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Cutibacterium acnes, one of the most abundant skin microbes found in the

sebaceous gland, is known to contribute to the development of acne vulgaris

when its strains become imbalanced. The current limitations of acne treatment

using antibiotics have caused an urgent need to develop a systematic strategy for

selectively targeting C. acnes, which can be achieved by characterizing their

cellular behaviors under various skin environments. To this end, we developed a

genome-scale metabolic model (GEM) of virulentC. acnes, iCA843, based on the

genome information of a relevant strain from ribotype 5 to comprehensively

understand the pathogenic traits of C. acnes in the skin environment. We

validated the model qualitatively by demonstrating its accuracy prediction of

propionate and acetate production patterns, which were consistent with

experimental observations. Additionally, we identified unique biosynthetic

pathways for short-chain fatty acids in C. acnes compared to other GEMs of

acne-inducing skin pathogens. By conducting constraint-based flux analysis

under endogenous carbon sources in human skin, we discovered that the

Wood-Werkman cycle is highly activated under acnes-associated skin

condition for the regeneration of NAD, resulting in enhanced propionate

production. Finally, we proposed potential anti-C. acnes targets by using the

model-guided systematic framework based on gene essentiality analysis and

protein sequence similarity search with abundant skin microbiome taxa.

KEYWORDS

skin microbiome, skin pathogen, Cutibacterium acnes, acne vulgaris, genome-scale
metabolic model, Wood-Werkman cycle
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1 Introduction

Acne vulgaris is a prevalent dermatological disorder that affects

approximately 9.4% of the global population around 650 million

adolescents and adults in the world (Chen et al., 2022). Although

the exact cause of acne vulgaris is not fully understood, colonization

by the opportunistic skin pathogen, Cutibacterium acnes (formerly

known as Propionibacterium acnes) is a significant contributing

factor (Dréno et al., 2020). C. acnes is a gram-positive and

facultative anaerobic bacterium commonly found predominantly

in human skin. Different ribotypes (RTs) of C. acnes, which can be

classified based on their unique 16S rDNA sequences, have varying

associations with healthy skin and acne vulgaris (Fitz-Gibbon et al.,

2013). RT1, RT2, and RT3 are the most dominant RTs and can be

found in both healthy and acne-affected skin. RT6 is predominant

in healthy skin, while RT4, 5, 7, 8, 9, and 10 are associated with acne

vulgaris. Overgrowth and imbalances of types of C. acnes can cause

inflammation together with a loss of skin microbiome diversity,

leading to the development of pimples (Dréno et al., 2018; Dréno

et al., 2020). In this regard, a clinical trial (NCT03709654) was

previously conducted on a live biotherapeutic for the treatment of

acne vulgaris in order to eliminate disease-associated C. acnes

strains via a delivery of health-associated strains to restore the

skin into a healthy state (Vargason and Anselmo, 2021).

Another characteristic of C. acnes strains includes the

production of pro-inflammatory short-chain fatty acids (SCFAs)

as glycolytic end products, especially propionate. Although SCFAs

have beneficial effects on skin health (Christensen and Brüggemann,

2014; Nakamura et al., 2020), they may also stimulate free fatty acid

receptors, thereby triggering inflammatory reactions in skin

immune cells (Sanford et al., 2019). Particularly, propionate, one

of the major SCFAs, may increase cytotoxic effects by inducing pH

changes (Tax et al., 2016), and provoke the immune response via

interaction with the Toll-like receptors (TLR), e.g., TLR2 and TLR4

(Kim et al., 2002; Nagy et al., 2005). Similarly, C. acnes produces two

types of porphyrins which give rise to the secretion of

proinflammatory cytokines by activating the NLRP3 (NOD-,

LRR- and pyrin domain-containing protein 3) inflammasome

(Sanford et al., 2019; Josse et al., 2020; Spittaels et al., 2021). In

addition, C. acnes proliferation can be promoted by secreted

triacylglycerol (TAG) lipase which degrades sebum lipids into free

fatty acids and metabolizable glycerol for obstructing pilosebaceous

unit and subsequently inducing its anaerobic growth (Sanford et al.,

2019; Josse et al., 2020; Spittaels et al., 2021). Interestingly, acne-

associated strains produce significantly higher amounts of the

aforementioned biomolecules, i.e., propionate, porphyrins, and

TAG lipase, that contribute to the development of acne vulgaris,

compared to other commensal strains (Higaki et al., 2000; Johnson

et al., 2016; Borrel et al., 2019). Thus, such opportunistic behavior of

virulent C. acnes can be explained by the collective effects of these

biomolecules that are conditionally synthesized and produced

under different skin and culture environments. For example, the

HL045PA1 strain belonging to phylotype IA-1 expressed TAG

lipase and uroporphyrinogen III synthase, an essential enzyme in
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porphyrin metabolism, only in a sebum-like medium that mimics

the sebaceous gland environment (Borrel et al., 2019).

