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Identification of intestinal
microbiome associated with
lymph-vascular invasion in
colorectal cancer patients and
predictive label construction

Chuanbin Chen †, Kang Chen †, Zigui Huang †, Xiaoliang Huang †,
Zhen Wang, Fuhai He, Mingjian Qin, Chenyan Long,
Binzhe Tang, Xianwei Mo*, Jungang Liu* and Weizhong Tang*

Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical
University Cancer Hospital, Nanning, China
Objective: To identify differences between the composition, abundance, and

biological function of the intestinal microbiome of patients with and without

lymph-vascular invasion (LVI) colorectal cancer (CRC) and to construct

predictive labels to support accurate assessment of LVI in CRC.

Method: 134 CRC patients were included, which were divided into two groups

according to the presence or absence of LVI, and their intestinal microbiomes were

sequenced by 16SrRNA and analyzed for differences. The transcriptome sequencing

data of 9 CRC patients were transformed into immune cells abundance matrix by

CIBERSORT algorithm, and the correlation among LVI-associated differential

intestinal microbiomes, immune cells, immune-related genes and LVI-associated

differential GO items and KEGG pathways were analyzed. A random forest (RF) and

eXtremeGradient Boosting (XGB)model were constructed to predict the LVI of CRC

patients based on the differential microbiome.

Result: There was no significant difference in a-diversity and b-diversity of

intestinal microbiome between CRC patients with and without LVI (P > 0.05).

Linear discriminant analysis Effect Size (LEfSe) analysis showed 34 intestinal

microbiomes enriched in CRC patients of the LVI group and 5 intestinal

microbiomes were significantly enriched in CRC patients of the non-lymph-

vascular invasion (NLVI) group. The RF and XGB prediction models constructed

with the top 15% of the LVI-associated differential intestinal microbiomes ranked

by feature significance had good efficacy.

Conclusions: There are 39 intestinal flora with significantly different species

abundance between the LVI and NLVI groups. g:Alistipes.s:Alistipes_indistinctus

is closely associated with colorectal cancer vascular invasion. LVI-associated

differential intestinal flora may be involved in regulating the infiltration of

immune cells in CRC and influencing the expression of immune-related genes.
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LVI-associated differential intestinal flora may influence the process of vascular

invasion in CRC through a number of potential biological functions. RF prediction

models and XGB prediction models constructed based on microbial markers of

gut flora can be used to predict CRC-LVI conditions.
KEYWORDS

colorectal cancer, lymph-vascular invasion, 16S rRNA, intestinal microbiome,
machine learning
1 Introduction

Colorectal cancer (CRC) is a great threat to human health, with

the third and second highest incidence and mortality rates,

respectively, according to the 2020 Global Cancer Data estimates,

and its incidence continues to increase in many countries (Sung

et al., 2021). In recent years, the incidence of CRC has increased

significantly in China, with 592,232 incidences and 309,114 deaths

expected in 2022 (Xia et al., 2022). Despite breakthroughs in both

surgical and medical treatments for CRC, there has been no

significant improvement in patient cure rates or long-term

survival (Kuipers et al., 2015).

The etiology of CRC is unknown, but genetic and

environmental factors have emerged as well-recognized risk

factors for the development of CRC (Kuipers et al., 2015). In

recent years, the intestinal microbiome and their metabolites have

been shown to influence the development and progression of CRC

by mediating or modifying environmental factors or by being

modified by environmental factors (Song et al., 2020). The

normal human gut contains approximately 100 trillion

commensal intestinal bacteria (Hill and Artis, 2010), expressing

over 3.3 million genes (Belizário and Napolitano, 2015). The

intestinal microbiome plays an important role in digestion and

absorption, substance metabolism, immune regulation, and

protection of the intestinal mucosa, and together they maintain

intestinal homeostasis (Hill and Artis, 2010; Belizário and

Napolitano, 2015; Okumura and Takeda, 2018). The intestinal

microbiome in healthy populations is mainly composed of

Bacteroidetes and Firmicutes (Mahowald et al., 2009), among

which Bifidobacterium and Lactobacillus as probiotics can

participate in the host’s gastrointestinal defense system (Servin,

2004), and Clostridium nucleatum or Bacteroides fragilis as harmful

bacteria have been shown to be associated with the occurrence and

development of CRC (Montalban-Arques and Scharl, 2019).

Therefore, the composition ratio and relative abundance of the

intestinal microbiome are crucial for maintaining the stability of the

intestinal micro-ecosystem and human health. In recent years, due

to the improvement in living standards, people have increased the

intake of red meat and animal fat and reduced the intake of fiber in

their diets and decreased the amount of exercise in their lifestyles.

Since the composition of the microbiome is closely related to the

host’s lifestyle, diet and genotype, these lifestyle changes, especially

the diet, have altered the composition of the intestinal microbiome
02
and caused an imbalance in the intestinal microbiome (Yang and

Yu, 2018; Redondo-Useros et al., 2020). Intestinal microbiome

imbalance refers to a change in the predominant microbiome of

the original intestine, a decrease in the abundance of the beneficial

microbiome, and an increase in the abundance of the pathogenic

microbiome in the intestinal microecological environment, which

will cause chronic inflammation and genetic alterations in

colorectal epithelial cells through the release of virulence factors,

leading to CRC (Wang and Li, 2022).

Currently, due to the lack of early symptoms of CRC (Tepus and

Yau, 2020), most patients are diagnosed when CRC has progressed to

the progressive stage (Yu YQ. et al., 2022), suggesting that the tumor

has metastasized, which is a major cause of cancer-related death

(Vatandoust et al., 2015). Although the relationship between intestinal

microbiome imbalance and CRC occurrence has been extensively

studied, the specific relationship between various bacteria and CRC

metastasis has still not been elucidated. Metastasis is a complex

multigene, multistep process consisting of close communication

between tumor cells and the tumor microenvironment, including

immune cells, inflammatory cells, and stromal cells. A study showed

that lipopolysaccharide increases VEGF-C secretion through the

TLR4- NF-k b/JNK signaling pathway and promotes cell motility

and lymphangiogenesis (Zhu et al., 2016). The presence of

lipopolysaccharide in the outer membrane of Gram-negative

bacteria suggests that the intestinal microbiome plays an important

role in the lymphatic metastasis of CRC. The most common site of

hematogenous metastasis in CRC is the liver (Pretzsch et al., 2019).

