

wound formation is probably due to the interaction of the Gram-

positive with Gram-negative bacteria, which requires more in-

depth studies.

Measurement of the parasite load during the experimental

infection period showed that the number of live parasites was much

higher at the end than in the middle of the infection period. In

addition, there was no significant difference between the parasite

loads of the groups with or without bacteria, indicating that

microbiota more likely have an impact only on the pathogenesis of
BA

FIGURE 6

Semi-quantitative analysis of inflammatory cells of lymphocytes, histiocytes, and neutrophils in the ear pinna of mice receiving different inoculums.
(A) Low-dose group (*/** P<0.0001 vs. Bs+Ec, Bs, Ec, PBS, Lm+Ec, Lm+Bs, Lm+(Ec+Bs), and Lm; ###/^^^ P < 0.0001 vs. Lm+(Ec+B)s, Lm, Bs+Ec, Bs, Ec,
and PBS; ##/# P<0.0001 vs. Lm+Ec, Bs+Ec, Bs, Ec, and PBS; ^^ P < 0.0001 vs. Lm+Bs, Bs+Ec, Bs, Ec, and PBS; ^ P<0.0001 vs. Lm+Bs. (B) high-dose
group (*P<0.0001 vs. Lm, Ec+BS, Ec, Bs, and PBS; ** P<0.0001 vs. Lm+Ec, Lm+(Bs+Ec), Ec+Bs, Ec, Bs, and PBS; #/^ P<0/0001 vs. Lm+Bs, Lm+Ec, Lm
+(Bs+Ec), Ec+Bs, Ec, Bs, and PBS.
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the parasite not on its number (Figure 3). The results of both ear

lesion thickness and parasite load examined herein were in agreement

with the Borbon et al.’s findings (Borbon et al., 2019).

In the immunology of leishmaniasis, balance between Th1 and Th

2 along with regulatory mechanisms determines the outcome of

leishmaniasis. In general, Th1-type response mediates host

resistance, and Th2-type response associates with disease

progression in experimental infection with L. major in a mouse

model (Dayakar et al., 2019). The results of our study showed that

the local expression of pro- and anti-inflammatory cytokines in mice

receiving different inoculations of bacteria changed and caused the

disease to worsen. By comparing the low-dose group with high-dose

group, we found that the simultaneous injection of two bacteria

together with parasites causes a 35- and 970-time increase in the

expression of IL-4 and IL-1b in the low-dose group. In both groups,

the lowest iNOS expression was observed in the group receiving two

bacteria plus parasites at 1 dpi. A significant increased expression of

IFN-g was also observed on the first day of all treatments in the low-

dose group, while in the high-dose group, the elevated expression of

the cytokine was detected only in the treatments receiving Bs+EC

(P<0.0001). Coinfection of two bacteria with the parasite led to 260-

fold increase in the expression of IL-12p40 in the low-dose group

compared to the high-dose group. Moreover, the simultaneous

infection of the same bacteria without parasite resulted in 328-fold

increase in the expression of IL-12p40 in the high-dose group

compared to the low-dose group (Figures 4, 5). Also, by comparing

the mean expression of cytokines in mice receiving two bacteria along

with parasites compared to the control group, it was found that the

expression of IL-10 is completely dose-dependent (Figures S1, S2).

Therefore, as the results imply, the bacteria of the sand fly’s gut act as

mice immunomodulators in adjusting the outcome of leishmaniasis.

As stated above, leishmaniasis has a complex epidemiology, and

apart from main partners of the disease, various factors are responsible

for the severity of the parasite’s pathogenicity. Thus, it is necessary to

deeply analyze the role of neglected factors, such as microbiota, in

modulating Leishmania pathogenesis, in order to achieve a

comprehensive view of the complicated interaction of Leishmania

parasite with its hosts. Current leishmaniasis prevention and control

measures and access to valid diagnostic methods and effective

treatments are insufficient. Therefore, these deficiencies could have

significant implications for the disease, including increase in the

incidence of leishmaniasis in the endemic foci and its neighboring

localities, the spread of Leishmania species into new areas going

unnoticed, increase in treatment failure, and the development of

resistance to treatments (Berriatua et al., 2021).
Conclusions

The results of this study suggest that the co-infection of sand fly

gut bacteria with L. major aggravates the pathological responses of

BALB/c mice. This finding gives new insight into using the capability

of the vector-derived microbiota in modulating the vertebrate

immune system for the benefit of the host or using appropriate

antibiotics together with antileishmanial drugs. The design of the

present study and the proposed model included features that were
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easily controlled, but there are many factors in patients - including

host-specific variability - that cannot be managed and should await

future studies. The data represented in the present study can be a

small step to initiate a new series of studies, though it faces some

limitations, such as failing to consider the systemic immune responses

of mice and the role of sand fly saliva in the pathogenesis of

Leishmania parasite. This pioneering study can be expanded to

other levels of organization of leishmaniasis via applying advanced

OMICS technologies, with the contribution of all partners of

leishmaniasis. Perhaps, it is better to describe the process of wound

formation in leishmaniasis from the time of the sand fly bite to the

formation of nodules and wounds and even its recovery considering

the role of microbiota in more detail.
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