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MHC class I antigen processing is an underappreciated area of nonviral host–

pathogen interactions, bridging both immunology and cell biology, where the

pathogen’s natural life cycle involves little presence in the cytoplasm. The

effective response to MHC-I foreign antigen presentation is not only cell death

but also phenotypic changes in other cells and stimulation of the memory cells

ready for the next antigen reoccurrence. This review looks at the MHC-I antigen

processing pathway and potential alternative sources of the antigens, focusing

on Mycobacterium tuberculosis (Mtb) as an intracellular pathogen that co-

evolved with humans and developed an array of decoy strategies to survive in

a hostile environment by manipulating host immunity to its own advantage. As

that happens via the selective antigen presentation process, reinforcement of the

effective antigen recognition on MHC-I molecules may stimulate subsets of

effector cells that act earlier and more locally. Vaccines against tuberculosis (TB)

could potentially eliminate this disease, yet their development has been slow, and

success is limited in the context of this global disease’s spread. This review’s

conclusions set out potential directions for MHC-I-focused approaches for the

next generation of vaccines.
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Introduction

Mycobacterium tuberculosis (Mtb) is a causative agent of tuberculosis—an infectious

disease responsible for ten million cases and over a million deaths every year (WHO, 2020).

Despite the availability of antibiotics (Paulson, 2013) and vaccination with an attenuated

form of Mycobacterium bovis, the Bacilli Calmette-Guérin (BCG), TB eventually kills 45%

of HIV-negative people and nearly all HIV-positive individuals (WHO Key Facts, 2022).

Major histocompatibility complex receptor classes I and II (MHC-I and MHC-II) are

two families of receptors involved in the recognition of “self” and surveillance of “foreign”

antigens. While class II receptors evolved for the defense against pathogens and are present

primarily in the immune cells, class I receptors are much more ubiquitous, also on MHC-

II-negative cells. Ubiquitous presence may play a unique role in multiple-tissue
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surveillance, pathogen detection, and restriction of disease

dissemination. MHC-I (or HLA class I) contributes both to

innate immunity through the engagement of natural killer (NK)

cells and to adaptive immunity through peptides presented to

cytotoxic T cells (Jiang et al., 2019; Uzhachenko and Shanker,

2019). In contrast, MHC-II is solely dedicated to adaptive

immunity (Leddon and Sant, 2010).

MHC-I molecules constitute a fundamental aspect of self in self-

organizing networks of multicellular organisms starting from jawed

vertebrates. Self is a process of continuous rebalancing of different

biochemical and intercellular interactions rather than a constitutive

feature of a single cell, as proposed initially by Turing (1990). MHC-I

molecules present a snapshot of the intracellular proteome from all cell

compartments by uploading self-peptides, byproducts of the reactions

taking place in the cytosol. This proteome is recognized by T cells

selected both in the thymus and periphery to have autoreactive cells

eliminated or repressed (Perreault, 2010). MHC-I molecules can also

present self-peptides that are mutated, as well as pathogen-derived

mimicry peptides (Trost et al., 2010). The aim of the antigen

presentation is the recurring recognition of cumulative signals up to

the threshold where the “non-self” cell is destructed by adaptive

immune cells, mainly CD8+ T cells, while protecting healthy cells

from NK-mediated cytolysis. This requires coordinated action

involving a series of brief encounters between antigen-presenting

cells and their immune counterparts. As MHC-I molecules feature

on every nucleated cell of the organism, they visualize pathological

processes that occur in the organism at an early stage. Peptide

presentation on MHC-I molecules, recognition by T-cell receptors

(TCR), and immune cell activation are three stages in which cell

interactions are inspected for affinity binding and initial signal strength,

duration of stimulation, and decay (Segura et al., 2008; Pathni et al.,

2022). Historically, the MHC-I system has been linked to transplant

immunology and viral infections. MHC-I antigen presentation may

contribute to the development of new vaccination strategies against

chronic bacterial infections.
Structure and diversity of MHC-I
molecules in macrophage

The major histocompatibility complex (MHC) locus, found on

the short arm of chromosome 6 in humans, encodes genes from

three classes of proteins (MHC-I, MHC-II, and MHC-III). There

are three MHC-I groups, termed classical human leukocyte antigens

A, B, and C (HLA), and several non-classical HLA groups, such as

HLA-E, F, and G, a cluster of differentiation 1 (CD1) molecules, and

MHC-I-related protein (MR1). Classical MHC-I molecules show a

high degree of polymorphism, resulting in allele diversity predicted

to encompass eight to nine million variants, although 80% of these

occur only rarely and are represented by alleles differing by single

base point mutations (Robinson et al., 2017). In humans, the most

commonly found alleles are clustered into three major groups A–C,

and 42 core classical types further grouped into 12 supertypes based

on the similarities in peptide-binding motifs (Sette and Sidney,

1999). HLA class I supertypes have been linked to susceptibility and
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severity of tuberculosis (Balamurugan et al., 2004). Conversely,

genes coding nonclassical HLA-E, HLA-F, and HLA-G are highly

conserved as one or two alleles, often tissue-restricted, and involved

in molecular mechanisms underpinning immune tolerance and

fetus acceptance in pregnancy (Moscoso et al., 2006). Tissue

expression of MHC-I molecules varies. In some cell subsets, such

as postmitotic neurons, it is very limited (Neumann et al., 1997); in

others, such as lymphocytes, MHC-I constitutive expression reaches

up to 1% of the membrane protein content (Joly et al., 1991). It is

also subject to transcriptional activation regulators TAF1, USF1/2,

and CIITA (Howcroft et al., 2003).

Classical MHC-I molecules are made with a heavy

glycoprotein a chain, composed of three immunoglobulin-like

domains a-1, a-2, and a-3, a transmembrane segment with a

cytosolic tail, and a smaller noncovalently attached light b chain

(b2-microglobulin). Processed antigen fragments in the form of 8

to 10 amino acid peptide chains are affinity bound with each

amino acid contributing to the overall MHC affinity score

(Lundegaard et al., 2010). The binding pocket is formed by two

conformational domains of the heavy chain, a1 and a2, supported
by the b2 chain and its own residues to prevent binding of the

longer peptides that would need to bulge outside the pocket. There

are usually two anchor residues within the octo- or nonameric

peptide, one of which is predominantly at the C-terminus (Falk

and Rötzschke, 1993). It is different in MHC-II class molecules

where two similarly sized a and b chains form an open-ended

binding site so that typically 13–18 amino acid long peptides can

extend out (Germain, 1994). In both MHC-I and MHC-II

molecules, there are pockets present in the binding groove that

accommodate side chains of the peptides; physicochemical

features of these pockets underpin allele-specific consensus

motifs (Falk et al . , 1991) . In MHC-I molecules , the

conformational stability of the whole molecule is equally

dependent on MHC and the bound peptide; it disassociates with

any of the components’ removal, leading to MHC-I recycling from

the cell surface. The peptide-MHC (pMHC) complex is

recognized by the T-cell receptors and its CD8+ co-receptor,

which binds to the nonpolymorphic a3 domain in the heavy

chain (Huppa et al., 2010).