About 25% of CRC patients accompany with liver metastases, which

causes more than 90% of deaths in CRC patients (Li et al., 2019).

Bullman, S found that Clostridium nucleolytic and its commensal

microorganisms (Mycobacterium, Puccinia) colonize distal liver

metastases and that the microorganisms present in liver metastases

colonized by Clostridium nucleolytic are similar to those associated

with Clostridium nucleolytic in primary CRC (Bullman et al., 2017).

Another animal study showed that Desulfovibrio can create a

microenvironment conducive to CRC liver metastasis by inducing

colonic barrier dysfunction, colonic and hepatic inflammation (Yu Y.

et al., 2022).

Invasion of lymphatic and blood vessels by tumor cells plays a

crucial role in the process of metastasis (van Zijl et al., 2011).

Lymph-vascular invasion (LVI) is defined as a pathological

manifestation of the presence of cancer thrombi in lymphatic or

vascular channels (Li et al., 2015), and LVI is an early pathological
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marker of tumor progression to metastasis (Schneider and Langner,

2014). It has been well documented that LVI of tumor tissue

(including both lymphatic vessel invasion and vascular invasion)

is an independent predictor of poor prognosis in CRC and that CRC

patients with LVI have a poorer prognosis compared to non-lymph-

vascular invasion (NLVI) CRC patients. Therefore, elucidating the

oncologic impact and prognostic significance of LVI is of great

significance for CRC patients.

There are no studies showing the relationship between the gut

microbiome and LVI. The aim of this study was to investigate the

composition, abundance, and biological functions of each intestinal

microbiome in LVI-CRC patients and NLVI-CRC patients, and to

incorporate the characteristic microbiome to construct a machine

learning classification model to analyze the role of gut microbiota in

the development of LVI in CRC, to identify novel noninvasive

biomarkers of CRC-LVI, and to construct a diagnostic model to

assess CRC-LVI conditions to provide new strategies for early

screening of CRC metastasis.
2 Research methods

2.1 Subject information and
sample collection

The study protocol was approved by theMedical Ethics Committee

of the Affiliated Cancer Hospital of GuangxiMedical University, and all

participants were notified prior to sample collection. All study subjects

signed an informed consent form before any procedures were

performed. The investigators had completed the collection of pre-

treatment stool samples from 236 colorectal cancer patients between

2021.01.01 and 2021.12.31 after inclusion and exclusion screening, and

finally received 198 stool samples of acceptable quality for 16S rRNA

sequencing. Among the above subjects who underwent surgical

treatment at the Cancer Hospital of Guangxi Medical University,

fresh tissue specimens removed by surgery were collected and placed

in liquid nitrogen for preservation. Among them, there were 134

colorectal cancer patients with LVI information. In addition, we

performed transcriptome sequencing on 17 colorectal cancer tumor

tissue samples, among which 15 samples had LVI information, and 9

samples had 16S rRNA sequencing data from stool samples.

Subjects were included according to the following criteria: 1.

Patients who had undergone surgical treatment with clear

pathological staging (according to ACJJCRC staging guidelines), or

patients with colorectal adenocarcinoma confirmed by colonoscopic

pathological biopsy; 2. No combination or no previous other

malignancies; 3. Exclusion of other intestinal diseases and no acute

comorbidities such as complete intestinal obstruction, intestinal

perforation, or pelvic abscess; 4. Before fecal sample collection, all

patients had not received any anti-tumor treatment, such as surgery,

chemotherapy, radiotherapy, immunotherapy and traditional Chinese

medicine; 5. No antibiotics and intestinal microecological agents were

used in the past 1 month; 6. No impairment of consciousness or other

cognitive dysfunction.

Stool specimen collection: Stool specimens were collected on the

first day after the patients were admitted to the hospital. Patients were
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instructed to use a sterile stool collection tube to retain the middle part

of the stool specimen and avoid contamination of urine, then the stool

specimen was placed in a sterile ice box, dispensed in 2 mL EP tubes,

200 mg/tube, and placed in -80 °C refrigerator for freezing and storage.

Tissue sample collection: Fresh tissue specimens were collected

from surgically excised tumors and paracancerous tissues of

soybean size, and the time from isolation to placement in liquid

nitrogen for preservation was controlled to be less than 30 minutes.
2.2 16S rRNA sequencing

Using the MOBIO PowerSoil® DNA Isola-tion Kit, DNA was

extracted from 200 mg of feces in Tris-EDTA buffer according to the

product instructions. After DNA extraction, the samples are tested

for DNA quality, and samples of acceptable quality are allowed to

proceed to the next experiment. The V3 and V4 regions of the 16S

rRNA gene were targeted and captured with primers 341F: (5′-
CCTACGGGNGGCWGCAG-3′) and 805R (5′-GACTACHVGGGT

ATCTAATCC-3), and the targeted capture products were amplified

by PCR. After PCR amplification, the PCR products of each sample

were first examined using 2% agarose gel electrophoresis with a target

band size of approximately 300 ~ 350 bp for the target capture

products. The PCR products were then quantified using the Quant-iT

PicoGreen dsDNA Assay Kit kit, and all samples were combined at

equimolar concentrations according to the sequencing requirements

based on the quantitative results of each sample. Next, the mixed

libraries were quantified using the KAPA Library Quantification

Kit KK4824. Finally, the libraries were sequenced on an Illumina

PE250 instrument using 2×250 bp chemistry after passing the

library assay.
2.3 Transcriptome sequencing

Total RNA was extracted from 17 colorectal cancer tumor samples

using Trizol® Total RNA Extraction Kit, and electrophoresis was used

to detect the integrity of RNA, and the purity of RNA was measured by

micro UV spectrophotometer. Remove rRNA and construct cDNA

libraries by referring to the instructions of the RNA-seq Sample

Preparation Kit (VAHTS™ Stranded mRNA-seq Library Prep Kit

for Illumina®). Transcriptome library sequencing was done by

Illumina NovaSeq 6000. The sequenced raw data were quality

assessed by FastQC, and the sample valid data were first compared

to the reference genome using HISAT2 (version: hg38). Gene

expression was assessed using StringTie and known gene models,

and the TPM (Transcripts Per Million) calculated for each gene was

used as the expression abundance of that gene.
2.4 Analysis of tumor immune infiltration