Typically, the first choice for treating acne vulgaris is the

empirical use of antibiotics, but it could induce antibiotic-

resistance and skin disease-associated dysbiosis (Goodarzi et al.,

2020; Karadag et al., 2021; Pessemier et al., 2021). Thus, there is an

urgent need to develop a more rational strategy for selectively

targeting relevant skin pathogens, which could be achieved by

characterizing the cellular behaviors under various skin

environments and identifying their virulence factors. In this

regard, one of promising approaches is flux balance analysis

(FBA) with a strain-specific genome-scale metabolic model

(GEM), allowing us to capture the condition-dependent metabolic

states based on their gene-protein relationship (Orth et al., 2010).

This approach has been successfully applied to other common

human pathogens, including Pseudomonas aeruginosa, Klebsiella

pneumoniae, and Acinetobacter baumannii,to portray their unique

virulent behavior and suggest possible antimicrobial agents (Bosi

et al., 2016; Henry et al., 2017). For example, P. aeruginosa GEM

prediction in synthetic cystic fibrosis medium elucidated the

metabolic connectivity of virulence factor synthesis with central

metabolism, thereby suggesting homoserine dehydrogenase as a

potential target for selectively reducing virulence factor synthesis

with an experimental validation (Bartell et al., 2017). In addition,

metabolic states of highly virulent strain (KPPR1) of K. pneumoniae

were compared with low-virulence stain (MGH 78578) under rich

nutrient conditions using the GEMs, identifying antimicrobial

targets such as thymidylate kinase and lipid A disaccharide

synthase (Henry et al., 2017). For A. baumannii, its GEM was

combined with transcriptomic data to describe the flux changes in

central metabolism after antibiotic treatment (Presta et al., 2017). In

a previous study (McCubbin et al., 2020), metabolic networks offive

Propionibacterium species, including P. acnes, were constructed

through a pan-genomic analysis of 16 Propionibacterium genomes.

Building upon this prior work, our study aims to further enhance

the understanding of the cellular metabolism and virulence of C.

acnes within the skin environment from pathogenic point of view.

To do so, we reconstructed a comprehensive GEM of acne-

associated C. acnes and performed in silico growth simulations, as

such revealing the underlying mechanism of cell growth and

pathogenicity under endogenous carbon sources, and lastly

suggesting potential targets in acne vulgaris treatments that

selectively reduce their population.
2 Materials and methods

2.1 Genome-scale metabolic
network reconstruction

The genome-scale metabolic model (GEM) of C. acnes, iCA843,

was reconstructed based on the established procedures (Thiele and

Palsson, 2010). To reconstruct the GEM of a virulent C. acnes strain,

the genome sequences and corresponding annotation of HL043PA1
frontiersin.org
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from National Center for Biotechnology Information (NCBI)

database as of 22 March 2022. HL043PA1 is a strain belonging to

ribotype 5, which is known to be associated with acne vulgaris. The

preliminary metabolic network draft was built using CarveMe

(Machado et al., 2018). The nomenclature of metabolites and

reactions was based on the BiGG database (Schellenberger et al.,

2010). Next, additional metabolic and transport reactions of C.

acnes were annotated by EggNOG 5.0 (Huerta-Cepas et al., 2019)

and BlastKoala (Kanehisa et al., 2016), with various database such as

BiGG (King et al., 2016), KEGG (Kanehisa, 2000), SEED (Henry

et al., 2010), UniProt (Bateman et al., 2021), and TransportDB

(Elbourne et al., 2017). Then, the relevant metabolic reactions were

included with the corresponding gene-protein-reaction (GPR)

assignments based on either direct or indirect biochemical

evidence from the biochemical databases and literature. An

effort was made to annotate metabolic gap-filled reactions that

lacked GPR annotation, and in cases where GPR information

was unavailable, the gap-filled reactions were excluded from

the model. To enhance the reliability of each reaction in the

model, a comparison of protein sequences using BLASTp

(Altschul et al., 1990) was conducted prior to their inclusion with

e-values< 1 × 10-50 and a percentage identity >70%. The reversibility

of coupled reactions was corrected based on the biochemical

information from literature and online databases such as

MetaCyc (Caspi et al., 2014), Brenda (Chang et al., 2021), Virtual

Metabolic Human (VMH) (Noronha et al., 2019), and eQuilibrator

(Beber et al., 2022), to comprehensively consider the physiological

direction and biochemical thermodynamics of the reactions. Next,

the model leveraged with previously reconstructed metabolic model

of P. acnes 6609 (McCubbin et al., 2020) to cross-check the

reactions with GPR associations and further expand the energy

metabolism. To do this, homologous proteins between the

HL043PA1 and 6609 strains were identified based on BLASTp,

and the metabolic reactions associated with the resulting

homologous proteins were inspected manually based on literature

and gene annotation. Only reactions confirmed to have protein

homology and literature evidence, and a valid GPR were added to

the current reconstruction. For common reactions between the

current and previous reconstruction, the GPR of these reactions was

compared and updated accordingly if necessary. In particular, for

differing reactions between the models, extensive research was

conducted based on protein homologs, biochemical databases,

and literature to determine whether to include these reactions,

and they were included in the current model only if biological

evidence was present. At the very last step, the quality of

reconstructed GEM was evaluated by comparing it with relevant

experimental data and a metabolic model test suite called

MEMOTE (Lieven et al., 2020), which is a community standard

for this purpose.
2.2 Biomass equation formulation

We derived a biomass equation for C. acnes with information of

macromolecular andmonomeric composition information obtained

from published data (see Supplementary Data Sheet 1). Note that we
Frontiers in Cellular and Infection Microbiology 03
also partially used biomass composition data from a taxonomically