Nonclassical MHC-like, MHC-Ib, or MHC-related molecules

resemble the classical receptors with their heavy chains but do not

always associate with b2 microglobulin, forming homodimers

instead. They include MR1, HLA-E, HLA-F, HLA-G, and CD1

molecules. MR1 is an MHC-Ib molecule that uniquely binds small

molecules of the microbial metabolome. Several isoforms of MR1

have been detected, albeit only one, MR1A bears a close

resemblance to the classical MHC-I molecules and is fully

functional (Riegert et al., 1998). Other isoforms are either

nonfunctional or with uncertain properties, like MR1B, which

forms homodimers that do not associate with the b2 light chain.

Although these isoforms may not be functional in the antigen-

presenting process, they can still play role in intracellular trafficking.

HLA-E or Qa-1 binds leader sequences of other MHC-I molecules

and, as such, is a sensor for their expression and checkpoint in

antigen presentation to NK cells. In homeostasis, HLA-E binds only

a restricted set of nonamers (O’Callaghan and Bell, 1998).
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The CD1 proteins’ binding groove is deeper and lined almost

entirely with nonpolar or hydrophobic amino acid chains. This

groove can accommodate a long hydrophobic lipid tail inside its

pockets and expose the hydrophilic part on the surface, where it

directly contacts the T-cell antigen receptor. In contrast to MHC-I

molecules, where the peptides are trimmed to 9–11Aa-long

peptides, lipids bound by CD1 proteins are not cleaved but

adapted within the hydrophobic clefts, which can accommodate

up to C70–C80-long chains. In humans, there are four members of

antigen-presenting CD proteins: CD1a, CD1b, CD1c, and CD1d,

and CD1e, which is a soluble carrier in the endolysosomal network

for other CD1-lipid complexes (Moody et al., 1999; Ly and Moody,

2014; Moody and Suliman, 2017).

Finally, for completeness, in humans, there are MHC class I

chain-related molecules that are not involved in antigen

presentation but are still involved in immune responses. These

are MICA and EPCR proteins, with MICA being highly

polymorphic glycoproteins that are expressed ubiquitously and

serve as a “danger signal” for NK cells, gd T cells, and CD8+ T

cells via NKG2D receptors (Schrambach et al., 2007). EPCR, a 46-

kDa protein, shares ~20% homology with the CD1d molecule. They

are expressed in the vascular system (endothelium) as well as on

various innate immune cells; they are ligands for TCR of Vd2 gd T

cells. MICA and EPCR proteins, respectively, regulate inflammation

and coagulation (Willcox et al., 2012).
Mycobacterium tuberculosis as an
intracellular microbe: Role of the
phagosome

Mtb is an intracellular microbe that can infect any tissue, but the

lung is the main niche for its transmission (Torrelles and

Schlesinger, 2017). The presence of the asymptomatic latent

phase in a significant proportion of immunocompetent infected

individuals makes this pathogen life cycle akin to other human

pathobionts that cause harm only under host–pathogen

disequilibrium (Hakansson et al., 2018). The typical Mtb life cycle

includes a phase of the primary disease followed by a stage of long-

term occult and persistent intracellular infection. During this

“latent” period, bacilli survive in a non-vegetative dormant form

characterized by a thick lipid-rich bacterial cell wall and lipid

accumulations (Vázquez et al., 2014) protecting from the

degrading activity of host autophagolysosomal enzymes (Figure 1).

Alveolar macrophages serve as the first port of entry and

primary host for Mtb, killing it and presenting antigens while also

sheltering persistent bacilli (van Crevel et al., 2003). The process of

phagosomal uptake involves a range of cell receptors, including cell

surface pattern recognition receptors (PRR), which bind pathogen-

associated molecular patterns (PAMPs). Toll-like receptors (TLRs)

on the cell surface (TLR1, TLR2, TLR4, TLR6) and endosomal

membranes (TLR3, TLR7, TLR8, TLR9) are key PRRs that are

responsible for the induction of the signaling pathways downstream

and the production of cytokines (Underhill et al., 1999).

Interestingly, mycobacteria-led use of TLR3 appears to enhance
Frontiers in Cellular and Infection Microbiology 03
IL-10 production (Bai et al., 2014), suggesting that the binding of

Mtb RNAmay influence cross-talk with other intracellular signaling

pathways. It has also been shown that other receptors, like C-type

lectin receptors, scavenger receptors, nucleotide-binding-

oligomerization domain (NOD)-like receptors (NLRs), opsonin

receptors, ficolin, C1q, complement receptors CR1, CR3, and

CR4 , and Fc r e c ep to r s fo r bac i l l i op son i z ed w i th

immunoglobulins, promote phagocytosis but not necessarily

pathogen eradication (Hossain and Norazmi, 2013).

The arrest of phagosome maturation is an important stage in

the Mtb life cycle (Figure 1). Mycobacterium tuberculosis influences

acidification of the phagosome in the early phase of infection by

preventing tethering of V-ATPase to Mtb-containing vacuole and

stabilizing its pH at 6.3–6.5 with tyrosine phosphatase PtpA (Wong

et al., 2011). Early phagosomes undergo a series of encounters with

other endocytic organelles to acquire various molecules, Rab5,

EEA1, PI(3)P, and VPS 34 to name a few, before they progress to

the late phagosome stage. Mtb prolongs that stage by hydrolyzing

PI3P by the action of PI3P-specific acid phosphatase SapM (Vergne

et al., 2005); mycobacterial ManLAM blocks the transport of acidic

cargo from the trans-Golgi network via interference with early

endosomal antigen EEA1-syntaxin 6 interactions (Fratti et al., 2003)

and protein kinase G (pknG) induces continued accumulation of

Rab5 and prevents Rab7 acquisition, further delaying phagosome

maturation (Roberts et al., 2006). That temporary blocking effect is

eventually overcome by the IFN-g-activated macrophage. The

immune response to mycobac ter ia l ear ly -conserved

immunodominant epitopes of the Esx secretion system triggers

pH to drop to 5.0 in the phagolysosome. However, the time gained

allows Mtb to alter its ability to use carbon sources with the

preference of glucose usage and storage of neutral lipids

(triacylglycerols (TAG)) in droplets (Vázquez et al., 2014)

followed by mycobacterial entry into the dormant phase.
Early phagosomal stage

During the early stage, phagosomes fuse with recycling

endosomes containing classical MHC-I molecules endocytosed

from the cell surface and traffic nonclassical MR1 molecules from

the trans-Golgi network (Harriff et al., 2016). Mtb is thought to

directly load its antigens on these MHC-I molecules and release

them to the cell surface without going through the proteasomal and

cytosolic processing route. Peptides in the phagosomes are derived

from the action of phagosomal proteases, in particular, cathepsins

belonging to aspartic (D, E), cysteine (B, C, F, H, K, L, O, S, V, X,

and W), and serine (A and G) proteases (Pires et al., 2016).