The tumor immune infiltration analysis was performed by

calling CIBERSORT R script v1.03. The CIBERSORT algorithm

uses the microarray data to construct a feature matrix that translates

the TPM matrix into a relative content matrix of 22 immune cells
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(including immune cells of different cell types and functional states)

(Newman et al., 2015).
2.5 Functional enrichment analysis of LVI-
related transcriptome sequencing

The single-sample gene set enrichment analysis (ssGSEA)

algorithm is a rank-based approach that calculates a score for the

absolute enrichment of a specific gene set for each sample (Hänzelmann

et al., 2013). We downloaded the required gmt format gene set files

(c2.cp.kegg.v2022.1.Hs.symbols.gmt, c5.go.v2022.1.Hs.symbols. gmt),

using the ssgsea algorithm to calculate the gene set scoring matrix for

each sample by the GSVA package v1.46.0. Next, the NLVI group was

used as a control group, and the limma algorithm in TCGAbiolinks

package v2.25.3 was used to analyze the differential GO items and

KEGG pathways between groups. GO analysis includes three levels:

Biological Process (BP), Molecular Function (MF) and Cellular

Component (CC). The significance thresholds for differentially

expressed genes were: p value< 0.05 and |log2FC| >0. log2FC>0

indicates genes upregulated in the LVI group and log2FC<0 indicates

genes upregulated in the NLVI group, and the screening process was

presented by volcano plot, depicted based on ggplot2 package v3.4.0.
2.6 Machine learning model construction
and identification of gut microbial markers

We used Random Forest (RF) and XGBoosting (eXtreme

Gradient Boosting, XGB) models for gut microbial marker

identification to predict LVI in CRC patients, respectively.

The RF model and XGB model are widely used machine learning

methods with promising prediction results (AlThuwaynee et al., 2021;

Hong et al., 2022; Yu JR. et al., 2022). RF model is an integrated

machine learning approach by building a large number of decision

trees (Breiman, 2001). Themethod is evaluated by combiningmultiple

decision trees in an integrated manner, and the generalization error

converges as the number of trees increases, so the algorithm does not

suffer from overfitting problems (Breiman, 2001). Compared with

other models, the RF model can handle a large number of interactions

between different independent variables, so the algorithm does not

have the problem of multicollinearity (Breiman, 2001; Hajipour et al.,

2020). To sum up, RF model usually has higher accuracy than other

machine learning methods (Breiman, 2001; Hajipour et al., 2020;

Pluth and Brose, 2022). XGB is a gradient-enhanced integrated

learning model that focuses on training multiple weak classifiers and

assembling them into a stronger classifier with the goal of minimizing

the loss function and increasing the weight of misclassifications by

computing negative gradients to improve training for the next

iteration (Krishnapuram et al., 2016). Compared with the traditional

gradient boosting decision tree (GBDT), XGB adds a regularization

method, which makes the loss function smoother, reduces the

complexity of the model, and avoids model overfitting (Chang et al.,

2022). In addition, XGB uses an approximation algorithm to find the

optimal solution for segmentation, and optimizes gradient

enhancement to improve efficiency and scalability (Yu JR. et al., 2022).
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We applied Python and SciKit Learn 0.18 (https://scikit-

learn.org/stable/) platforms to install and load the installation

packages used to build and evaluate machine learning models

with default parameters for model construction. The gut flora

data of 134 CRC patients with LVI information were used as

samples, randomly divided into training and test sets by 7:3, and

the species of gut flora were used as features of the data, and the RF

and XBG models were constructed and predicted based on the top

15% species of feature importance among LVI-related differential

gut bacteria, respectively, using the subject operating curve (ROC)

and under curve area under the curve (AUC) to assess the accuracy

of the machine learning models on the training and validation sets.
2.7 Analytical methods for 16S
rRNA sequencing

The following operations were performed in R software v3.5.1. All

P values are two-tailed and are treated as statistically significant at P <

0.05. After obtaining the FASTQ raw sequencing data for each sample,

the raw sequencing data were quality filtered using Quantitative In-

sights Into Microbial Ecology version 2 (QIIME2), species annotation

was performed based on the Greengene database v13.8, and the

phyloseq package was used to v1.26.1 for gut flora ASV/OTU

extraction. First, the species diversity of the intestinal flora of each

sample was measured as alpha diversity, with the Chao1 and ACE

indices describing the flora richness (Community richness), and the

Shannon and Simpson indices describing the species diversity and

homogeneity of the flora. The variability in species composition of the

gut flora of each sample in the same ecology was measured by beta

diversity, and ADONIS analysis and ANOSIM analysis in beta

diversity analysis were performed by vegan package v2.5.6. The

Partial Least squares-discriminant Analysis (PLS-DA) of fecal

intestinal flora was performed by the package mixOmics v6.6.2.

LEfSe analysis supports high-dimensional taxonomic comparisons

(Zhang et al., 2013) and can be used to screen for species that are

most likely to explain differences between groups. Next, LEfSe analysis

was performed using Lefse software v1.0.0, and the results of the LEfSe

analysis were evaluated using linear discriminant analysis (LDA) to

assess the effect values for each species that differed significantly (i.e.,

LDA score, which by default undergoes log transformation with a base

of 10, the larger the absolute value the easier it is to distinguish between

groups). Species with significant differences in abundance between

groups were obtained using |LDA|>2 and P<0.05 as the difference

screening threshold, and the results were presented in a bar graph.