close species in the case where C. acnes specific data is unavailable

(Rocha et al., 2008). Note that the macromolecular composition and

some parts of the monomeric composition including lipid,

polysaccharide and small molecules, were referred from the

Propionibacterium biomass equation derived from the previous

model (McCubbin et al., 2020), since taxonomically related species

are shared among Propionibacterium. The protein, DNA and RNA

compositions of C. acnes were estimated based on the genome

sequence data used in the model reconstruction, while the fatty

acid composition of C. acnes was obtained from literature (Moss

et al., 1967). The growth and non-growth associated maintenance

(GAM) were calculated based on the macromolecular composition,

and non-growth associated maintenance (NGAM) were assumed to

be identical to that of P. acidipropionici (Zhang et al., 2015).
2.3 Constraint-based flux analysis

The metabolic behavior of C. acnes was simulated under

different conditions using constraint-based FBA (Raman and

Chandra, 2009; Orth et al., 2010). All constraint-based flux

analysis simulations were carried out using COBRA Toolbox in

MATLAB R2020a (Schellenberger et al., 2011) with CPLEX

optimization solver. The constraints used in model simulations

are provided in Supplementary Table 1. The cell was set to

maximize biomass objective function (vbiomass) while constraining

uptake rates of other nutrients, such as uptake rates of carbon

source and other complex medium components. The glucose and

glycerol uptake rate were constrained at 10 mmol gDW-1 h-1 and 20

mmol gDW-1 h-1, respectively. Mathematical representation of the

optimization problem can be expressed as follows:

max vbiomass

o
j
Sijvj =  0

vmin
j ≤ vj ≤  vmax

j

Where Sij   is the stoichiometric coefficient of metabolite i that

participates in reaction j and vj is the flux of reaction j. Reaction

constraints were given by assigning lower and upper bounds to the

reaction (vj) as v
min
j and vmax

j , respectively.

We predicted vitamin auxotrophy by constraining the uptake

rate of each vitamin to zero and maximizing the biomass objective

function. Vitamin auxotrophy was defined as over a 90% decrease in

growth when the corresponding vitamin was excluded from the

media (Koduru et al., 2017). SCFA production rate and intracellular

flux distributions in glucose and glycerol were simulated using a

variation of parsimonious FBA (pFBA) that optimizes the objective

function and sequentially minimizes the flux through the model

(Lewis et al., 2010). The turnover rates of metabolites under the

aforementioned conditions were described using flux-sum, as in

previous studies (Chung and Lee, 2009; Mishra et al., 2016).

Assuming that the cell is in steady-state flux balanced condition,
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the flux-sum for metabolite i, fi, is given by:

fi =
1
2o

 

j
Sijvj
�
�

�
�

The sum of all fluxes containing metabolite i will give the total

rate of consumption and generation, having this value will give the

turnover rate of metabolite i. The flux and flux-sum intensity were

also calculated in our study. Flux intensity was obtained by

normalizing the flux values of each reaction by the maximum flux

value of the reaction across the conditions, while flux-sum intensity

for each reaction was obtained by dividing them by the

corresponding maximum flux-sum value of the metabolite across

the conditions. The flux and flux-sum values for both glucose and

glycerol conditions are provided in Supplementary Table 2.
2.4 Identification of specific antimicrobial
targets in C. acnes

As potential antimicrobial targets for C. acnes, essential genes of

C. acnes in glycerol condition were identified by using the single

gene deletion function provided in the COBRA toolbox (Joyce and

Palsson, 2007). Genes whose knockouts resulted in a predicted

growth rate of less than 10% of the wild-type predicted growth rate

were considered essential. To sort out the essential genes in C. acnes

that are homologous to other skin microbe gene sequences, the

essential genes were further subjected to a BLASTp protein

sequence similarity search against 180 abundant skin bacteria taxa

present at > 0.1% of the reads in at least one sample among 251

collected samples (Bewick et al., 2019). The list of the abundant

microbiome taxa is provided in Supplementary Table 3. The whole

genome sequences of reference strains of abundant skin

microbiome taxa were retrieved from NCBI and used for BLASTp

analysis. The protein sequences with an e-value < 1 × 10-50 were

considered homologs (Heinken et al., 2023).
2.5 Reconstruction of ribotype-specific
GEMs for RT1 and RT6

Distinct associations have been observed between different

ribotypes (RTs) of C. acnes and acne vulgaris (Fitz-Gibbon et al.,

2013), indicating that exploring the metabolic differences among

RTs may provide new insights into acne vulgaris. To investigate the

variations in metabolic and phenotypic behavior among RTs, we

focused on two specific RTs for GEM reconstruction and analysis:

RT1, which is highly prevalent in both affected and healthy skin,

and RT6, which is associated with healthy skin. The genome

sequences of C. acnes strains ATCC6919 and HL110PA3 were

utilized for the reconstruction of RT1 and RT6 GEMs,

respectively. These genome sequences were retrieved from the

NCBI database as of 23 February 2023.