Mycobacterium tuberculosis was shown to downregulate not only

cathepsins but also cathepsin inhibitors and cystatins. In effect, the

antigen processing activity may actually be improved, as it was

shown that the high proteolytic potential of these enzymes leads

otherwise to epitope destruction via cleavage into extremely short

peptide sequences no longer able to anchor into the binding groove

of MHC-I molecules (Moss et al., 2005). The loading process is

enhanced by endosomal TLR signaling and supported by a number

of accessory molecules, some stationary for phagosome and others
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shuttled from the endoplasmic reticulum (ER). There is little

knowledge about the “quality” of presented antigens in respect of

infected cell recognition and destruction; however, the tight control

over the timing of lysosome fusion by the pathogen may favor

antigen processing of small, highly immunodominant proteins from

the Esx family with, possibly, a role for some members of proline-

glutamate (PE) motif-containing PE-PPE family of mycobacterial

proteins (Vordermeier et al., 2012) in the absence of key lysosomal

proteases—some of these virulence factors are listed in Table 1.
Late phagosomal stage

During the late phagolysosome stage, more lipids are present in

the phagolysosome, which is reflected in antigen presentation

shifting from proteins to lipids. It was shown that CD1d and

CD1b molecules have an endosome-targeting motif regulated also

by the interaction with MHC-II complexes and are able to

withstand lower pH in the phagolysosome (Jayawardena-Wolf

et al., 2001). Antigenic lipid-CD1 complexes traffic to the cell

surface for iNKT cell activation (Sillé et al., 2011).
Frontiers in Cellular and Infection Microbiology 04
Cytosolic bacteria

Bacilli that escape from phagosomes or “leaky” phagosomes do

so through the damaged primary phagosome membrane, using

virulence factors and activating host cytoplasmic phospholipase A2

(cPLA2). Activation of cPLA2 has the additional effect of releasing

arachidonic acid from plasma membranes. Arachidonic acid is the

precursor of small lipid molecules and eicosanoid biosynthetic

pathway derivates: lipoxins, prostaglandins, and leukotrienes.

Their mechanisms of action create a network of regulatory

counterbalances. Prostaglandins (PGE4) promote plasma

membrane repair, whereas lipoxin A4 supports mitochondrial

damage and macrophage necrosis via inhibition of PGE4-

producing cyclooxygenase 2 (Chen et al., 2008). Virulent strains

of Mtb have more propensity to inhibit macrophage apoptosis and

antigen cross-presentation stimulating 5-lipoxygenase-dependent

pathways (Divangahi et al., 2010; Jamwal et al., 2016). The

burden of escaping cytosolic bacilli depends on their intra-

phagosomal replication, which is higher for more virulent strains

and lower for effective innate responses that either induce Mtb

dormancy or lead to bacilli killing. Many cytosolic bacilli and
FIGURE 1

Antigen processing for MHC-I presentation during the course of Mtb infection. The figure represents stages of phagocytosed bacilli (pathways are
time- and site-specific). (I) The phagolysosome, which disables pathogen—presented antigens are from fragmented dead bacilli. (II) Persistent
phagosomes where fusion with lysosome was blocked successfully by the bacilli—presented antigens are virulent factors released by live Mtb. (III)
Autophagolysosomes with persistent latent bacilli—presented antigens are scanty and a by-product of pathogen–host cellular organelles
interactions: (IIIa) stage of autophagosome nucleation initiation and (IIIb) a stage of persisting autophagolysosome via contact sites with ER and
classical MHC-I antigen processing route. (IV) Cytosol bacilli—stage of active infection with Mtb overtaking cell innate defense, generalized
disruption of cell functions, and likely progress to cell death. Dashed arrows represent pathogen transition; solid arrows represent sources of the
antigen. Created with BioRender.com.
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TABLE 1 Selected Mycobacterium tuberculosis virulence factors participating in host virulence resistance.

Protein Size Role Putative location Reference

Phagosome immunodominance

SapM
(Rv3310)

299aa Dephosphorylates phosphatidylinositol 3-phosphate (PI3P) catalyzing its hydrolysis; inhibition of
phagosome maturation; binding to the small GTPase RAB7 delaying autophagy flux

Phagosome Vergne et al.
(2005) and Hu
et al. (2015)

PPE57
(Rv3425)

176aa TLR2 stimulation/proinflammatory cytokines/macrophage maturation with upregulation of MHC-
II

Phagosome Xu et al. (2015)

PPE17
(Rv1168)

346aa TLR2 stimulation/proinflammatory cytokines; immunodominant epitopes Phagosome Udgata et al.
(2016)

PPE39
(Rv2353)

354aa Enhances macrophage maturation and upregulation of MHC-I and MHC-II molecules; induces
production of proinflammatory cytokines and Th1 responses

Phagosome Choi et al. (2019)

PE-
PGRS11
(Rv0754)

584aa TLR2, proinflammatory cytokines and Cox2 expression stimulation; induction of antiapoptotic
Bcl2

Phagosome,
autophagosome

Bansal et al.
(2010) and
Chaturvedi et al.
(2010)

Ppa
(Rv3628)

162aa TLR2 stimulation/proinflammatory cytokines and Th1 immune responses Phagosome Kim et al. (2016)

Rv1507A
(Rv1507)

231aa Induction of proinflammatory cytokines and upregulation of MHC-I and MHC-II molecules Phagosome Arora et al.
(2020)

TB27.3/
cfp32
(Rv0577)

261aa TLR2 stimulation/proinflammatory cytokines/upregulation of MHC-I and MHC-II on DCs Phagosome, cell exit Byun et al.
(2012)

EsxL
(Rv1198)

94aa TLR2 stimulation/TNF-a, IL-6 production Phagosome Pattanaik et al.
(2021)

EspC
(Rv3615)

103aa Stimulation of proinflammatory cytokines; contains broadly recognized CD4+ and CD8+T-cell
epitopes

Phagosome, cell exit Millington et al.
(2011)

EsxV-
EsxW
(Rv3619/
20)

94aa-
98aa

Elicits increased levels of IFN-gamma, IL-12, and IgG(2a) as a dimer Phagosome, cell exit Mahmood et al.
(2011)

Persistence

DnaK
(Rv0350)

Bacterial chaperone protein stimulates macrophage for higher arginase activity, diverts it from the
iNOS pathway, and switches on IL-10 production

Autophagosome Lopes et al.
(2016)

PtpA
(Rv2234)

163aa Dephosphorylates host VPS33B protein, which induces a block of the host phagosome maturation;
antagonizes host protein TRIM27, which acts as E3 ubiquitin ligase that promotes innate immune
responses and cell apoptosis

Phagosome,
Autophagosome

Wang et al.
(2016)

CpsY-
cpsA
(Rv0806/
Rv3484)

532aa Glucose epimerases and stealth proteins conserved from bacteria to higher eukaryotes; diverting
host glycosylation pathways; CpsA prevents recruitment of NADPH oxidase to the phagosome

Autophagosome Sperisen et al.
(2005) and
Köster et al.
(2017)

PPE34
(Rv1917)

1459aa Induced maturation of dendritic cells, via antigen presentation, induces Th2 responses with IL-10
production

Autophagosome Bansal et al.
(2010)

Erm37
(Rv1988)

179aa Localized to host chromatin serving as a functional methyltransferase that demethylates an
arginine residue at H3R42 to repress a range of host genes involved in reactive oxygen species
(ROS)

Autophagosome Yaseen et al.
(2015)

Eis
(Rv4216)

402aa Secreted protein, which increases acetylation of host histone H3 to upregulate IL-10 and suppress
autophagy and inhibits ERK1/2, JAK pathway, and subsequent production of tumor necrosis
factor-alpha (TNF-alpha) and interleukin-4 (IL-4); inhibits ROS production via acetylation of host
DUSP/MKP-7 phosphatase

Autophagosome Lella and Sharma
(2007); Samuel
et al. (2007), and
Kim et al. (2012)

LprG
(Rv1411)

236aa Lipoprotein inhibits MHC-II antigen processing, enhances recognition of Mtb acetylated
glycolipids by TLR2, induces mitochondrial fission, and lowers respiratory cell rate

Autophagosome Gehring et al.
(2004); Drage
et al. (2010), and
Aguilar-López
et al. (2019)