Finally, PICRUSt2 software 2.3.0 was used to predict the KEGG

pathway enriched between groups for the sequenced samples. The

analysis of variability of a and b diversity indices and KEGG pathways

between groups were performed using the nonparametric Mann-

Whitney U rank sum test, both using the vegan package v2.5.6, and

the visualization of histograms was done by the ggplot2 package v3.4.0.
2.8 Statistical methods

All the following operations were analyzed by R software v4.2.2. All

P values are two-tailed and are treated as statistically significant at
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P < 0.05. Continuous data analysis of clinical data was performed by t-

test and quantitative data analysis was performed by Pearson chi-square

test (Table 1), which was calculated by SPSS software v23.0. Correlations

between intestinal flora and immune cell abundance and immune-

related genes were calculated using Pearson correlation, correlations

between different subgroups of dominant flora, and correlations

between intestinal flora and KEGG pathway were calculated using

Spearman correlation, all by Hmisc package v4.7-1. Correlations

between gut flora and BP items and MF items were calculated using

Spearman correlations through the ggcorrplot package v0.1.4. and the

correlation matrix was visualized using ggcorrplot package v0.1.4,

Igraph package v1.3.5 and Cystoscope software Version 3.7.2.
3 Result

3.1 Demographic and clinical
characteristics of CRC patients stratified by
LVI condition

A total of 134 CRC patients with information on vascular

invasion were included in this study. Among them, 47 patients

with CRC with vascular invasion and 87 patients with CRC without

vascular invasion were included. As shown in Table 1, there were no

statistically significant differences in age and sex between CRC

patients with and without vascular invasion, indicating that the

baseline data were balanced and comparable. The proportion of

CRC patients with vascular invasion with TNM stage III-IV

(P=0.033) and with nerve invasion (P<0.001) was significantly

higher than that of CRC patients without vascular invasion,

suggesting that LVI is associated with the progression of CRC.
3.2 Comparison of microbiome diversity
between CRC patients with LVI and NLVI

First, we investigated whether there was a difference in the

diversity of the flora between the LVI and NLVI groups of patients,
Frontiers in Cellular and Infection Microbiology 05
which was mainly measured by the alpha diversity and versus beta

density indices. Figure 1A compares the 6 alpha diversity indices of

the intestinal flora samples of CRC patients in the LVI and NLVI

groups, but none of the differences were statistically significant (P >

0.05). The beta diversity of the CRC patient groups in the LVI and

NLVI groups is shown in Figure 1B, and there were no statistical

differences in the Bray (P=0.322) and Jaccard’s test indices (P=0.197)

between the gut microbial composition of the two groups (see

Supplementary Tables 1, 2). PLS-DA analysis suggested that the

LVI and NLVI groups could be distinguished into two distinct groups

(Figure 1C). The above results showed that there were no significant

differences in species diversity and community composition of fecal

microbial communities between the LVI and NLVI groups, but there

were still clear group differences in the composition of the intestinal

flora between the LVI and NLVI groups.
3.3 Identification of intestinal microbiome
associated with LVI condition

To search for potential LVI-associated intestinal flora biomarkers

(species with significant differences in abundance between the LVI and

NLVI groups), we performed LEfSe analysis of fecal microorganisms

from CRC patients in the LVI and NLVI groups. Among them, we

found statistically significant differences in the abundance of a total of

39 species. There were a total of 34 species in the LVI group with

significantly higher abundance than the NLVI group, and a total of 5

species in the NLVI group with significantly higher abundance than the

LVI group (P < 0.05, as in Supplementary Table 3; Figures 2A, B). The

LDA bar chart in Figure 2B shows the LDA scores of the LEfSe analysis

for each important colony (after taking log10 processing), with higher

scores indicating the greater influence of the species. In addition, to

explore the interaction between LVI-related differential flora, we

depicted the correlation graph between the dominant flora of the

LVI group and the dominant flora of the NLVI group (Figure 2C).

Among them, g_Anaerovorax.s_uncultured_bacterium,

_o_Clostridiales.f_Ruminococcaceae, g_Phascolarctobacterium.

s_uncultured_Phascolarctobacterium_sp., f_Coriobacteriaceae.
TABLE 1 Demographic and clinical characteristics of CRC patients stratified by LVI condition.

CRC patients with LVI (n=47) CRC patients with NLVI (n=87) P value Test

Age (years, mean (SD)) 57.96 ± 11.46 57.85 ± 10.75 0.957 T-Test

Age (%) ≥60 21 (44.70) 37 (42.50) 0.810 Pearson Chi-square

<60 26 (55.30) 50 (57.50)

Gender (%) male 28 (59.60) 55 (63.20) 0.678 Pearson Chi-square

female 19 (40.40) 32 (36.80)

TNM stage (%) early (0~2) 15 (31.90) 44 (51.20) 0.033* Pearson Chi-square

advanced (3~4) 32 (68.10) 42 (48.80)

perineural invasion (%) YES 41 (89.10) 32 (37.20) <0.001*** Pearson Chi-square

NO 5 (10.90) 54 (62.80)
The “*” in the upper right corner of the P value value indicates the P value: none* for P value ≥ 0.05, * for 0.01 ≤ P < 0.05, ** for 0.001 ≤ P < 0.01, *** for 0.0001 ≤ P < 0.001.
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g_Collinsella and f_Lachnospiraceae.g_Coprococcus were the five most

connected bacterias with other nodes. It indicates that these five groups

have the closest correlation with other dominant bacteria. Moreover,

there was a significant negative correlation between the dominant flora

f_Comamonadaceae.g_Acidovorax and f_Rhizobiaceae.g_Rhizobium in

the NLVI group and some of the dominant flora of the LVI group. The

above results suggest that there may be a competitive relationship

between these dominant bacterial groups and each other.
Frontiers in Cellular and Infection Microbiology 06
3.4 Function prediction of intestinal
microbiome between CRC patients with
LVI and NLVI

To investigate the biological pathways enriched by LVI-related

intestinal flora genes, we used PICRUSt2 (Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States 2) software to

predict the KEGG pathways between the LVI and NLVI groups of
A

B

C

FIGURE 1

Diversity index of intestinal flora in the LVI group compared with the NLVI group of CRC patients (A) Comparison of alpha diversity index of intestinal
flora between LVI group and NLVI group of CRC patient group. (B) Comparison of b diversity index of intestinal flora in LVI group and NLVI group of
CRC patient group. The horizontal coordinates indicate the group, the vertical coordinates indicate the value of community diversity index of the
samples in this group, and the color indicates the group. (C) PLS-DA analysis of intestinal flora in the LVI group versus the NLVI group of CRC
patients. The dots represent each gut flora sample, the color indicates the group, the scale of horizontal and vertical axes indicates the relative
distance of each sample, and X-variate 1 and X-variate 2 represent the factors affecting the shift of gut flora composition in CRC patients in LVI and
NLVI groups, respectively.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1098310
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fcimb.2023.1098310
flora. A total of 173 KEGG pathways were identified, 47 of which were

statistically significantly different (P<0.05). The LVI group had 33

KEGG pathways in significantly higher abundance than the NLVI

group, and the three most significant pathways were Dioxin

degradation (P=0.004), Phosphotransferase system (PTS) (P= 0.008)

and Caprolactam degradation (P= 0.013). The NLVI group had 14

KEGG pathways in significantly higher abundance than the LVI group.