The RT-specific GEMs were built based on protein homology

and the reconstructed iCA843 model. SonicParanoid (Cosentino

and Iwasaki, 2019) was utilized in its default mode to search for
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homologous proteins between ATCC6919 (RT1) and HL043PA1

(RT5), as well as between HL110PA3 (RT6) and HL043PA1 (RT5).

The identified homologous proteins were used to transfer reactions

with appropriate GPR associations from iCA843 to the RT1 or RT6

GEMs. Reactions lacking GPR information were automatically

transferred to other GEMs if they were necessary for the growth

or metabolic phenotypes of C. acnes. Reactions associated with RT-

specific proteins were identified based on the draft GEMs

reconstructed using ModelSEED (Seaver et al., 2021) and

CarveMe (Machado et al., 2018) with manual curation.
2.6 Comparative genomics of
C. acnes ribotypes

To identify orthologous and ribotype-specific genes within the

C. acnes strains, a total of 167,830 protein sequences was compiled

from 73 strains representing different ribotypes. These sequences

were then subjected to clustering using CD-HIT program (version

4.8.1) with an amino acid similarity threshold of 70% (Fu et al., 2012).

From the pool of dispensable genes found in two or more strains, we

specifically retained the genes that were unique to RT1, 5, or 6.
3 Results

3.1 Genome-scale metabolic model
reconstruction of propionate-producing
C. acnes

The GEM for C. acnes HL043PA1, iCA843, was reconstructed

following procedures (see Materials and Methods). Initially, we

build a draft metabolic network based on the functional annotation

of genes from the whole genome sequence of the HL043PA1 strain.

This strain belongs to RT5, which is reported to be strongly

associated with acne vulgaris (Fitz-Gibbon et al., 2013; Barnard

et al., 2016). The network was then manually checked to identify

any discrepancies between the network and known physiological

metabolism. In this step, it is important to rectify incorrect GPR

relations by considering species-specific enzyme annotation and

include the relevant metabolic reactions which may not be

functionally assigned due to the limitation of homology-based

approaches based on biochemical databases and literatures. As an

example, we updated the information regarding methylmalonyl-

CoA carboxyltransferases (MMC; EC 2.1.3.1), a critical reaction in

the propionate biosynthesis. We made the necessary modification

to the GPR annotation of MMC by newly incorporating a

previously unannotated subunit that was identified as a

hypothetical protein lacking specific functionality in the NCBI

annotation. We also added type-2 phosphatidic acid phosphatase

(EC 3.1.3.4), which was not included initially in the draft model,

according to the literature reporting that it is required for de novo

synthesis of phosphatidylglycerol in phospholipid metabolism

(Kanoh et al., 1999). As a result, the GPR of 198 reactions were

updated and 392 metabolic reactions were newly included in the

model, based on the functional annotation, biochemical databases,
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and experimental evidence. In addition, a total of 705 metabolic

reactions were excluded from the draft model due to redundancy in

fatty acid and phospholipid metabolism, as well as the presence of

periplasmic reactions that are not feasible in Gram-positive bacteria

such as C. acnes. Next, the reconstructed model was further

expanded by integrating existing metabolic model of P. acnes

6609 (McCubbin et al., 2020), which was built based on the pan-

genome of Propionibacterium and offered novel metabolic insights

into the energy conservation mechanism. This process led to an

update of GPR for 297 existing reactions, deletion of 94

misannotated reactions, and incorporation of 163 new reactions,

including a novel ferredoxin-based energy conservation mechanism

of Propionibacterium proposed in previous study. Reversibility of all

reactions were cross-checked based on several databases such as

MetaCyc (Caspi et al., 2014), Virtual Metabolic Human (VMH)

(Noronha et al., 2019), and eQuilibrator (Beber et al., 2022), which

prevents biologically unfavorable intracellular fluxes in model

simulation. In addition, we formulated a biomass equation which

was derived from the macromolecular and monomer compositions

as described in Material and Methods, and Supplementary Data

Sheet 1. Finally, the resulting model, iCA843, comprises 843 genes,

1510 reactions and 1194 metabolites, covering comprehensive

central carbon, amino acid, and lipid metabolisms, as well as

relevant biosynthetic pathways of key virulence factors such as

SCFAs, TAG lipase and various types of porphyrins (Figure 1). The

list of reactions, along with their respective gene associations and

metabolites, is provided in both systems biology markup language

(SBML) and excel format (Supplementary Data Sheet 2).

Additionally, we confirmed the network consistency of iCA843

using the online tool MEMOTE (Lieven et al., 2020), achieving an

overall score of 89% (Supplementary Data Sheet 3).

Next, we assessed the quality of iCA843 by simulating the cell

growth under glucose condition. Remarkably, the predicted

fermentative behavior was highly consistent with the reported

SCFA measurements (Stowers et al., 2014), with propionate

producing more than twice that of acetate (Figure 2A). It should

be noted that the secretion of propionate and acetate was not

constrained in the FBA simulation (see Materials and Methods),

showing that iCA843 successfully captures the physiological and

metabolic traits of C. acnes, a representative propionic acid bacteria

(PAB) that efficiently ferments carbon sources to produce

propionate through the Wood-Werkman cycle. The Wood-

Werkman cycle consists of MMC, propionyl-CoA:succinate CoA

transferase, and methylmalony-CoA mutase (Bücher et al., 2021).