(Continued)
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TABLE 1 Continued

Protein Size Role Putative location Reference

PPE18
(Rv1196)

391aa Downregulation of Th1 responses, upregulation of Th2 responses Autophagosome Nair et al.
(2009); Bhat
et al. (2012), and
Udgata et al.
(2016)

PE-
PGRS30
(Rv1651)

1011aa Downregulation of Th1 responses, phagolysosome block Phagosome,
Autophagosome

Chatrath et al.
(2016)

PPE2
(Rv0256)

556aa Contains a eukaryotic-like nuclear signal, which allows it to be directly translocated into the host
nucleus, where it binds to the NOS2 promoter and limits host ROS production

Autophagosome Bhat et al. (2017)

TlyA
(Rv1694)

268aa Downregulation of Th1 and Th17 responses Autophagosome Rahman et al.
(2015)

LpqT
(Rv1016)

226aa Mannosylated protein; downregulation of Th1 and Th17 responses; inhibits maturation of
dendritic cells and decreases the production of proinflammatory cytokines

Autophagosome Su et al. (2019)

LpnQ
(Rv0583)

228aa Secreted, directly interacts with the human E3 ubiquitin ligase CBL Autophagosome Penn et al.
(2018)

PE35/
PPE68
(Rv3872/
73)

99aa/
368aa

Located in RD1 region; stimulates the secretion of IL-10 and MCP-1 via TLR2 activation Autophagosome Tiwari et al.
(2014)

DlaT
(Rv2215)

553aa Function with Lpd as NADH-dependent peroxidase and peroxynitrite reductase that provides
protection against nitrosative stress

Phagosome,
autophagolysosome

Shi and Ehrt
(2006)

Mce2D
(Rv0592)

508aa Less TNF-a and IL-6; all mce1–4 take part in adaptation to adverse conditions of autophagosome Autophagosome Singh et al.
(2016)

Cell exit

PE-
PGRS33
(Rv1818)

236aa/
498aa

Influence mitochondrial dynamics; precipitates macrophage apoptosis via mitochondrial CytC
activation, leading to an increase in caspase-3 and caspase-9, induces TNF-a and TNF receptors
1A; highly immunodominant for both cellular and humoral responses

Cell exit Basu et al.
(2007); Cohen
et al. (2014), and
Aguilar-López
et al. (2019)

LpqH
(Rv3763)

159aa Induces interleukin 1-beta and IL-12 p40 (IL12B) and TNF-a; inhibits MHC-II expression and
antigen processing in the host; traffics via MHC-I processing pathway and via bacilli
extracytoplasmic vesicles; may reduce vacuolar MHC-I processing; induces macrophage apoptosis
via loss of mitochondrial membrane potential, release cytochrome c, and release of mitochondrial
apoptosis-inducing factor AIF followed by upregulation of death receptor signaling and caspase-8
and caspase-3

Autophagosome, cell
exit

Noss et al.
(2001); Tobian
et al. (2003);
Stewart et al.
(2005), and
Sánchez et al.
(2012)

PE-
PGRS17
(Rv0978)

331aa TLR2 stimulation/proinflammatory cytokines Phagosome, cell exit Chen et al.
(2013) and
Moodley et al.
(2022)

EsxT
(Rv3444)

100a Induces macrophage apoptosis via activation of NF-kappa-B and tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL); secreted via esx-4 T7S

Cell exit Shi et al. (2014)

EspB
(Rv3881)

460aa The secreted processed form of EspB binds to phosphatidic acid and phosphatidylserine-inducing
host death; inhibits IFN-gamma-induced autophagy; binds to human serum amyloid A, acute
phase protein; and facilitates cell entry of opsonized Mtb

Cell exit Chen et al.
(2013); Huang
and Bao (2016);
Kawka et al.
(2021)

PE9-
PE10
(Rv1088/
89)

144/
120aa

Induces macrophage apoptosis, downregulation of IL-1B increases IFNB, has a number of highly
immunodominant T-cell epitopes

Cell exit Tiwari et al.
(2015) and
Sunita et al.
(2020)

PE25/
PPE41
(Rv2430/
31)

194aa/
99aa

As dimer induces macrophage necrosis, induces maturation of mouse dendritic cells, and drives
Th2-biased immune responses

Cell exit Tundup et al.
(2014) and Chen
et al. (2016)
F
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partially damaged phagolysosomes are captured by a system of

intracellular membranes which restructures into double-membrane

autophagosomes. It is characterized by a series of sequential steps:

nucleation, elongation, and completion. ER, mitochondria, and

other organelles serve as sources of membranes and various other

molecules facilitating the transfer of MHC-II proteins into the

intravesical lumen (ten Broeke et al., 2013; Kimmey and

Stallings, 2016).
Persistence of the autophagosome

The inhospitable environment of the autophagosome and

autophagolysosome leads bacilli to re-enter their dormant form

upon activation of the two-component transcriptional program

dormancy-survival regulator, DosR-DosS, by hypoxic conditions.

The acidic environment of autophagolysosomes contains enzymes

that cause osmotic and redox damage. Bacilli become resistant,

building up intracellular lipid content, thickening cell capsule,

metabolic downshift, and glyoxylate shunt for efficient

maintenance of tricarboxylic cycle (TCA) components and low

levels of DNA synthesis (Lipworth et al., 2016; Murima et al., 2016).

Eventually, persistent bacilli are thought to become nonreplicating,

metabolically inert, and survive as hidden from host

subpopulations. Suppressed metabolism and bacilli dormancy

decrease overall antigen presentation to the host and impair host

lytic attack to disassemble bacilli. While still confined, the secreted

pathogen antigens that get through the autophagosome membrane

are thought to have molecular signal sequences that direct them into

different intracellular compartments where they influence host

metabolism and respiration (Jamwal et al., 2013). These

molecules, often PE/PPE proteins, are smaller in quantity but

have structural modifications that disable efficient cytosol

processing of MHC-I molecules (Koh et al., 2009; Saini et al.,

2016). Some of these molecules are listed in Table 1. While it was

reported that bacilli resuscitation may happen a number of years

after the initial infection, the majority of current reports indicate a

period of about 2 years (Behr et al., 2018). Beyond that, the control

of dormant bacilli over the host macrophage metabolism, if not

actively progressed, fades away, resulting in infection resolution

(Stephenson and Byard, 2020).
Cell exit

Periodically, or upon a trigger such as a drop in immune

surveillance, resuscitating and then actively replicating bacilli

puncture the autophagosome membranes with its pore-forming

virulence factors from the esx family. Bacilli release membrane

vesicles (Prados-Rosales et al., 2011) that contain a high density of

acetylated PIM, phospholipids, polyacetylated trehalose, and

phenolic glycolipids (PGL), as well as Mtb virulence factors—

Ag85 complex, CFP10, and lipoproteins (LPR family, PstS1).