Non-homologous end-joining (P=0.004), Glycerophospholipid

metabolism (P=0.040) and Methane metabolism (P=0.044) were

three of the most significant pathways (see Supplementary Figure 1,

Supplementary Table 4 for details, P < 0.05). The above results

suggest that LVI-associated intestinal flora have differential

metabolic functions.
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3.5 Relationship between LVI-associated
differential intestinal flora and tumor-
infiltrating immune cells

Tumor-infiltrating immune cells are an important component of

the tumor microenvironment, involved in regulating the local tumor

immune response, and are potential targets for tumor immunotherapy.

To explore the relationship between LVI-related differential intestinal

flora and tumor-infiltrating immune cells, we first produced strip plots

demonstrating the composition of 22 infiltrating immune cells in 15

colorectal cancer patients with both information on vascular invasion

and RNA sequencing (Figure 3A). The immune infiltration

microenvironment of each patient was characterized by its own
A B

C

FIGURE 2

Differential intestinal flora analysis of CRC patients in the LVI and NLVI groups (A) Evolutionary relationship diagram for LEfSe analysis. Node size
represents species abundance size, which is proportional to species abundance size. Node color represents grouping, yellow nodes in the branches
indicate species that do not differ significantly in abundance between groups; red nodes indicate species with significantly higher abundance in the
LVI group, and green nodes indicate species with significantly higher abundance in the NLVI group. The nodes in each layer indicate the phylum/
class/order/family/genus/species from inside-out, and the annotations of species markers in each layer indicate the phylum/class/order/family/
genus/species from outside-in. (B) LDA bar graph based on 16S rRNA gene sequencing. The color of the bar graph represents the group, the
horizontal coordinate is the LDA score (after log10 processing), the vertical coordinate indicates the differential species with significantly higher
abundance in the group, and the length of the bar graph represents the size of the LDA score value. (C) Network diagram of LVI-related differential
gut flora correlation. Each node represents each species, node color represents grouping, node size represents the number of edges connected to
the node, the larger the node, the more the number of edges connected to the node, the connecting line represents the existence of significant
correlation between two nodes, Spearman correlation coefficient values below 0 (negative correlation) represent the blue line, Spearman correlation
coefficient values greater than 0 (positive correlation) represent the red line The thicker the line, the larger the Spearman correlation coefficient
between the two nodes.
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characteristics as seen in the figure. Overall, patients in the NLVI group

had more plasma cells than in the LVI group, and patients in the LVI

group had more B cells memory and B cells naive than in the NLVI

group. Next, to investigate the association between LVI-related

differential flora and immune cells, we correlated the dominant flora

with 22 immune cells in the LVI and NLVI groups, respectively. In the

LVI group, f:Lachnospiraceae.g:Coprococcus, o:Lactobacillales.f:

Lactobacillaceae and f:Lactobacillaceae.g:Lactobacillus had a

significant positive correlation with Macrophages, g:Anaerovorax.s:

uncultured_bacterium has a significant positive correlation with

Macrophages M2, g:Bacteroides.s:Bacteroides_stercoris and o:

Clostridiales.f:Ruminococcaceae had a significant negative correlation

with NK cells activated (Figures 3B–D). In the NLVI group, f:

Enterobacteriaceae.g:Enterobacter showed a significant positive

correlation with Dendritic cells resting and Macrophages M1

(Figures 3C, D). In summary, immune cell infiltration in CRC
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patients in the LVI and NLVI groups differed, and LVI-associated

differential intestinal flora was significantly correlated with multiple

immune cells, suggesting that LVI-associated differential intestinal flora

may be involved in regulating immune cell infiltration in CRC.
3.6 Correlation of LVI-related differential
intestinal flora with immune-related genes

The immunity of the organism is closely related to the

development of tumors. To investigate the relationship between LVI-

associated differential gut flora and organismal immunity, we

performed a correlation analysis between LVI-associated differential

gut flora and common immune-related genes. Among the dominant

bacteria in the LVI group, g:Slackia.s:uncultured_bacterium, g:

Megasphaera.s:uncultured_bacterium and f:Erysipelotrichaceae.g:
D

A B

C

FIGURE 3

Correlation of LVI-related differential intestinal flora with tumor immune infiltrating cells (A) Bar graph of relative abundance of immune cells in CRC
patients grouped by LVI status. Each bar is one sample, the vertical coordinate is the predicted relative abundance value of immune cells, the sum of
the relative abundance of all immune cells in a single sample is 1, and each color in the graph corresponds to one immune cell. (B) Heat map of the
correlation between the dominant flora and the abundance of immune cells in the LVI group. (C) Heat map of the correlation between the dominant
flora and the abundance of immune cells in the NLVI group. The horizontal coordinates are immune cells, the vertical coordinates are bacteria, the
red color in the graph represents positive correlation, the blue color represents negative correlation, the color depth represents the Pearson
correlation coefficient size, the color from light to dark indicates the Pearson correlation coefficient value from small to large. The “*” in the graph
indicates the size of P-value: no * for P-value ≥ 0.05, * for 0.01 ≤ P<0.05, ** for 0.001 ≤ P<0.01, *** for P<0.001. (D) Network diagram of the
correlation between LVI-related differences in intestinal flora and immune cells. Each node represents each intestinal bacteria or immune cell, the
node color represents the grouping, and the connecting line represents the existence of a significant correlation between two nodes; Pearson
correlation coefficient values less than 0 (negative correlation) indicate the blue line, and Pearson correlation coefficient values greater than 0
(positive correlation) indicate the red line.
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Faecalitalea were associated with multiple immune checkpoints