Next, we performed simulations to determine the essential vitamins

B and C required for cell growth, which identified 4 auxotrophic

vitamins (thiamin, riboflavin, pantothenate, and cobalamin) and 5

prototrophic vitamins (nicotinamide, pyridoxine, biotin, folate, and

ascorbate) (Figure 2B). Notably, our results are consistent with

experimental observations for 3 vitamins, namely nicotinamide,

pantothenate, and biotin (McDowell et al., 2016), while there is a

discrepancy between our simulation results (thiamin as essential for

growth) and the experimental evidence. This inconsistency suggests

the necessity for further investigation to reconcile the differences

and gain a deeper understanding of the role of thiamin in the

growth of C. acnes. Upon conducting a protein sequence similarity
Frontiers in Cellular and Infection Microbiology 05
search targeting known enzyme sequences for thiamin biosynthesis,

a complete biosynthesis pathway for thiamin could not be

identified, making it impossible to gap-fill the related pathway.

This finding suggests the presence of potential knowledge gaps in

the genome annotation or an alternative, undiscovered biosynthesis

pathway, which may explain the HL043PA1-specific auxotrophic

behavior. In addition, we conducted fermentable substrate

phenotyping for various carbon sources, and compared in silico

predictions with experimental data reported by Puhvel (1968),

giving rise to the growth phenotypes which are in good

agreement with 13 out of 14 different carbon sources available

naturally under human skin environment or provided from skin

care products (Figure 2C).

To provide an overview of C. acnes metabolic traits as a skin

inhabitant and to highlight the uniqueness of C. acnesmetabolism in

relation to acne vulgaris, we compared iCA843 with GEMs of other

skin bacteria that have been reported to contribute to acne vulgaris

pathogenesis, Staphylococcus epidermidis and Klebsiella pneumoniae

(Figure 2D) (Kumar et al., 2016; Henry et al., 2017; Dıáz Calvo et al.,

2022). All three species can utilize glycerol, a carbon source

abundantly available in the skin environment that provokes

bacterial fermentation (Balasubramaniam et al., 2020). They also

commonly produce protoporphyrin IX, which is a precursor to heme,

as well as several SCFAs such as acetate and butyrate. However, in

contrast, C. acnes can uniquely synthesize coproporphyrin III, which

is more relevant to acne lesions than protoporphyrin IX (Patwardhan

et al., 2017), and utilize distinctive SCFA biosynthetic pathways to

produce propionate and acetate as major metabolic byproducts

through the Wood-Werkman cycle and the newly recognized

succinyl-CoA:acetate CoA-transferase (SUCOAACTr) (Zhang et al.,

2021), respectively. On the other hand, K. pneumoniae produce

propionate from the propanediol pathway (Luo et al., 2012), while

S. epidermidis has no metabolism for its synthesis. Furthermore, an

analysis of the genome and model characteristics of the three skin

pathogens revealed that although the C. acnesmodel has the shortest

genome length and the fewest open reading frames, it also has the

highest percentage of accounted ORFs in the model and gene-

associated reactions (Figure 2E). In addition, a comparison between

the genome and model characteristics of iCA843 and the previous P.

acnes 6609 GEM showed that iCA843 encompasses a greater

proportion of open reading frames and gene-associated reactions.

The inclusion of a higher percentage of gene-supported reactions and

a more comprehensive set of network components in iCA843 has

significantly expanded the metabolic capabilities of the model. This

expansion is expected to capture specific metabolic characteristics

unique to C. acnes.
3.2 Characterization of physiological
behaviors and metabolic states of C. acnes
under endogenous carbon sources in
human skin

C. acnes exhibits a significant fermentative characteristic by

producing a substantial quantity of propionate through the Wood-

Werkman cycle. This ATP-independent pathway efficiently
frontiersin.org
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converts pyruvate into oxaloacetate (Wang et al., 2015). In addition

to propionate, C. acnes also produces other SCFAs, including

acetate. These SCFAs play a role in stimulating free fatty acid

receptors and can trigger inflammatory reactions in skin immune

cells (Sanford et al., 2019), while propionate can have cytotoxic

effects by causing pH changes (Tax et al., 2016), and can also

provoke an immune response (Kim et al., 2002; Nagy et al., 2005).

The production of SCFAs by C. acnes contributes to the complex

interplay between the microbiota and the host immune system in
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the context of skin health and inflammation. Therefore, our aim is

to elucidate the metabolic flux distributions attaining to these

fermentative behaviors in human skin, as an effort to gain a

better understanding of the underlying intercellular mechanisms

involved in the development of acne vulgaris. We performed flux

simulations under anaerobic conditions to mimic the environment

of the obstructed pilosebaceous unit in acne vulgaris (Shannon,

2020). Furthermore, we compared a comparison of the growth and

metabolic state of C. acnes under two different conditions: glucose
FIGURE 1

C. acnes metabolic network of iCA843. C. acnes GEM includes central carbon metabolic pathways and amino acid biosynthesis pathways, in
addition to characteristic pathways, such as the Wood-Werkman cycle, the SCFAs fermentation pathways, the porphyrin and vitamin B12
biosynthesis pathways, as well as skin condition related TAG lipase reaction and glycerol uptake pathway.
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and glycerol. Glucose was considered as the control condition, while