Microdisruptions of the cell membrane elicit immediate cell

response to re-seal the lesion, maintain the continuity of the

membrane, or form a new autophagosome to prevent the acidic
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content from leaking out, risking cell death (Zhen et al., 2021). Host

proteins involved in either sensing membrane damage or its repair

processes, like synaptotagmin Syt7, galectins Gal 3, Gal9, Annexin,

SNARE proteins, and VPS4 are also known to be selectively

disrupted by Mycobacterium tuberculosis (Gan et al., 2008;

Divangahi et al., 2009; Chávez-Galán et al., 2017; López-Jiménez

et al., 2018). Subsequently, infected macrophages may undergo a

process of remodeling and fusion into Langhans multinucleate giant

cells, with the possible contribution of phenolic glycolipids on the

bacilli part (Cambier et al., 2017). The process of disruption of

intracellular membrane continuity may also lead to cell death via

either apoptosis, necrosis (Divangahi et al., 2009), pyroptosis (Behar

et al., 2010), or ferroptosis (Amaral et al., 2019)—each endowed

with separate characteristics that determine the degree of antigen

cross-presentation uptake from host membrane exosomes (Giri

et al., 2010) or engulfment by other phagocytes (Gan et al., 2008;

Amaral et al., 2019). The possible routes of host–pathogen

interactions are schematically represented in Figure 1. Bacilli

persistence is a granuloma-specific phenomenon, as is bacilli

resuscitation and return to active replication upon a change in

the environmental conditions. Bacilli resuscitation in small

quantities may be also a stochastic process (Buerger et al., 2012).

While the former is a more generalized event and a result of

weakening immune responses (Riaño et al., 2012), the latter

might be more localized, confined to several bacilli that show

differential patterns of resuscitation factors (Mukamolova et al.,

2002; Tantivitayakul et al., 2020) and DosR-S regulon expression

(Domenech et al., 2017). Successful “scouts” active at the border

between the necrotic center and host cellular wall of defense (Davies

et al., 2008) spread out to set up distant tubercle satellites in other

lung lobes or cause multiple foci of inflammation in miliary

tuberculosis (Liu et al., 2015).
Beyond phagosome: Sources of the
antigen for MHC-I presentation in
Mtb infection

1. Autophagosome-to-cytosol pathway: small molecules.

Various molecules are actively secreted by live Mtb cells. Nearly

30% of the Mtb proteome is composed of small proteins defined as

<200Aa. Development of the strategies that disable these molecules

facilitates processing and antigen presentation. If the

autophagosome establishes direct membrane contact with ER via

fusion (Guermonprez et al., 2003), smaller size molecules (Table 1)

can be transported out of the autophagosome either via ER-specific

sec61 channel into ER, where post-translational modification are

removed and then out to cytosol (Römisch, 2017). Retrograde

transit facilitates entry of these molecules to the 19S unit of the

proteasome and then back to the ER to form pMHC-I complexes

via an antigen-processing transporter (TAP)-dependent pathway.

Candidates could include Mtb 19-kDa glycosylated lipoprotein

LpqH, fibronectin attachment protein Mpt32, and superoxide

dismutase SodC (Mehaffy et al., 2019). Specific Mtb proteins lack

fixed conformational structure, e.g., the PGRS part in PE-PGRS
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proteins or the PPE part in PE-PPE proteins. This results in their

nonspecific interference with host signaling pathways by allosteric

mimicry (Sharma et al., 2022). Cytosolic polyubiquitination of

lysine residues in hydrophobic stretches of these proteins

stabilizes their structure while directing them to the proteasome.

Finally, the mycobacterial counterpart to the host sec61 channel is 8

membrane-bound Sec proteins that form translocation apparatus

transporting many of Mtb-secreted proteins. In conjunctions with

pore-forming type VII secretion system of esx1, esx3, and esx5-sec

transport circumvent host ER sec-61 by directing small proteins out

of Mtb and via punctured membrane into the cytosol (Divangahi

et al., 2009).

2. Autophagosome-to-cytosol pathway: bigger molecules.

Partially digested bacterial cells, e.g., BCG, molecular complexes,

or even whole live bacilli, are transferred from the autophagosome

to the cytosol in any conditions that significantly impair phagosome

membrane stability, as described previously in Mycobacterium

tuberculosis as an intracellular microbe: role of the phagosome. It

was previously shown that in BCG-infected phagosomes, molecules

as large as 70 kDa could access the cytosol (Teitelbaum et al., 1999),

which may happen at a late stage when the phagolysosome

membrane is partially degraded. Of note, both sec61 active

transport and membrane disruption mode are not mutually

exclusive. The repair patches of the plasma membrane are of ER

origin and therefore sources of embedded molecules that may not

be characteristic of the endosomal membrane itself.

3. Endosomal processing pathways. Mtb persistence in the

phagosome (Mycobacterium tuberculosis as an intracellular

microbe: role of the phagosome) is linked to the inhibition of its

acidification. Less harsh conditions increase the likelihood of early

antigens loading on classical MHC-I molecules. Conversely, loading

on CD1 requires displacement of smaller self-lipids by bigger Mtb

lipids in low pH, characteristic of late phagolysosomes (Ly and

Moody, 2014), and is supported by CD1d and CD1b. Peptide-

MHC-I loading is enhanced by endosomal TLR3, TLR7, an TLR9

signaling and any additional transport of surface recycled MHC-I

vesicles or ER vesicles that may fuse with phagosomes/

phagolysosomes and provide clusters of MHC-I pathway

components. One of those is the TAP supplied in retrograde

transport between endosome and ER (Harriff et al., 2013). In fact,

in certain cases, ER vesicles with peptides processed in the cytosol

can fuse to phagosomes for further antigen processing and MHC-I

loading (Guermonprez et al., 2003; Gardiner et al., 2013). Late

endosomes were also reported to be involved in MR1-specific

molecule trafficking and release to the cell surface (Harriff

et al., 2014).

Uptake of the antigenic molecules from apoptotic (apoptotic

blebs, exosomes) or necrotic infected cells by dendritic cells,

specifically CD8+, takes place via phagocytosis, receptor-mediated

endocytosis, and micropinocytosis. Exosomes contain various cell

wall and membrane byproducts, i.e., PIM, LAM, LM, lipoproteins

(LpqH), trehalose dimycolate, and monoglycosylated PGL (Layre,

2020). Dendritic cells have an extensive network of specialized

vesicular transport pathways (Montealegre and Van Endert, 2019).

While this route is a critical source of Mtb pMHC-I complex

presentation to CD8+ cells, it is less influenced by live
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intracellular bacilli, which disrupt phagosomal antigen processing

and interfere with antigens present in the cytosol (Cruz et al., 2017).
Immune surveillance of mycobacterial
antigen presentation on
MHC-I molecules

Mtb survival strategy as an intracellular pathogen deploys

various, often synergizing mechanisms to manipulate antigen

presentation. Part of decoy strategies forms a tactic to “be

recognized but not eradicated,” counteracting its host drive to

“recognize and eliminate.” Cellular immunity is primarily

involved in the local control of the infection via a cytokine-

mediated feedback loop between antigen-presenting cells (APCs)

and T cells. Sentinel lymph nodes, defined as first granuloma-

draining lymph nodes (Nieweg et al., 2001), are the site for priming

and expansion of the cognate T cells; they are also the main

residence of various unconventional subsets of T cells that act as

tissue-resident immunity. Lymph nodes can harbor pathogens

themselves, transported here from lung parenchyma and directly

infecting lymphatic endothelial cells (Lerner et al., 2016).