(LAG3, CTLA4 and TNFRSF9 etc.) (as in Figure 4A), immune

activating genes (CXCL12, CD86 and CD80 etc.) (as in

Supplementary Figure 2), immune suppressor genes (CTLA4, CD96

and CD274 etc.) (as in Supplementary Figure 3), chemokines (CXCL9,

CXCL13 and CCL5 etc.) (as in Figure 4B) and chemokine receptors

(XCR1, CXCR3 and CCR5 etc.) (as in Supplementary Figure 4) all

showed significant positive correlations. Among the dominant bacteria

in the NLVI group, g:Oscillibacter.s:uncultured_organism and f:

Enterobacteriaceae.g:Enterobacter were associated with multiple

immune checkpoints (LAG3 and VTCN1 etc.) (as in Figure 4C),

immune activation genes (TNFRSF17 and CD27 etc.) (as in

Supplementary Figure 5), immunosuppressive genes (VTCN1 and

TGFB1 etc.) (as in Supplementary Figure 6), chemokines (CXCL6

and CXCL9 etc.) (as in Figure 4D) and chemokine receptors (CCR1

and CCR2) (as in Supplementary Figure 7) showed significant

correlations. The above results suggest that LVI-related differential

intestinal flora may influence the expression of immune-related genes.
3.7 Identification of differential pathways
and correlation between differential
pathways and differential flora in colorectal
cancer patients in the LVI and NLVI groups

To explore LVI-related differential regulatory pathways and to

investigate the potential impact of LVI-related differential gut flora
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on these pathways, we transformed RNA sequencing data from

tumor samples of nine patients with gut flora 16sRNA sequencing

data into corresponding scoring matrices by GO (Gene Ontology)

and KEGG (Kyoto encyclopedia of Genes and Genomes) analysis

through the ssGSEA method. GO enrichment analysis includes

three aspects: biological process (BP), cellular component (CC), and

molecular function (MF). Next, by differentially analyzing the

GO and KEGG pathway score matrices of the LVI and NLVI

groups, we found that a total of 327 GO pathways were

significant ly upregulated in the LVI group [GOMF_

FATTY_ACID_TRANSMEMBRANE_TRANSPORTER_

ACTIVITY (logFC=0.072,P<0.001) and GOBP_POLYOL

_TRANSMEMBRANE_TRANSPORT (logFC=0.060,P<0.001)

etc.]. And three KEGG pathways were significantly upregulated

[KEGG_GALACTOSE_METABOLISM(logFC=0.021,P=0.025),

K EGG_ALDOSTERONE_REGULATED_ SOD IUM_

REABSORPTION(logFC=0 .031 ,P=0 .027) and KEGG_

CYTOSOLIC_DNA_SENSING_PATHWAY(logFC=-0.042,

P=0.036)]. There were 65 significantly upregulated GO pathways in

the NLVI group [GOBP_INTRACILIARY_TRANSPORT(logFC=-

0.037,P=0.003) and GOMF_NEUROTRANSMITTER_RECEPTOR

_REGULATOR_ACTIVITY(logFC=- 0.074,P=0.015) etc.]. And

one KEGG pathway was significantly upregulated [KEGG_

OTHER_GLYCAN_DEGRADATION(logFC=-0.027,P=0.026)]

(as shown in Figures 5A, B). The detailed GO enrichment

list and KEGG pathway enrichment list are shown in

Supplementary Tables 5, 6, respectively. The above results suggest
D
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FIGURE 4

Correlation of LVI-related differential intestinal flora with immune-related genes (A) Heat map of correlation between the dominant flora and
checkpoints in the LVI group. (B) Heat map of the correlation between the dominant flora and chemokines in the LVI group. (C) Heat map of
correlation between dominant flora and checkpoints in NLVI group. (D) Heat map of the correlation between the dominant flora and chemokines in
the NLVI group. The horizontal coordinates are genes, the vertical coordinates are bacteria, the red color in the graph represents positive
correlation, the blue color represents negative correlation, the color depth represents the size of Pearson correlation coefficient, the color from light
to dark indicates the value of Pearson correlation coefficient from small to large. The “*” in the graph indicates the P-value size: no * for P-value ≥

0.05, * for 0.01 ≤ P<0.05, ** for 0.001 ≤ P<0.01, *** for P<0.001.
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that colorectal cancer tissues with LVI are enriched for different

biological functions.

Next, to investigate the relationship between LVI-associated

genomic functions and LVI-associated differential intestinal flora,

we used the colony counts of 39 LVI-associated differential flora from

9 patients to correlate with the LVI-associated BP, MF and KEGG

pathway score matrices, respectively, and found significant

correlations between some differential flora and some BP, MF and

KEGG pathways. For example, GOMF_PROTEIN_PHOSPHA T

ASE_2A_BINDING showed a significant strong positive correlation

with g:Lachnospiracea_incertae_sedis.s:Eubacterium_ramulus

(r=0.83,P<0.05) (Figure 5C; Supplementary Table 7) .

KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY showed a

significant strong positive correlation with f:Erysipelotrichaceae.g:

Faecalitalea (r=0.84, P<0.01) (Figure 5D). These suggest that LVI-

associated differential intestinal flora may influence vascular invasion

in CRC through a number of potential biological functions.
3.8 Construction of gut microbiome
signature for predicting LVI condition of
CRC patients