glycerol represented the major carbon source in the pilosebaceous

unit (see Materials and Methods). This is due to the fact that human

sebum primarily consists of triglycerides, fatty acids, squalene, and

wax esters (Akaza et al., 2014), and C. acnes produces extracellular

lipase enzymes that hydrolyzes the triglycerides present in sebum,

leading to the release of glycerol as a nutrient source (Coenye et al.,

2021). However, there is a lack of experimental evidence regarding

the uptake of other sebum constituents by C. acnes. Therefore,

glycerol is considered the primary endogenous carbon sources in

human sebum, which aligns with the existing knowledge that

glycerol serves as a major carbon source for the skin microbiome,

facilitating growth and biosurfactant production (Saikia et al., 2012;
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Balasubramaniam et al., 2020). The simulation results showed that

the growth rate under glycerol condition was 31.5% lower

compared to glucose condition, and the production of acetate was

negligible, while there was a 1.6-folds increase in propionate

production rates observed in the glycerol condition (Figure 3A).

These findings consistent with observations made in several

Propionibacterium species (Liu et al., 2011; Wang and Yang,

2013; Zhang et al., 2015). The breakdown of carbon output from

each source revealed that propionate exhibited the highest efflux in

both conditions, while the contribution of CO2 to the total carbon

output was lower in the glucose condition as expected (Figure 3B).

The resulting internal fluxes within the central metabolism and

SCFA biosynthetic pathways clearly revealed that pyruvate kinase
B

C D

E

A

FIGURE 2

Qualitative model validation and comparison with other GEMs acne-inducing skin pathogens. (A) Predicted fermentative production pattern of
propionate and acetate in rich media with glucose using iCA843. (B) Auxotroph simulations for vitamins B and C (C) Fermentable substrate
phenotyping for various carbon sources and comparison with reported experimental data by Puhvel (1968). (D) Venn diagram compares the EC
numbers of the GEMs of the acne-inducing skin bacteria, including C. acnes HL043PA1, Staphylococcus epidermidis RP62A, and Klebsiella
pneumoniae KPPR1. (E) The genome and metabolic network characteristics of the skin bacterial species.
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(PYK) in the last step of glycolysis and all reactions in the Wood-

Werkman cycle have significantly higher fluxes in the glycerol

condition compared to the glucose (up to 2.5-folds), while

pyruvate dehydrogenase (PDH) is highly active in the glucose

condition (up to 7.2-folds), resulting in higher acetate secretion

coupled with CO2 production (Figure 3C). We further explored the

Wood-Werkman cycle and PDH from a redox balance perspective

by quantifying the turnover rates of energy cofactors such as ATP

and NAD based on their flux-sum intensity values (see Materials

and Methods). It should be noted that flux-sum can represent the

metabolite pool size by summing up all incoming or outgoing fluxes

associated with the metabolite (Chung and Lee, 2009). As a result,

we observed a higher turnover rate of NAD (42.2%) in the glycerol-

rich condition (Figure 3D), which is mainly contributed by glycerol-

3-phosphate dehydrogenase (G3PD1) and malate dehydrogenase

(MDH) reactions in glycolysis and TCA cycle, respectively. This

observation is in good agreement with previous study on several

Propionibacterium species, for example P. jensenii, (Liu et al., 2011;

Wang and Yang, 2013; Zhang et al., 2015), which also possess the

Wood-Werkman cycle to maintain cellular redox balance (Luna-

Flores et al., 2018; Gonzalez-Garcia et al., 2020). Similarly, ATP
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turnover rate was increased by 20.4% in the glycerol due to the high

ATP demand via glycerol kinase (GLYK) to consume the carbon

source. Consequently, the cellular metabolism shifted towards ATP

regeneration rather than cell growth, as indicated by the activation

of PYK in glycolysis and the subsequent increase in the pyruvate

pool which serves as a precursor for the metabolic reactions of the

Wood-Werkman cycle. Overall, the simulation results suggest that

in the context of acne vulgaris-associated skin conditions, C. acnes

may utilize the Wood-Werkman cycle to replenish depleted NAD.

This metabolic adaptation can lead to the overproduction of

propionate, which in turn may trigger an inflammatory response

in human skin.
3.3 Systematic identification of potential
antimicrobial targets in C. acnes by gene
essentiality analysis

Considering that the current antibiotics used for acne vulgaris

treatment that reduce C. acnes population may cause dysbiosis in

the skin microbiome, which can lead to other skin diseases (Chien
B

C D

A

FIGURE 3

In silico phenotype predictions under endogenous carbon sources in human skin. (A) Predicted rate of growth and SCFAs production. (B) The
predicted breakdown of carbon output from each carbon source. (C) Flux map showing the intracellular flux distribution across glycolysis, TCA,
Wood-Werkman cycle and SCFA biosynthesis pathways. (D) Heatmap representing the flux-sum intensity of SCFAs, cofactors and others in central
metabolism. In (C, D), the color intensity corresponds to the flux or flux-sum values normalized with respect to the maximum value observed for
each reaction or metabolite, respectively. The abbreviations of enzymes and metabolites is provided in Supplementary Table 4.
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et al., 2019; Thompson et al., 2020), we presented a model-driven