Cytotoxic T cells are the main responders to MHC-I

presentation. The majority of them are classically (MHC-Ia)

restricted; these are CD8+ T cells that recognize pMHC-I complex

via TCR. Upon activation, they produce cytotoxic granules and

discharge their content via direct contact with the target cell; they

can also produce Th1-type cytokines IFN-g, TNF-a, and IL-2. The

functional profile of cytokine secretion differs between active and

latent TB varying from poly- to monofunctional T cells (Rozot et al.,

2013). CD8+ T cells preferentially recognize and destroy heavily

infected macrophages and represent the sensor of the intracellular

bacilli burden (Lewinsohn et al., 2003); or conversely, only heavily

infected macrophages are able to stimulate cytotoxic T-cell granule

exocytosis. Uniquely, CD8+ T cells recognize pMHC-I complexes

on MHC-II-negative infected cells like some epithelia and can limit

infection propagation in the local alveolar environment (Harriff

et al., 2014), at least at an early stage. It is known that Mtb-infected

cells, albeit recognized, do not elicit effective cytotoxic responses

until late in infection, which hints at a possible decoy strategy of the

bacilli, known to have many conserved T-cell epitopes (Comas

et al., 2010). This appears to be the case for the TB10.4 (EsxH)

antigen. It elicits a dominant CD8+ T-cell response which poorly

recognizes Mtb-infected macrophages and is unable to lyse them

(Yang et al., 2018). A substantial proportion of TB10.4-specific

CD8+ T cells are directed to a single epitope, TB10.44-11, at the start

of this 96aa small protein sequence, overshadowing other epitopes.

This is an interesting example of a diversion strategy against CD8+

T cells. As intact TB10.4 or EsxH is reported to inhibit the

endosomal sorting complex required for transport (ESCR) that

processes antigens for MHC-II epitopes loading in phagosomes

(Portal-Celhay et al., 2016), the gain is doubled.

A smaller population of unconventional cytotoxic T cells is

MHC-Ib (HLA-E-H, CD1, MR1) restricted. HLA-E presents

peptide sequences from other MHC-I molecules, i .e . ,
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VMAPRTLIL, VMAPRTLVL, VMAPRTLLL, VMAPRALLL, and

VMAPRTLTL (O’Callaghan et al., 1998); it was reported that HLA-

E may present a set of Mtb-derived peptides, i.e., VMATRRNVL,

VLRPGGHFL, VMTTVLATL, and RLPAKAPLL (Caccamo et al.,

2015), some with striking similarities to self-derived leader

sequences. Among HLA-E-restricted nonclassical tolerogenic T

cells, there has been also a smaller subset identified with Th2

cytokines (IL-4,5,13) secreting properties that activate B cells

(Joosten et al., 2010). These cells, upon recognizing Mtb epitopes

presented on HLA-E, are not only diverted from their cytolytic

functions but induced secretion of cytokines is also acting to

suppress other T cells in the vicinity (van Meijgaarden et al., 2015).

CD1 molecules are highly conserved and specialize in

presenting to CD1-restricted T cells like double-negative

(CD4−CD8−) and iNKT cells (Arora et al., 2013). CD1a receptors

presentMtbmycoketides (Moody et al., 2004). CD1d is adapted for

presenting phosphoglycolipids such as phosphatidylinositol

mannosidase (PIM) (Fischer et al., 2004). Other CD molecules

also participate in host cell responses toMtb, with CD1c presenting

lipids such as phosphodolichols, phosphomycoketides, and N-

terminally acylated lipopeptides (Van Rhijn et al., 2009) and

CD1b presenting mycobacterial mycolates and glycolipids,

glucose-6-O-monomycolate, glycerol monomycolate, and

sulfoglycolipids (Moody et al., 1997; Lopez et al., 2020). Invariant

NKT cells’ recognition of mycobacterial fractions targets glycolipids

via CD1d-restricted invariant TCRa chain paired with limited

TCRb chain; the percentage of these cells decreases in active TB

as they express programmed death 1 (PD-1) molecule that marks

their exhaustion. They are also present in local pleural effusion,

where they can produce IL-21, taking part in the stimulation of

humoral responses (Wu et al., 2015). Other subtypes of NKT cells

produce cytokines like IFN-g, IL-4, or IL-17a. iNKT cells can

directly inhibit the intracellular growth of Mtb through the

granulocyte-macrophage-colony stimulating factor (GM-CSF)

(Rothchild et al., 2014; Di Carlo et al., 2022). Cytokines IL-12 and

IL-18 stimulate GM-CSF production by iNKTs. GM-CSF is a potent

cytokine involved in macrophage differentiation to M1 phenotype,

upregulation of CD11c and MHC II markers and, intracellularly,

shifting the balance from antioxidant responses to inflammasome

processing and secretion IL-1b while protecting from DNA

damages (Di Carlo et al., 2022; Vico et al., 2022). The role of IL-

1b in responses to Mtb is complex: first in resistance to infection,

then protection against cell death, and finally influencing the

aforementioned death modality with the shift from necrosis to

pyroptosis and the subsequent effect on antigen cross-presentation.

Autophagosomal Mtb appears to actively counteract host cell

inflammasomes via modulating its own antigen secretion and

interference with host signaling pathways (Rastogi and Briken,

2022). Cytosolic virulent bacilli do the opposite (Beckwith

et al., 2020).

Mucosa-associated invariant T cells (MAIT) are present in both

the upper and lower respiratory tract and are likely to detect Mtb

not only in macrophage host but also in infected epithelia while in

transit (Harriff et al., 2014). MAIT cells express TCR receptors of
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restricted diversity and recognize small-molecule microbial

metabolites (Chen et al., 2017) presented on MR1 receptors. MR1

ligands in Mtb infection are derivatives of riboflavin and folic acid

synthesis pathway and possibly other transiently expressed

molecules of mycobacterial metabolome like photolumazine I

(Harriff et al., 2018). Mtb genome contains a family of RibA-H

genes, indicating an essential requirement for riboflavin

endogenous biosynthesis by the pathogen in the absence of a

riboflavin transporter to acquire it or transport it back to the host

(Long et al., 2010). The utilization of riboflavin derivatives intersects

with iron and bacterial coenzyme F420 redox metabolism. Microbial

colonization of mucosal surfaces drives the expansion of MAIT

cells; there is a proportionally higher abundance of MAIT cells in

the jejunum than in lung tissue (Provine and Klenerman, 2020), and

overexpression of MR1 ligands has been shown to provide higher

protection against TB disease in preclinical models (Dey et al.,

2022). The phenotype of MAIT cells is defined as CD161hiVa7.2+ T

cells, predominantly CD8+. These cells, abundant in the blood,

periphery (Greene et al., 2017), and nonlymphoid organs, respond

locally and at an earlier stage than the adaptive CD8+ ones (Godfrey

et al., 2019; Provine and Klenerman, 2020). MAIT cells, similar to

classical CD8+ cells, produce both cytotoxic granules and cytokines

—TNF-a, IFN-g, IL-17A, IL-2, IL-22, and IL-13, depending on the

local microenvironment stimuli, but unlike MHC-Ia-restricted

CD8+ cells, they are capable of effector functions immediately

after leaving the thymus. They have a primarily effector memory

phenotype, contribute directly to mycobacterial burden reduction

(Chua et al., 2012), and are involved in inflammatory responses

to infection.

gd T cells are a subset of lymphocytes that enrich epithelial

tissues. Their major blood subset of Vg9Vd2 cells can directly

recognize microbial phosphoantigens in a non-MHC-dependent

fashion; Vg9Vd2 T cells recognize not only molecules belonging to

the family of butyrophilin but also mycobacterial 6-O-methyl-

glucose containing lipopolysaccharides and phosphomonoester

molecules. These are known as phosphoantigens, byproducts of

the Mtb mevalonate metabolic pathway. The smaller periphery-

bound subset of Vd1 T cells bind to antigens displayed by several

subtypes of MHC-I-like molecules, i.e., MHC-I chain-related gene

A (MICA), via the NKG2D receptor shared also with CD8+ and NK

cells, CD1, and endothelial protein C receptor (EPCR) (Witherden

and Havran, 2012). Like other potentially highly cytotoxic cells, gd
T cells express CD94/NKG2A that inhibits MHC-I cells’

destruction by Vg9Vd2 ones. All gd T cells are endowed with

innate immune functions, allowing them to directly lyse infected

cells as well as produce cytokines that stimulate ab T cells.