To screen LVI-associated gut flora biomarkers and more

accurately predict LVI in CRC patients, we constructed RF and

XGB prediction models based on 39 LVI-associated differential gut

flora obtained from LEfSe analysis. The confusion matrix of the

training set of the RF-based LVI prediction model showed that the

number of samples with a true negative (TN) prediction result was

significantly higher than that of a false negative (FN), but the

number of samples with a false positive (FP) result was higher than

that of a true positive (TP) (Figure 6A), and the confusion matrix of

the validation set showed that the number of samples with a true

negative (TN) and true positive (TP) prediction result was higher

than that of both false negative (FN) and false positive (FP) samples

(Figure 6B), and the AUC value of the ROC curve for the training

set was 0.891 and the AUC value of the ROC curve for the

validation set was 0.807 (Figure 6C). The confusion matrix of the

XGB-based LVI prediction model for the training set predicted

significantly more samples as true negative (TN) and true positive

(TP) than false negative (FN) and false positive (FP) (Figure 6D),

and the confusion matrix of the validation set showed that the

number of samples predicted as true negative (TN) was significantly

higher than false negative (FN), but the number of false positive

(FP) samples was more than the number of true number of positive

(TP) samples (Figure 6E), the AUC value of the ROC curve for the

training set was 0.975, and the AUC value of the ROC curve for

the validation set was 0.665 (Figure 6F). In summary, although the

confusion matrices of both models suggest a high false positive rate

of model prediction. However, the AUC values of the ROC curves of

the RF-based LVI prediction model were greater than 0.8 for both

the training and validation sets. the AUC values of the ROC curves

of the XGB-based LVI prediction model were greater than 0.95 for

the training set, but less than 0.7 for the validation set. These results

indicate that both models have some predictive accuracy and that

the RF-based LVI prediction model has higher predictive efficacy,
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which can help guide the practice of predicting LVI in CRC patients

by gut flora testing.
4 Discussion

In this study, we focused on exploring the differences between

the structure and abundance of intestinal flora of CRC patients in

the LVI and NLVI groups, and attempted to find microbial labels

with predictive or discriminatory significance by analyzing their

differential intestinal flora. We identified the relative abundance of

each flora in the feces of CRC patients in LVI and NLVI groups by

16SrRNA sequencing technology and examined their biofunctional

pathways, respectively.

We first compared the a-diversity and b-diversity of gut

microorganisms in rectal cancer patients with LVI and NLVI

nodes, and the results were not significantly different in either

case, indicating that the number and composition of microbial

community species did not differ significantly between the two

sample groups. It has been shown that patients in the CRC group

have more biodiversity in their gut flora than healthy subjects

(Sheng et al., 2019; Zhang et al., 2021). This suggests that the

occurrence of CRC may be closely related to the intestinal flora. It is

worthwhile for us to investigate deeply whether there are certain

flora in the intestinal flora of CRC patients that are associated with

CRC-LVI. Therefore, we further identified the abundance of each

intestinal community in both groups, looked for intestinal flora

with significant differences in abundance between the two groups,

and analyzed whether there was a correlation between them and

CRC-LVI.

In the differential intestinal flora of the LVI and NLVI groups, g:

Alistipes.s:Alistipes_indistinctus was closely correlated with other

dominant bacteria. Alistipes is a Gram-negative bacterium of the

phylum Mycobacterium, and a relatively new genus of bacteria,

isolated mainly from medical clinical samples (Sakamoto et al.,

2020). It has been suggested that Alistipes can act as a potential

pathogen that may induce CRC (Parker et al., 2020). In addition,

Alistipes has the most pathways of spoilage among commensal

bacteria. Spoilage is the fermentation of undigested proteins in the

gastrointestinal tract by the intestinal microbiota and usually results

in the production of harmful metabolites by the bacteria. These

products have been reported to be harmful and associated with

CRC. Such products include ammonia, H2S, cresol, indole and

phenol (Hughes et al., 2000). It has also been shown that

Alistipes_indistinctus promotes inflammation and causes epithelial

cell alterations, suggesting that this species is a potential driver of

intestinal barrier dysfunction and inflammation (Kim et al., 2018).

Impaired intestinal barrier function contributes to the pathogenesis

of CRC. Intestinal barrier dysfunction can induce epithelial

mesenchymal transformation and also allow harmful substances

to enter the organism to induce chromosomal damage directly

involved in tumorigenesis (Keating and Spencer, 2019). In addition,

the impairment of tight junctions between cells and the defective

immune barrier also promote the invasion and metastasis of CRC

tumors (Li et al., 2020). Therefore, it is reasonable to assume that

Alistipes can not only act as a potential pathogen to induce the
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1098310
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fcimb.2023.1098310
development of CRC, but also it can promote the invasive and

metastatic process of CRC tumors, and has a close relationship with

CRC-LVI.

Analysis of the tumor microenvironment of immune cells

showed that patients in the LVI group had more B cells memory

and B cells naive than those in the NLVI group, and patients in the
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LVI group had less plasma cells than those in the NLVI group. It has

been shown that tumor-infiltrating B cells can exert anti-tumor and

pro-tumor effects, depending on their immunostimulatory or

immunosuppressive activity, which varies by cancer type. B cells

can protect against tumors under certain conditions, mainly by

producing tumor-specific antibodies and presenting tumor
D
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FIGURE 5

Identification of LVI-associated differential pathways and correlation of differential pathways with LVI-associated differential intestinal flora (A) GO
volcano map of LVI-associated differential expression. (B) KEGG volcano plot of LVI-related differential expression. The horizontal coordinate
indicates log2 (fold change), the farther the point is from the center, the greater the differential fold; the vertical coordinate indicates -log10 (p
value), the closer the point to the top indicates the more significant expression difference. Each point represents a detected differentially expressed
gene, red indicates an up-regulated gene, blue indicates a down-regulated gene, and gray indicates no differential gene. (C) Correlation graph of
LVI-associated differential BP and MF with LVI-associated differential intestinal flora. Horizontal coordinates are bacteria, vertical coordinates are GO
labels, red in the graph represents positive correlation, blue represents negative correlation, color depth represents Spearman’s correlation
coefficient size, color from light to dark indicates Spearman’s correlation coefficient value from small to large. The “×” symbol in the graph indicates
the P-value: with “×” symbol means P-value ≥ 0.05, without “×” symbol means P<0.05. (D) Correlation graph of LVI-associated differential KEGG
with LVI-associated differential intestinal flora. The triangle graph represents the correlation graph of LVI-related differential in intestinal flora, the
upper right corner is the KEGG label, the depth of the connecting color represents the magnitude of Spearman’s correlation coefficient r, the
connecting line presented in dark orange indicates the correlation coefficient r≥0.05, representing a strong positive correlation. A light orange line
indicates a correlation coefficient of 0<r<0.05, representing a weak positive correlation. A dark green line indicates a correlation coefficient r≥0.05,
representing a strong negative correlation; a light green line indicates a correlation coefficient 0<r<0.05, representing a weak negative correlation;
the thickness of the line represents the p-value, a thick line represents 0.01<P<0.05, and a thin line represents P≥0.05.
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antigens, but certain B cell subsets and antibody specificity can also