framework for systematically screening antimicrobial candidates

and identifying promising targets which selectively suppress the

growth of C. acnes with minimal effects on other skin microbiota

(Figure 4A). Initially, using iCA843, we applied gene essentiality

analysis to determine the genes which are crucial for the cell growth

(see Materials and Methods), and found 117 essential genes (13.9%)

out of 843 genes (step 1). With the list of abundant microbiome taxa

(180 species) (Bewick et al., 2019) and their whole genome

sequences collected from NCBI database, the number of species

containing homologous genes given each essential gene for C. acnes

were obtained via protein sequence similarity search using BLASTp

(step 2). It is followed by narrowing down the gene list which are

found only within less than 5% and 1% of abundant skin microbes

in step 3, resulting in 23 ‘unique’ and 3 ‘highly unique’ candidates,

respectively (Supplementary Table 5). In Figure 4B, we showed the

distribution of essential genes including C. acnes specific

antimicrobial targets (117 genes in total) in various metabolic

subsystems which are classified based on their cluster of

orthologous groups (COG) functional categories. The largest

portion belongs to ‘coenzyme metabolism’ with two highly

unique genes, indicating its high rigidity. Amino acids and

nucleotide metabolisms have high number of essential genes, but
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most of them were not unique as expected since they are

functionally conserved among bacterial species (Peregrıń-Alvarez

et al., 2009). Interestingly, 50% of the essential genes in the ‘lipid

metabolism’ were found to be unique genes.

We further investigated biological mechanisms and pathways

related to highly unique genes, which allowed us to identify

promising C. acnes drug targets for the acne vulgaris treatment

(Figure 4C). It should be noted that none of the highly unique

candidates were homolog to human genome, and one of three genes

have been discarded due to their functional ambiguity. The two

highly unique genes encode dihydroneopterin aldolase (DHNPA2r)

and 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine

diphosphokinase (HPPK2) which are involved in biosynthesis of

tetrahydrofolate, a central cofactor in bacterial amino acid and

nucleic acid metabolism (Tjong et al., 2022). In fact, a formate-

tetrahydrofolate ligase enzyme, utilizing tetrahydrofolate as a

substrate and producing 10-formyltetrahydrofolate, is present as a

housekeeping gene in 72 strains of C. acnes (Kilian et al., 2012),

indicating the essentiality of tetrahydrofolate for their survival.

Thus, the current model-guided framework enabled us to identify

two promising C. acnes-specific antimicrobial targets, the enzyme

encoding DHNPA2r and HPPK2, which await further

experimental validation.
B

C

A

FIGURE 4

Systematic identification of potential anti-C. acnes targets. (A) Steps in systematic for identification of the specific antimicrobial candidate for C.
acnes. (B) Classification of essential genes in various metabolic subsystems based on their functional roles. (C) Tetrahydrofolate biosynthetic
pathway related to highly unique genes. The metabolic reactions inhibited by trimethoprim-sulfamethoxazole were indicated with an asterisk (*).
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4 Discussion

Despite the worldwide prevalence and severity of acne vulgaris,

the pathogenic mechanisms of C. acnes under skin environment

remain uncharacterized. Thus, in this study, we reconstructed a GEM

of the virulent C. acnes strain, HL043PA1, to understand its

pathogenic characteristics. The reconstructed GEM encompasses

unique metabolic traits of C. acnes, including the propionate and

acetate biosynthesis pathways as well as virulence-related

metabolisms for coproporphyrin III and TAG lipase. Furthermore,

the model successfully captures the innate production of SCFAs such

as propionate and acetate without additional constraints on their

effluxes. We also performed flux simulations to gain insight into its

nutritional capabilities, specifically regarding carbon source

utilization, and vitamin auxotroph. Then, we analyzed the

metabolic states of C. acnes under endogenous carbon sources in

human skin to elucidate its physiological behaviors. Interestingly, we

observed that overproduction of propionate via the Wood-Werkman

cycle is highly related to NAD regeneration under glycerol condition,

indicating that inflammatory response induced byC. acnesmay entail

sebum-rich skin environment. Lastly, we utilized the model-driven

framework to identify potential targets that selectively suppress the

growth of C. acnes within skin microbiota.

Using iCA843, we elucidated physiological behaviors and

metabolic states of C. acnes. However, several limitations exist in

the current GEM. They include the limited availability of

experimental data for carbon utilization and nutrient auxotroph

as well as difficulties in in vitro culture due to its slow-growing

properties, which can take up to two weeks under anaerobic

condition (Elston et al., 2019). In addition, we were unable to

observe the innate production of porphyrin without an additional

constraint, although it is one of the main virulence factors produced

at much higher levels in acne-associated strains compared to health-

associated strains (Johnson et al., 2016). As porphyrin production

has been reported to be regulated by the expression of the deoR

repressor gene (Johnson et al., 2016; Barnard et al., 2020), this

discrepancy may be attributed to gene regulation mechanisms,

which require additional data such as transcriptomics to be

integrated into the GEM. In future, C. acnes models can be

further improved based on additional phenotypic and omics data

such as transcriptome (Hastings et al., 2019; Jenior et al., 2020).