Although not the subject of this review, it is worth remarking

that CD4+ T cells can also display cytotoxic properties, and the

plasticity of the immune response can include smaller populations

of either double-negative T cells or MHC-II-restricted CD8+ T cells.

Linked via their cytotoxicity properties are also NK cells, which

contribute to overall immune responses to Mtb. Leader signal

peptides presented via HLA-E downregulate NK cells via CD94/

NKG2A receptors when processed via TAP antigen processing
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machinery. In cases of TAP inhibition, HLA-E is more likely to

present exogenous antigens.
Therapeutic trio: MHC-I antigen
processing for TB vaccine development

Despite considerable efforts in constructing a vaccine prototype

that would effectively stimulate cytotoxic T-cell responses, the

positive results have been moderate so far (Behar et al., 2007) and

usually more pronounced in preclinical testing than as an outcome

in immunogenicity testing of clinical trial samples (Rodo et al.,

2019). Although it gets more accepted that protective immunity to

TB may include other than CD4+ cell subsets, aggregated CD8+
Frontiers in Cellular and Infection Microbiology 10
responses constitute, so far, the main readout for current TB vaccine

candidates, as summarized in Table 2.
Antigen

Mycobacterium tuberculosis consists of over 4,000 open reading

frames (ORF). Currently, there are 11 antigens in the clinical testing

phase. Broadly summarizing, the selection of new candidates includes

MHC-I-directed methods and T-cell-specific methods. The former

includes bioinformatics approaches of antigen selection based on the

prediction databases as one category and immunopurification of

naturally presented epitopes in infected cell lines as another. T-cell-

specific methods use T cells from infected patients to evaluate their
TABLE 2 Summary of selected clinical trials for new vaccines against TB that include outcomes related to the cytotoxic T cell.

Vaccine Strategy tested in a clinical trial Reference

Viral vector Trial population Outcomes related to CTL detection

MVA85A
Modified Vaccinia Ankara
virus (MVA): attenuated,
replication-deficient poxvirus
expressing Ag85A

1. Phase I (NCT00460590): healthy adolescents/
adults, any BCG status
Phase I (NCT00480558): asymptomatic adults:
any BCG status: LTBI, HIV+ only, LTBI+HIV+
2. Phase I/II (NCT03681860): safety and
immunogenicity of: MVA85A/ChAdOx1 85A/
BCG re-vaccination in healthy, BCG-vaccinated
adolescents and adults
3. Phase I trial (NCT01829490) in healthy BCG-
vaccinated (up to 6 months before the study)
adults; ChAdOx1 85A/ChAdOx1 85A+ MVA85A
(boost)

1. Low level of CD8+ IFN-g+ and TNF-a+

2. Induction of Ag85A-specific polyfunctional IFN-
g+, TNFa+ CD8+ T cells boosted by MVA85A

3. Ag85A-specific CD8+ polyfunctional T cells
highest with regimen ChAdOx185A + MVA85A

McShane et al. (2005) and
Ndiaye et al. (2015)

ChAdOx185A
Recombinant vector formed
of simian adenovirus and
MVA expressing Ag85A

Dicks et al. (2012);
Stylianou et al. (2015), and
Wilkie et al. (2020)

Ad5 Ag85A
Recombinant human type 5
adenovirus-expressing Ag85A

Phase I trial (NCT00800670): healthy adults with
any BCG status

CD8+ was detected in BCG+ individuals with a
peak at 2 weeks and sustained TNF-a+ IL-2+

secretion

Smaill et al. (2013)

TB-FLU-04L
A negative, single-stranded
RNA virus attenuated and
genetically manipulated to
express TB genes

Phase I study (NCT02501421): BCG vaccinated
(up to 6 months before the study) healthy adults

Reported CD4+/CD8+ antigen-specific responses
with a peak at 21 days

Walker et al. (2016)

Recombinant BCG 1. Phase I trial (NCT00749034): healthy adults
(Germany), any historic BCG but not in the last
10 years
2. Phase Ib trial (NCT01113281): healthy adults
(South Africa), any historic BCG but not in the
last 10 years
3. Phase II trial (NCT01479972): newborn
infants, BCG naïve (South Africa)

1. Reported increase in proliferative CD8+

responses at days 57 and 180 with an increase in
multifunctional CD8+ at days 29 and 57
2. No reported significant CD8+ responses
3. Reported increase in CD8+IL-17+ at 16-week
and 6-month timepoint but not CD8+ IFN-g, TNF-
a, or IL-2 either single or multifunctional

Grode et al. (2005);
Farinacci et al. (2012);
Grode et al. (2013); Saiga
et al. (2015); Hoft et al.
(2016); Loxton et al.
(2017), and Nieuwenhuizen
et al. (2017)

VPM1002
Recombinant BCG with
urease C-deficient listeriolysin
O

Subunit antigen and adjuvant 1. Phase IIa trial (NCT00600782) in healthy
adults, any BCG status
2. Phase II trials (NCT00621322) in healthy
adults, any BCG status
3. Phase IIb trial (NCT01755598; healthy adults,
any BCG status with add-on sub-study for
biomarkers NCT02097095

1. Reported monofunctional CD8+, IFN-g+, TNF-
a+, IL-2+, and IL-17+, 7 days after each vaccine
dose with pattern indicated boosting of pre-
existing responses rather than the generation of de
novo ones; no effect on PD-1 upregulation;
CD8+Ki67+ upregulation in TST > 10mm group
2. No reported significant CD8+ responses
3. No reported significant CD8+ responses

Didierlaurent et al. (2017)

M72-AS01:
Antigens PPE18 and PepA
with the liposome-based
adjuvant AS01:
monophosphoryl lipid A and
saponin QS21

ID93+GLA-SE
GLA-SE: TLR4 agonist
glucopyranosyl lipid/CpG
ODN.
ID93: PPE42, esxV, esxW,
Rv1813

1. Phase Ib trial (NCT01927159) in healthy,
BCG-vaccinated adults (not in the last 5 years).
2. Phase I trial (NCT01599897) in healthy adults;
BCG naïve