suppress anti-cancer immunity and promote tumor growth

(Sharonov et al., 2020; Kim et al., 2021). The higher B-cell

content in the LVI group than in the NLVI group may be related

to this. This is consistent with the results of our study. In the LVI

group, there were some dominant colonies positively correlated

with Macrophages M0 and Macrophages M2. In contrast, in the

NLVI group, there were some dominant colonies that showed

significant positive correlations with Macrophages M1. According
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to the study, Macrophages M0 and Macrophages M2 may play a

major role in mediating immunosuppression and enhancing tumor

aggressiveness (Najafi et al., 2019; Osman et al., 2020; Zheng et al.,

2022). It has also been shown that M0 macrophages, M1

macrophages infiltrate significantly more in CRC compared to

normal tissue. While M0 macrophages were highest in tumors

with lymphatic invasion (Ge et al., 2019). In summary, we suggest

that these dominant flora of the LVI group, which are positively

correlated with Macrophages M0 and Macrophages M2, are closely
D
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FIGURE 6

Effectiveness evaluation of RF and XGB prediction models (A) Confusion matrix of RF in the training set. (B) Confusion matrix of the RF model in the
validation set. (D) Confusion matrix of XGB model in the training set. (E) Confusion matrix of XGB model in the validation set. X-axis represents the
model prediction, y-axis represents the real situation, 1 represents correct prediction, 0 represents incorrect prediction, and the values in the box are
the number of samples. (C) ROC curves of the random forest in both training set and validation set. (F) ROC curves of the XGB prediction model
both training set and validation set. The horizontal coordinate is the false positive rate predicted by the model, the vertical coordinate indicates the
true positive rate predicted by the model, and the area under the curve represents the AUC value, the higher the AUC value, the higher the
diagnostic efficacy of the model.
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related to CRC-LVI. These dominant flora can combine

Macrophages M0 and Macrophages M2 to promote the CRC-LVI

process to some extent.

We analyzed the correlation between differential intestinal flora

and immune-related genes. Among the dominant bacteria in the LVI

group, g:Megasphaera.s:uncultured_bacterium showed significant

positive correlations with multiple immune checkpoints, immune

activation genes, immune suppression genes, chemokines and

chemokine receptors. Several studies have reported that the

microbiome or its metabolites can enhance the antitumor effects of

PD1 to some extent (Routy et al., 2018; Rossi et al., 2020). It has also

been shown in studies that Megasphaera can significantly improve

the antitumor efficacy of anti-PD1 therapy (Huang et al., 2022). In

our study, a positive correlation between Megasphaera and multiple

other immune checkpoints was also found, providing some research

basis for the application of Megasphaera in antitumor

immunotherapy. The predicted biofunctional analysis of gut

microbes from CRC patients in the LVI and NLVI groups

suggested significant differences in the abundance of KEGG

pathways of microbial genes in the two groups of gut flora. Among

the most significant pathways, Flagellar assembly and Bacterial

chemotaxis may be associated with cancer development (Allali

et al., 2018; Zhou et al., 2022). However, there is no direct evidence

that they are directly related to LVI. How these differential KEGG

pathways are linked to LVI remains to be proven.

RF model and XGB model are widely used machine learning

methods with promising prediction results (AlThuwaynee et al.,

2021; Hong et al., 2022; Yu JR. et al., 2022). We constructed a RF

prediction model and an XGB prediction model using gut flora as

a fecal microbial marker to distinguish CRC patients in the LVI

and NLVI groups. The AUC values of both the training set ROC

curve and the validation set ROC curve of the RF prediction model

are greater than 0.8; the AUC value of the training set ROC curve

of the XGB prediction model is 0.975, and the AUC value of the

validation set ROC curve is 0.665. Both models have good

diagnostic performance. Based on the machine learning model

analysis, we further constructed the association between gut

microbes and CRC-LVI, and demonstrated that the fecal

biomarkers based on the dominant flora could be used to

differentiate the LVI group from the NLVI group of CRC

patients, which could help to identify potential microbial

markers of gut flora for clinical application and to assess the

LVI status of CRC patients easily and accurately.

There are also some shortcomings in this study: due to

insufficient conditions, relevant basic experiments were not

performed to verify the relationship between gut microorganisms

and CRC-LCI. This study did not add the intestinal flora of healthy

population as a control, and it was not possible to compare the

differences between the flora of patients with various stages of CRC

and healthy population, which was not conducive to the judgment

of the benign and malignant degree of various enriched flora. In

addition, the number of cases with both colorectal cancer tumor

tissue samples and stool samples was too small, and the reliability of

this study could also be improved if the number of such cases could

be increased. In the follow-up study, we will try to overcome these

shortcomings and strive to make better research results.
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5 Conclusion

There were 39 intestinal flora with significantly different species

abundance between LVI and NLVI groups, among which g:

Alistipes.s:Alistipes_indistinctus with significantly higher species

abundance in the LVI group was closely related to CRC-LVI, and

Alistipes could promote the CRC-LVI process to some extent. LVI-

associated differential gut flora is closely related to tumor-infiltrating

immune cells and immune-related genes, and LVI-associated

differential gut flora may be involved in regulating the infiltration

of immune cells in CRC and, to some extent, influencing the

expression of immune-related genes, which in turn affects the

progression of CRC. colorectal cancer tissues with LVI are enriched

for different biological functions, and LVI-associated differential gut

flora may influence the process of vascular invasion in CRC through a

number of potential biological functions. The RF prediction model

and XGB predictionmodel constructed using intestinal flora as a fecal

microbial marker have good diagnostic efficacy and can be used to

predict CRC-LVI conditions.
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Box plot of KEGG functional abundance in the LVI group versus the NLVI

group of CRC patients.
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Heat map of the correlation between the dominant flora of LVI group and
immune activation genes.
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Heat map of the correlation between the dominant flora of LVI group and

immunosuppressive genes.
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Heat map of the correlation between the dominant flora of LVI group and
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