In our study, we identified potential antimicrobial targets for C.

acnes using model-driven framework. In this framework, we

utilized iCA843 to predict essential enzymes required for C. acnes

growth, while minimizing off-target effects on the host microbiota

via protein similarity search. Unlike previous model-guided studies

on identifying potential drug targets for pathogens based on

homolog of essential genes in their hosts (Plata et al., 2010;

Sigurdsson et al., 2012; Koduru et al., 2020), our study focused on

protein sequence similarity for both skin microbiome and human

homologs. As a result, we identified two highly unique candidates,

the enzymes encoding DHNPA2r and HPPK2, that have the

potential to be used in the design and selection of effective

antimicrobial inhibitors. In fact, the tetrahydrofolate biosynthetic

pathway has been widely investigated for antimicrobial targets. For
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example, trimethoprim-sulfamethoxazole (Bactrim®) inhibits

dihydropteroate synthetase (DHPS2) and dihydrofolate reductase

(DHFR) within this pathway (Hooton, 2003). Furthermore, the folB

gene, encoding DHNPA2r, has been identified as essential for

Mycobacterium tuberculosis and recognized as a potential anti-

tuberculosis drug target (Falcão et al., 2017). Therefore, the

candidates proposed in this study hold promise as targets for the

design and selection of effective C. acnes-specific antimicrobial

inhibitors, which require further experimental validation.

In this study, we employed an e-value threshold of< 1 × 10-50 to

determine the homology of essential proteins in C. acnes with other

skin microbiota. However, it should be noticed that there is no gold

standard for protein homology search, and the choice of threshold

may vary depending on the analysis objectives and research scope.

By using more lenient criteria, a smaller set of targets can be

identified. For instance, when using an e-value threshold of<10-30,

we observed that one of the two suggested targets, the enzyme

encoding HPPK2, exhibited homology with proteins from four skin

microbiota, while another target, DHNPA2r enzyme, showed

homology with a protein from two skin microbiota. These

observations emphasize the need to carefully specify the threshold

criteria in line with the objectives and scope of identifying effective

drug targets against C. acnes.

Arguably, C. acnes exhibits two faces as both pathogen and

commensal, which is attributable to the metabolic diversity of RTs.

Specifically, RT5 is strongly associated with acne, while RT6 is

enriched in healthy skin, and RT1 is abundant in both acne and

normal individuals (Fitz-Gibbon et al., 2013; Lomholt et al., 2017).

In this regard, in order to investigate the metabolic variations

among ribotypes, we additionally reconstructed GEMs of C. acnes

ATCC6919 (RT1) and HL110PA3 (RT6) based on protein

similarity search and iCA843 (see Material and Methods).

Surprisingly, the ribotype-specific GEMs shared similar central

metabolic pathways including glycolysis, pentose phosphate

pathways and TCA cycle, with minor variations in cellobiose

utilization and phenylalanine biosynthesis (see Supplementary

Table 6). These metabolic similarities motivated us to further

explore the potential genetic variations among ribotypes that may

underlie the two faces of C. acnes strains. Thus, we conducted

comparative genomic analysis (see Material and Methods),

resulting in a total of 1,467 genes identified as core genes present

in all the strains, and 58, 16, and 1 RT-specific genes in one of the

RT1, 5, or 6, respectively. A heatmap of the dispensable genes in

strains belonging to RT1, 5 and 6 are present in Supplementary

Image 1. Among the RT5-specific genes, 6 were associated with

virulence, including genes involved in toxin/antitoxin systems and

endonucleases. Note that the rest were not functionally annotated.

Therefore, functional regulations of the genes and unknown

ribotype-specific genes should be incorporated into each RT-

GEM, which will enable us to fully understand the distinct

pathogenetic features among RTs.

Recent studies reported that microbial interactions shaping

the composition of resident microbiota elicit notable influence

in pathogenesis of skin disorders including acne vulgaris

(Byrd et al., 2018; Ramasamy et al., 2019; Yang et al., 2022). For
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instance, C. acnes and Staphylococcus species (e.g., S. epidermidis), a

predominant genus of skin microbiome, have antagonistic

relationships by secreting SCFAs that inhibit the growth of each

other (Nakamura et al., 2020; Ahle et al., 2022). In this regard,

model-guided approach can be exploited to understand the roles of

C. acnes and S. epidermidis, their relationship and skin community-

level metabolic interactions during the development of acne vulgaris as

similarly done for lactic acid bacteria strains (Shoaie et al., 2013;Koduru

et al., 2022) and gut microbiome based on the models derived from

AGORA (Magnúsdóttir et al., 2017), thereby providing a springboard

for rational design of skin probiotics to restore healthy microbiome or

to develop personalized treatment of acne vulgaris in future.
5 Conclusion

Our study provides insights into the metabolic characteristics

behind several unique characteristics of C. acnes, including acne-

associated SCFAs production and virulent pathways, through in

silico analysis using iCA843. We simulated C. acnes behavior under

glycerol, which resulted in overproduction of propionate related to

pathogenesis of acne vulgaris. We also suggested the potential C.

acnes-specific antimicrobial candidates that mayminimize off-target

effects to other skin microbes via the model-guided framework.

Additional reconstruction of ribotype-specific GEMs and

subsequent comparative genomics suggested that the iCA843 can

also be applied to study metabolic differences between ribotypes and

cross-feeding interactions with other skin microbes in near future.
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