1. Reported very low and not statistically different
IFN-g, TNF-a, IL-2, and IL-17 CD8+

2. Baseline to very low CD8+ responses detected

Coler et al. (2018); Penn-
Nicholson et al. (2018), and
Kwon et al. (2019)
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proliferation and polyfunctionality when exposed to peptide pools of

selected antigens. The aim is to find antigens that sensitized immune

cells respond to the most (Tang et al., 2011; Lewinsohn et al., 2013). In

view of conserved immunodominant epitopes present in many of the

Mtb virulent proteins that participate at early stages of the infection,

isolation of antigen-specific T cells is likely to result in the

identification of these highly virulent secreted proteins. Indeed,

these are the antigens that have been so far tested in clinical trials,

with TB10.4 being one of them. Although some of them are still in

testing, antigens abundant in subdominant epitopes that elicit weaker

natural immune responses are currently considered to be better

vaccine candidates (Orr et al., 2014). That reverses the hierarchy of

importance between results of in vitro T-cell stimulation assays and

the validation of antigens as new vaccine candidates. More recently,

CD8+T- cell-specific methods (Lewinsohn et al., 2017) identified

members of the PE-PPE family currently tested as potential vaccine

candidates (Stylianou et al., 2018). Improvements in analytical

technology, mainly mass spectrometry (Purcell et al., 2019), led to

reinvigorated research in immunoproteomics and related

immunopeptidomics. In the tuberculosis field, the first

demonstrations to identify Mtb-specific antigens showed not only

many secreted Esx family of protein members but also membrane-

associated proteins and some molecules involved in lipid biosynthesis

and transport. That confirmed the potential usefulness of this method,

promising new avenues for further research (Bettencourt et al., 2020).
Vaccine delivery system and adjuvants

The methods used to boost MHC-I antigen presentation and

CTL responses include viral vectors for delivery of mycobacterial

antigens (Stylianou et al., 2015; Humphreys and Sebastian, 2018)

and adjuvants like the AS01 system deployed in the M72-

AS01vaccine, as shown in Table 2. AS01 adjuvant consists of

saponin extract from Quillaja saponaria, QS21, and was reported

to strongly induce CD8+ responses via antigen cross-presentation

(Garçon and Van Mechelen, 2011). On the other hand, the Listeria

monocytogenes toxin, listeriolysin O, which acts as a membrane hole

puncher to release live bacilli into the cytosol, was also deployed in

combination with BCG to improve cytosolic processing and antigen

presentation in the VPM1002 vaccine (Farinacci et al., 2012; Saiga

et al., 2015; Nguyen et al., 2019).
Nonclassically restricted cytotoxic T cells
in TB vaccine responses

Nonclassically restricted cytotoxic cells are potent effector cells

endowed with variable levels of memory-like functions. Their

residency in the periphery and in blood, cytotoxic properties, and

lack of donor MHC-I allelic restriction make them potentially first

responders to infection and therefore an attractive target for vaccine

strategies. As endowed with highly cytotoxic properties and

abundantly present at the periphery, they are also tightly

controlled in the environment of multimicrobial presence and

sensitive tissue to protect mucosal integrity as a mechanical barrier.
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research in the macaque model of TB led to MAIT cell dysfunction

and indicated a narrow margin between lung MAIT cell stimulation

and exhaustion in this model (Sakai et al., 2021). Lack of margin

could be potentially disadvantageous from the therapeutical point

of view, rendering MAIT cells easily overstimulated. MAIT cells

were also functionally impaired and displayed exhaustion markers

in HIV/SIV-MTB co-infection in the cynomolgus macaque model,

although SIV did not prevent MAIT recruitment from blood to sites

of infection in the lungs (Ellis et al., 2020).

In humans, proinflammatory, cytokine-secreting TRAV1-2+

CD8+ CD26+MAIT cells were identified in the lungs of

individuals with active TB (Wong et al., 2019) while depleted in

the blood. Transcriptomic analysis of blood samples from LTBI

versus noninfected individuals showed a lower frequency of

MR1tet+ CD8+ cells in LTBI (Pomaznoy et al., 2020), but in

another study, the correlation between blood MAIT frequency

and TB status was completely absent for both active and latent

TB individuals (Suliman et al., 2020). The frequency of MAIT cells

was unchanged in samples from the phase I study [NCT01119521]

investigating the safety and reactogenicity of BCG revaccination

with isoniazid pretreatment in LTBI adults, although changes were

observed in the usage of TCR clonotypes (James et al., 2022),

indicating the changes in MAIT cells are discrete and qualitative

rather than quantitative.

The first identification of mycobacterial antigens stimulating gd
T cells showed the abundance of gd T cells is proportional to

mycobacterial pathogenicity (Constant et al., 1995). It was also

observed that this subset of T cells is inducible by cross-reactive

antigens from environmental mycobacteria, which at least partially

explains the confounding results in the studies measuring their level

as a correlate of vaccine efficacy (Hoft et al., 1998). gd T cells from

BCG-vaccinated responders show reactivity to whole-cell

Mycobacterium tuberculosis lysates rather than secreted

components of the culture filtrate or heat-inactivated whole

bacilli. They display memory-like phenotype and support the

expansion of CD4+ and CD8+ cells by secretion of IFN-g.
Partially due to the cross-reactivity in small metabolite molecules’

metabolism, BCG-specific gd T cells are currently investigated as

nonspecific immunomodulators to high-grade nonmuscle invasive

bladder cancer and HIV-infected cells (Garrido et al., 2018).

NKT-like cells, defined as CD3+ and CD56+ expressing IFN-g,
TNF, and IL-2, were increased after vaccination with H4:IC31. H4

consists of Ag85B and TB10.4 and H4:IC31, a prototype of H56:

IC31, was dropped off the WHO TB new vaccine pipeline in 2018

(WHO, 2017). The H4:IC31 phase I trial [NCT02075203] was

composed of the interventional arm testing the H4:IC31 vaccine,

while the comparator arms for this study were placebo and BCG

revaccination (1:1:1). The immunogenicity outcomes included

CD4+ and CD8+ as main outcome readouts, and a further in-

depth flow cytometry strategy was designed to detail all antigen-

specific responders. Indeed, the analysis showed that BCG

revaccination stimulated donor-unrestricted responses at just

slightly lower levels than conventional CD4+ T cells. It showed

equal proportions of the presence of gdT cells and MAIT cells

alongside the same level of innate NK cells. These cells were
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predominantly monofunctional IFN-g producers (Rozot

et al., 2020).

Finally, linked by their cytotoxic properties rather than lineage,

NK cells appear overlooked yet potentially important strategic

partners for new vaccine candidates. CD27+NK cells accumulated

in the LTBI model of nonhuman primates (Esaulova et al., 2021), as

well as being present in patients with active TB, where they

appeared to enhance the cytotoxicity of CD8+ T cells with

potential for innate-like memory (Choreño Parra et al., 2017).

BCG revaccination increased the number of IFN-g-producing NK

cells and was linked to the nonspecific expansion of this subset in

the H4:IC31 vaccine administration (Rozot et al., 2020).
Summary and conclusions

Mycobacterium tuberculosis’ adaptation to its host has been

refined through thousands of years of coevolution. The renewed

interest in intracellular antigen processing and presentation on

MHC-I molecules has arisen in an attempt to better define

immune correlates of protection against TB infection. Although

classical CD8+ cells are still considered the main effector for

peptides presented by MHC-I molecules and one of the main

outcomes for immunogenicity assays, growing interest in donor

unrestricted T cells (DURTs) may soon change that readout (Gela

et al., 2022). In the majority of already completed trials, BCG

vaccination is either a comparator or an inclusion criterion for

patients’ eligibility. It is also a frequent Mtb surrogate for any in

vitro and preclinical experiments. Although BCG-induced immune

responses set a high testing threshold of efficacy for any new vaccine

candidate entering clinical testing, our incomplete understanding of

how these immune responses are induced and why they are

insufficient in many TB-endemic countries outlines questions yet

to be answered both scientifically and therapeutically. Together with
Frontiers in Cellular and Infection Microbiology 12
new technological developments in cytometry, forthcoming clinical

trials indicate a dynamic landscape in TB vaccinology with new, yet

unexplored directions ahead.
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